Pattern and polarity in the development and evolution of the gnathostome jaw: Both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula
Claudia Compagnucci, Mélanie Debiais-Thibaud, Marion Coolen, Jennifer Fish, John N Griffin, Federica Bertocchini, Maryline Minoux, Filippo M Rijli, Véronique Borday-Birraux, Didier Casane, et al.

To cite this version:
Claudia Compagnucci, Mélanie Debiais-Thibaud, Marion Coolen, Jennifer Fish, John N Griffin, et al.. Pattern and polarity in the development and evolution of the gnathostome jaw: Both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Developmental Biology, Elsevier, 2013, 377 (2), pp.428-448. <10.1016/j.ydbio.2013.02.022>. <hal-01149648>

HAL Id: hal-01149648
http://hal.upmc.fr/hal-01149648
Submitted on 7 May 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evolution of Developmental Control Mechanisms

Pattern and polarity in the development and evolution of the gnathostome jaw: Both conservation and heterotopy in the branchial arches of the shark, *Scyliorhinus canicula*

Claudia Compagnucci a,1, Melanie Debiais-Thibaud b,2, Marion Coolen c,3, Jennifer Fish a,d, John N. Griffin a, Federica Bertocchini e, Maryline Minoux f,g, Filippo M. Rijli f,h, Véronique Borday-Birraux b, Didier Casane b, Sylvie Mazan cv, Michael J. Depew a,i,*

a Department of Craniofacial Development, King’s College London, Floor 27, Guy’s Hospital, London Bridge, London SE1 9RT, UK
b Laboratoire Evolution, Génomes et Spéciation, CNRS and Université Paris Diderot, Paris, France
c Development and Evolution of Vertebrates Group, CNRS, Université d’Orléans, UMR 6218, 45070 Orléans, France
d Department of Orthopaedic Surgery, UCSF, 513 Parnassus Avenue, Medical Sciences Bldg. S-1161, San Francisco, CA 94143, USA
e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-SODERCAN, C. Herrera Oria s/n, 39011 Santander, Spain
f Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
g Faculté de Chirurgie Dentaire, 1, Place de l’Hôpital, 67000 Strasbourg, France
h University of Basel, 4058 Basel, Switzerland
i Department of Orthopaedic Surgery, UCSF, 2550 24th Street, SFGH Bldg 9, Room 346, San Francisco, CA 94110, USA

A R T I C L E I N F O

Article history:
Received 6 October 2012
Received in revised form 26 January 2013
Accepted 18 February 2013
Available online 7 March 2013

Keywords:
Shark
Branchial arch
Heterotopy
Jaws
Evolution

A B S T R A C T

The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part potentiated their success and diversification. Jaw development and patterning involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws and the evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have been partnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw development in chondrichthyans is still lacking. Recent advances in genome and molecular developmental biology of the lesser spotted dogfish shark, *Scyliorhinus canicula*, make it ideal for the molecular study of chondrichthyan jaw development. Here, following the ‘Hinge and Caps’ model of jaw development, we have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of *S. canicula* embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in the shark embryo, thus establishing a baseline molecular bauplan for branchial arch-derived jaw development and further validating the utility of the ‘Hinge and Caps’ model in comparative studies of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence...
of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in chondrichthyans, further highlighting the importance of this region for the development and evolution of jaw structure in advanced gnathostomes.

Introduction

Vertebrate evolution was profoundly affected by developmental innovations, many – such as the elaboration of the brain, neural crest cells and ectodermal placodes – involving the head (Gans and Northcutt, 1983; Langille and Hall, 1989; Shimeld and Holland, 2000). One result of these innovations, the gnathostome (jawed vertebrate) skull, is structurally complex. Adaptations involving the gnathostome skull have been involved in nearly every major vertebrate transition: in particular, the advent of a segmented, iterated branchial arch skeleton associated with the head enabled the eventual acquisition of jaws among a group of vertebrates—a landmark event that, in large part, lead to an immense gnathostome radiation and diversification (Fig. 1) (de Beer, 1985; Carroll, 1988; Gregory, 1933; Hanken and Thorogood, 1993; Janvier, 1996; Jarvik, 1980; Jollie, 1957, 1962, 1971; Moore, 1981; Nelsen, 1953; Novacek, 1993; Reynolds, 1913; Rieppel, 1993; Romanoff, 1960; Romer, 1967; Schultz, 1993; Smith, 1993; Trueb, 1993; Watson, 1926; Zusi, 1993). This bauplan includes a chondrocranium composed of a number of basic though fundamental neurocranial and splanchnocranial units, containing the palatoquadrate (PQ) and Meckel’s cartilage (MC) cores of the upper and lower jaws, respectively, as well as an associated dermatocranium (in all but chondrichthyans) (Fig. 2). In particular, developmental innovations involving the jaws and their primordia have been connected with major evolutionary transitions, including the colonization of land by tetrapods (being in part enabled by acquisition of internal choanae) and the mammalian ability to masticate while breathing (enabled by the presence of a secondarily palate) (Carroll, 1992; Evans, 2003; Gans, 1988; Goodrich, 1958; Halstead, 1968; Hildebrand, 1988; Kemp, 2005; Kingsley, 1912; Moore, 1981; Panchen, 1987; Parrington, 1940; Rosen et al., 1981; Schmalhausen, 1968; Tamarin, 1982; Zhu and Ahlberg, 2004).

As a result of this great diversification and radiation, gnathostome skulls (including their jaws) are characterized by variegated elaborations of cranial design that have manifested amazing end-point phenotypes; however, regardless of the particulars of end-point phenotype, gnathostome cranial skeletal ontogeny also notably exhibits a high degree of fidelity to an initial, basic structural design, or bauplan (Allin and Hopson, 1992; Barghusen and Hopson, 1979; de Beer, 1926, 1931, 1985; Bellairs and Kamal, 1981; Cubbage and Mabee, 1996; Depew and Simpson, 2006; Goodrich, 1958; Hanken and Hall, 1993; Harrison, 1996; Janvier, 1993; Jarvik, 1980; Jollie, 1957, 1962, 1971; Moore, 1981; Nelsen, 1953; Novacek, 1993; Reynolds, 1913; Rieppel, 1993; Romanoff, 1960; Romer, 1967; Schultz, 1993; Smith, 1993; Trueb, 1993; Watson, 1926; Zusi, 1993). This bauplan includes a chondrocranium composed of a number of basic though fundamental neurocranial and splanchnocranial units, containing the palatoquadrate (PQ) and Meckel’s cartilage (MC) cores of the upper and lower jaws, respectively, as well as an associated dermatocranium (in all but chondrichthyans) (Fig. 2). That both structural fidelity and elaboration of end-point phenotypes characterize gnathostome cranial structural organization has led to a number of questions regarding how the genetic, molecular, and cellular mechanisms underlying this apparent fidelity and elaboration of design are (and have been) manifested, maintained, coordinated and modified to generate the known cranial skeletal morphologies.

We have chosen to address such questions by first focusing on the comparative development of gnathostome jaws, initially by asking whether all jaws are made (and patterned) in the same manner. To this end, we have operationally defined and characterized primary jaws as articulated, appositional oral apparatuses principally derived from the splanchnocranial, dermatocranial and associated dental elements arising in the embryo from the anterior most branchial arch (BA), or BA1, with a small yet significant

Fig. 1. Vertebrate cladogram emphasizing specific character states in the evolution of jaws. On the cladogram, agnathans such as the lamprey are highlighted in green, chondrichthyans in blue, and osteichthyans (including bony fish and tetrapods) in purple. The lesser spotted dogfish shark, *Scyliorhinus canicula*, is an elasmobranch (boxed in blue) chondrichthyan fish. The acquisitions of specific significant jaw-related character states are indicated in red.
contribution, in all but chondrichthians, from the olfactory placode-associated frontonasal prominences (FNP). Thus defined, polarity is an inherent character state of jaws as minimally there is the ‘Hinge’ and there is all ‘Other’ (i.e., everything else) (Fig. 2). A significant consequence of such polarity is the potential for modularity within the appositional units (Depew and Compagnucci, 2008; Fish et al., 2011). Modularity is a notable trait as (1) it plausibly explains both integration within jaw structures and autonomy between jaw structures and (2) it potentially provides a key mechanism for evolutionary modifications and transformations of jaws.

The developmental system that coordinates and patterns the craniofacial primordia that give rise to jaws involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia (both endodermal and ectodermal) and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme (reviewed in Depew et al., 2002b; Francis-West et al., 2003; Minoux and Rijli, 2010). The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws (i.e., yielding appositional units working as a functional whole) and the evolutionary elaboration of variable jaw morphologies and designs. Following the above operational definition of jaws, a ‘Hinge and Caps’ model has previously been proposed that addresses the mechanisms of jaw development and evolution by placing the articulation, and subsequently the polarity (and potential modularity), of the upper and lower gnathostome jaws in the context of CNC competence to respond to positionally located cephalic epithelial signals (for discussions, see: Depew et al., 2005; Depew and Simpson, 2006; Depew and Compagnucci, 2008). Like most current models of jaw development and evolution, which have arisen mostly from molecular and cellular data in chicks and mice with some augmentation from other osteichthyan model organisms such as the zebrafish, this model expands on an evolving model of jaw
development and polarity within the amniote BA1. The ‘Hinge and Caps’ model seeks to explain a developmental patterning system that apparently keeps gnathostome jaws in functional registration yet tractable to potential changes in functional demands over time. More specifically, it relies upon a system for the establishment of positional information where pattern and placement of the ‘Hinge’ is driven by factors common to the junction of the maxillary (mxBA1) and mandibular (mdxBA1) branches of BA1 (including the oral epithelium and the first pharyngeal plate), and of the ‘Caps’ by the signals emanating from the distal-most BA1 midline and the lamellodental junction (where mxBA1 meets the FNP; hereafter λ-junction) (Fig. 2). In this particular model, the functional registration of jaws is achieved by the integration of ‘Hinge’ and ‘Caps’ signaling, with the ‘caps’ sharing at some critical level a developmental program that potentiates their own coordination. The model further posits that empirical patterns of regional gene expression at pharyngula stages of gnathostome embryos reflects the ‘Hinge and Caps’ nature of the patterning system of jaws.

Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes andpartnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey (Depew and Simpson, 2006; Myojin et al., 2001; Kuratani, 2004, 2005, 2012; Shigetani et al., 2002). Clearly lacking, however, is any understanding of the molecular and cellular underpinnings of jaw development in chondrichthyan, the gnathostome outgroup to osteichthyans and the clade to be compared to agnathans and osteichthyans in order to infer the ancestral state in the gnathostome last common ancestor (Fig. 1). Chondrichthyan are amongst the oldest, most basal extant gnathostomes making them essential targets of investigations in the analysis of jaw development and evolution (de Beer, 1931; Carroll, 1988; Coolen et al., 2009; Daniel, 1934; Dean, 1909; El-Toubi, 1949; Godard and Mazan, 2012; Goodrich, 1909, 1918; Gregory, 1933; Holmgren, 1940, 1942; Radinsky, 1987; Schaeffer and Williams, 1977; Wilga, 2002). Despite their apparent possession of the oldest, least modified jaws, how similar or different the spatiotemporal expression patterns are in chondrichthyan of genes known to be critical for amniote jaw development is unknown.

The Chondrichthyan clade consists of the Elasmobranchii (skates, rays and sharks) and the Holoccephali (chimaeras) (Fig. 1). Chondrichthyan exhibit fundamental vertebrate characteristics, such as CNC and an adaptive immune system, as well as fundamental gnathostome characteristics such as jaws and teeth (Coolen et al., 2007, 2009; Didier et al., 1998; Ferreiro-Galve et al., 2008; Freitas and Cohn, 2004; Gillis et al., 2009a, 2009b, 2011; Holmgren, 1940, 1942; Kuratani and Horigome, 2000; Maisey, 2001, 2008; Meyer and Zardoya, 2003; Nelsen, 1953; O’Neill et al., 2007; Reif, 1980; Romer, 1966; Smith et al., 2009; Wilga, 2002; Wotton et al., 2008). While in general gnathostomes have, in addition to their splanchnocranial cores, a dermocranial component to their jaws, elasmobranchs such as the shark have much simpler jaw apparatuses: their upper jaws consist of calcified PQ cartilages and associated teeth while their lower jaws consist of calcified MC cartilages and associated teeth (Barghusen and Hopson, 1979; de Beer, 1931; Carroll, 1988; Daniel, 1934; Dean, 1909; El-Toubi, 1947, 1949; Goodrich, 1909, 1918; Gregory, 1933; Grogan et al., 1999; Kingsley, 1912). Significantly, sharks do not possess FNP-premaxillary components in their upper jaws. Due to its phylogenetic position within the chondrichthyan, the natural sister group of osteichthyans (bony fish, amphibians, and amniotes), the shark has historically been a significant model organism in comparative anatomy and physiology (Balfour, 1878; de Beer, 1931; Dean, 1909; Daniel, 1934; El-Toubi, 1949; Goodrich, 1918; Holmgren, 1940; Kingsley, 1907; Schultze, 1993). Recent advances in genomic resources as well availability of eggs, make the lesser spotted dogfish shark, Scyliorhinus canicula, a significant model organism for the renewed, molecular study of the origins and diversification of jaws (Coolen et al., 2009; Godard and Mazan, 2012). Moreover, S. canicula, as a scyliorhinid shark, is a basal member of the largest order of extant sharks, the Carcharhiniformes, which comprise one of the four groups of Galeomorph chondrichthyan. As such, S. canicula is representative of the Elasmobranchii, one of the most basal, extant natural groups of gnathostomes (Fig. 1; Arnason et al., 2001; Iglesias et al., 2005). Herein, we further examine the empirical foundation for the ‘Hinge and Caps’ model by investigating evidence of heterotopic (relative changes in position) and heterochronous (relative changes in timing) shifts in gene expression, relative to amniotes such as mice, in the jaw primordia of S. canicula.

Materials and methods

Anatomical analyses

Staining of skeletal tissues of embryos harvested from egg cases was achieved following established protocols, where the Alizarin Red stained calcified cartilage and dental denticles, while Alcan Blue stained uncalcified cartilaginous tissues (Depew, 2008). Samples were stored in 100% glycerol at room temperature. Skeletal preparations were photographed using a Leica MZFLIII microscope with a Leica DFC300FX camera.

Scanning electron microscopy

Freshly harvested embryos were fixed in 4% paraformaldehyde and 0.2% glutaraldehyde in PBS. The specimens were then washed in PBS, dehydrated in a graded ethanol series, and critical point dried in liquid carbon dioxide. Specimens were subsequently mounted onto aluminum stubs and sputter coated with gold-palladium. They were thereafter examined and photographed with a FEI Quanta FEG scanning electron microscope operating at 10 kV.

Whole embryo in situ hybridization

DIGOxygenin-labelled riboprobes were prepared from cDNA extracted from S. canicula embryos and subsequently cloned in pSPORT vectors. Cloned fragments were amplified using the following primers: 5′ cDNA-pSPORT1 (5′ AAAGC TGCTAGCCTGCA) and T7-3′ pSPORT1 (5′ TAATACGACTCATATAGGGAGACGTAG TA AGCTTGATAC). The obtained PCR product was purified using a High Pure kit (Roche). Shark embryos were fixed with 4% paraformaldehyde in PBS over-night at 4°C on a rotating platform. Samples were then rinsed, dehydrated in a MeOH series, and subsequently stored at –20°C in 100% MeOH until use. Whole mount in situ hybridization was performed following Depew et al. (1999).

Results

The embryonic jaws and their branchial arch antecedents in Scyliorhinus canicula

The developing chondrocranium (including the splanchnocranium) of S. canicula has historically been used as illustrative of the general elasmobranch chondrichthyan state (Fig. 2B, F and H) (e.g.,
Pre-hatching embryos harvested from egg cases and subsequently stained with alcian blue demonstrate the adherence of *S. canicula* embryos to the general gnathostome bauplan (Fig. 2F–K). The chondrocranium consists of a neurocranium with sensory capsules and a splanchnocranium containing significant PQ and MC elements of the upper and lower jaws, respectively. Two notable differences between the elasmobranch chondrichthyan and osteichthyan jaws are evident: first, elasmobranch jaws such as those of *S. canicula* do not contain a dermatocranium associated with the PQ and MC elements; and second, rather than running toward (and articulating with) the laterally placed nasal capsules, PQ elements run medially to articulate with their contralateral, homotypic partners.

Despite a significant history in anatomical analyses, the jaw-yielding branchial arches of *S. canicula* have rarely been the focus of investigation in and of themselves. To facilitate our comparative analysis of the shark BA, we used scanning electron microscopy, which exquisitely details the surface appearance of anatomic, including embryonic, structures (Tamarin and Boyde, 1977; Tamarin, 1982), to further characterize the BA of *S. canicula* embryos from stage 17 to stage 25 (see Ballard et al., 1993, for staging criteria). Though differential translucence using light microscopy reveals the presence of the first pharyngeal pouch (Ballard et al., 1993), at stages 17 and 18 the external surfaces of the cephalic region of *S. canicula* embryos do not yet evince clearly demarcated individual BA (Fig. 3A and B). From stage 19 onward, however, discernable BA are present, and by stage 21 the anterior pharyngeal plates uniting the pharyngeal clefts with the pharyngeal pouches have begun to rupture between the BA (Fig. 3C). At this stage the BA are dorso-ventrally oriented...
and rod-like, with BA1 beginning to show the oral maxillary–mandibular constriction (MMC) that characterizes later stage embryos (white and purple arrowheads, Fig. 3). Moreover, otic, optic, and olfactory placodogenesis has occurred and incipient sensory primordia are developing dorsal to the BA (Fig. 3).

By stage 23, the first six BA are delineated, and, while clearly still rod-like in nature, a dorso-lateral (proximal) to ventro-medial (distal) orientation becomes evident. Two significant traits are further apparent at this stage: first, unlike amniote embryos, the proximal (dorsal) ends of each mxBA1 do not run toward olfactory pits but rather run dorsal just caudal to the developing optic primordia (compare Fig. 2E and Fig. 3D); second, an oral (rostral)–aboral (caudal) polarity initially becomes evident, as evinced by discrete bulges within the oral–aboral axes of the individual BA (exemplified by green arrowhead, Fig. 3D).

Further intra-arch polarity is patent by stage 25 (a stage, based on relative cephalic placode and BA development, roughly equivalent to E10–11 in mice) when the proximal end of the first three BA are distinctly comprised of two discrete, proximo-distally oriented, bulges (see green arrowheads, Fig. 3E and F). The MMC is accentuated at this stage, and gill bud primordia have begun to sprout on the causal (aboral) aspect of BA2–BA4 (Fig. 3E and F). Notably, gill buds appear to sprout from a mid-way point along the BA – proximo-distally aligned with the position of MMC – and appear to proliferate both proximally and distally from this point. The BA, moreover, have taken an overall chevron shape (Fig. 3E’), bent at the position of the constriction and buds, with the distal mandibular ends running toward the midline and heart. The proximal-most mxBA1 of stage 25 embryos, while still beneath the optic primordia, are also strikingly close to Rathke’s pouch as they have begun to run toward their contra-lateral, homotypic partners (Fig. 3F), and do not run toward the developing olfactory apparatus. Unlike similarly staged amniote nasal pits, the olfactory invaginations of the shark at this stage are only deep dorsally, creating a round, dorsal frontal nasal mass with little evidence of discrete medial and lateral FNP; thus, discrete λ-junctions are not seen. The lingual-caudal aspect of the proximal end of mdBA1, just before the MMC, further exhibits a discrete bulge (green asterisk, Fig. 3G), additionally highlighting the patent morphologic polarity within the S. canicula BA.

Thus, by stage 25, the BA of S. canicula embryos exhibit clear proximo-distal (dorso-ventral), oral–aboral (rostro-caudal) and medio-lateral (buccal–lingual) morphologic – and therefore developmental – polarity (Fig. 3H–M). This polarity can be schematized with reference to the expectations of gene expression patterns posited in the ‘Hinge and Caps’ model, and aspects of the developing axes (whether one, two or three dimensional) of the BA can be visualized to facilitate comparisons with osteichthyan (or amniote) embryos. For instance, gene expression may be hinge-centric (i.e., hinge-related), cap-centric, oral-centric, aboral-centric, nested, etc. (Fig. 3M). For convenience, we utilize this ordering mechanism in our analysis, presented below, of gene expression patterns investigated in S. canicula embryos.

Gene nesting patterns within the shark BA: The elasmobranch Dlx code

Dlx genes in amniotes are expressed in appendages, or outgrowths, from the main body axis, including in the basal ganglion, limb buds, genital tubercle and BA (Panganiban and Rubenstein, 2002). In amniotes, six Dlx genes have been detected and described: Dlx1, Dlx2, Dlx3, Dlx5, Dlx6 and Dlx4 (reviewed in Depew et al., 2005). In the embryonic mouse, these six Dlx genes are differentially expressed in a regional, nested pattern in the ectomesenchyme along the proximo-distal axis of the BA (Fig. 4A–C). Notably, Dlx genes are also variably expressed in the cephalic ectoderm. Chromosomal organization is, moreover, believed to be key to Dlx biology, with the six genes arranged as tightly linked, convergently transcribed (tail-to-tail), bigene tandems (or first-order (cis) paralogues) located near Hox gene clusters (Stock et al., 1996; Panganiban and Rubenstein, 2002). Protein structural similarity outside of the homeodomain, plus chromosomal location, indicates that the Dlx genes can be placed into two clades of second-order (trans) paralogous groups: Dlx1/6/4 and Dlx2/5/3. Tightly linked Dlx genes share regulatory regions and are expressed in similar patterns within the developing BA mesenchyme (Dolle et al., 1992; Bulfone et al., 1993; Robinson and Mahon, 1994; Ellies et al., 1997a,b; Depew et al., 2002a, Panganiban and Rubenstein, 2002; Ghanem et al., 2003; Qiu et al., 1995, 1997; Sumiyama and Ruddle, 2003). Hence, the linked, first-order paralogous Dlx genes share nested expression patterns within the mesenchyme of the BAs: the linked pair Dlx1/2 are expressed throughout mxBA1 and mdBA1 while the Dlx5/6 pair is essentially restricted to mdBA1 and Dlx3/4 to a sub-domain therein (Fig. 4A–C).

Based on genetic loss-of-function experiments in mice, and the familial nested expression pattern within the amniote BA ectomesenchyme, it has been argued that a Dlx code for regional specification along the proximo-distal axis of the BA regulates intra-BA skeletal morphology (Depew et al., 2002a,b, 2005). This code is in line with the ‘Hinge and Caps’ model as Dlx nesting and morphologic transformations due to loss of nested genes roughly correlate to mxBA1–mdBA1 divisions centered about the presumptive hinge region of BA1. Though spatial and temporal detailing has yet to be presented, Dlx nesting in the BA of other osteichthyans, including zebrafish, cichlids and chicks, has generally been in line with what has been published for mice (Blenitic et al., 2008; Ellies et al., 1997a, 1997b; Renz et al., 2011; Talbot et al., 2010; Walker et al., 2006) (Fig. 4A–C). Lampreys, which lack segmented branchial structures, possess multiple Dlx genes but, notably, nesting does not appear to characterize expression in their BA (Neidert et al., 2001; Kuratani, 2012; but see also Cerny et al., 2010).

Previous work has demonstrated that chondrichthyans are aligned with amniotes, rather than with teleostean bony fish such as Danio rerio which exhibit additional chromosomal duplications followed by loss, in possessing an array of three linked-pairs of Dlx genes (Renz et al., 2011; Stock, 2005; Ellies et al., 1997a,b). To determine whether Dlx nesting is a shared feature of chondrichthyan and osteichthyan BA development (i.e., is sympleiomorphic), we examined six S. canicula genes (ScDlx1, ScDlx2, ScDlx3, ScDlx4, ScDlx5 and ScDlx6; Debiais-Thibaud et al., 2011) homologous (orthologous) to amniote Dlx1–6 and addressed the ontogeny of the patterns of their gene expression in the BA, beginning with the ScDlx2/5/3 trans paralogous group.

ScDlx2

At stage 19, streams of ScDlx2+ cells leaving the neural folds and entering the BA are detected through in situ hybridization (blue arrows, Fig. 4F). ScDlx2+ cells are also detected circling the dorsal aspect of the optic primordia, as well as in two stripes, one connecting the circum-optic population with the midbrain stream entering BA1 (red arrows, Fig. 4F) and another directed, rostral to the eye, dorsal over the forebrain (green arrows, Fig. 4F). At stage 20, ScDlx2 transcripts clearly fill the entire lengths of the first three BA (yellow arrows), including mxBA1 and mdBA1, and are beginning to fill BA4. By stage 25, ScDlx2 transcripts are still detectable throughout the proximo-distal axis of BA1–BA6, though the distal (e.g., mdBA1) halves of BA1–BA3 show noticeably less strength of signal. Moreover, at this stage the mid-way position of the BA, aligned with the MMC, evince the weakest levels of transcript (yellow asterisks, Fig. 4F). At
stage 27 this trend toward reduction of expression distally has intensified such that, whilst proximal BA ectomesenchyme remain highly \textit{ScDlx2}-positive, relatively little expression is seen in the distal halves of the BA including mdBA1. Unlike what is seen with murine \textit{Dbx2}, \textit{ScDlx2} transcripts are not detected in the epithelium of the distal mdBA1 midline or at the proximal most mxBA1 at these stages (orange arrows, Fig. 4F).

\textit{ScDlx5}

\textit{ScDlx5} transcripts are initially detected at stage 18 in the midline surface cephalic epithelium associated with the recently closed anterior neuropore (Fig. 4G and Supplementary Fig. 2) and continue to be expressed here through stage 25. \textit{ScDlx5} transcripts are clearly detected in BA1-3 by stage 21, though...
BA2 distinctly appears to have greatest levels at this stage (red arrow, Fig. 4G). Stages 21–22 also highlight a subsequent trend toward an oral–aboral (rostro-caudal) asymmetry of expression in the BA as the aboral edge of ectomesenchymal expression extends proximally further than the oral edge (see light blue arrows, Fig. 4G). An additional trend, seen beginning stage 25, is the extension of significant ScDlx5 expression (yellow arrows, Fig. 4G) in the BA proximal to the position of the MMC. Moreover, epithelial expression is also detected in the dorsal olfactory placode and pit (orange arrows, Fig. 4G).

ScDlx3

ScDlx3 displays an overall dynamic cephalic embryonic expression pattern, in particular outside of the BA (Fig. 4H). From stage 21 through stage 27, ScDlx3 expression is seen in the proximal-most oral ectoderm of mxBA1 (orange arrows, Fig. 4H). ScDlx3 is also detected in the distal BA, coming on simultaneously, or just soon after, ScDlx5. Transcripts of ScDlx3 are clearly nested within the ScDlx5 domain, but unlike ScDlx5 do not, at any stage, extend proximally past the MMC. The oral–aboral asymmetry of expression characteristic of ScDlx5 is likewise evinced, to a lesser degree, with ScDlx3 in BA1, but is not significant in the caudal BAs. ScDlx3 is extensively expressed in the ectoderm associated with the primary sensory placodes, most notably in the ectoderm of the olfactory primordia.

ScDlx1, ScDlx4 and ScDlx6

As stated above, ScDlx1, ScDlx4 and ScDlx6 form linked pairs with ScDlx2, ScDlx3 and ScDlx5, respectively. As has typically been seen in osteichthyanas, the expression patterns of linked pairs in S. canicula generally mirror each other though small differences are encountered (Supplementary Figs. 1 and 2). For instance, ScDlx6 is expressed in the distal halves of the BA, including mdBA1, but does not extend proximally at later stages as its linked pair gene, ScDlx5, does. Overall, S. canicula exhibits a tiered, terraced nested pattern of Dlx gene family expression.

Conservation of hinge-centric patterns of gene expression

The ‘Hinge and Caps’ model suggests that the placement of the jaw articulation (i.e., the hinge) is fundamental to the patterning and organization of the jaws (Depew and Simpson, 2006; Depew and Compagnucci, 2008). Corollary to this notion is the expectation that unique, hinge-centric patterns of gene expression will characterize the antecedent jaw articulation region of the BA. We therefore examined whether S. canicula evinced patterns of gene expression similar to amniote genes typically found at the mxBA1–mdBA1 juxtaposition at the hinge (Fig. 5A). Specifically, we examined the expression of S. canicula homologues of Emx1, Emx2 and Bapx1, three genes expressed at the mxBA1–mdBA1 juxtaposition (i.e., the hinge) in amniotes (Bell et al., 2001; Gorski et al., 2002; Lettice et al., 2001; Mihalescu et al., 1999; Santagati et al., 2005; Tucker et al., 2004; Williams et al., 1997; Fig. 5).

We found that, in addition to being expressed in the brain (Derobert et al., 2002), at stage 25+ ScEmx1 and ScEmx2 are both expressed in the BA of pharyngula stage S. canicula embryos (Fig. 5). Specifically, expression is centered midway along the proximo-distal axis of the BA, positionally aligned with the MMC (Fig. 5B and C). Expression of ScEmx1 is particularly dynamic in this position (Fig. 5B), with transcripts being detectable orally and aborally at the MMC as well as in a lateral proximo-distal stripe placed midway between the oral and the aboral aspects of BA1 (yellow arrows, Fig. 5B). Moreover, a slight asymmetric oral–aboral expression pattern, still centered midway along the proximo-distal axis, characterizes the caudal BA (Fig. 5B). ScEmx2 expression (Fig. 5C), much like that seen with murine Emx2 (Fig. 5D), is highly hinge-centric.

Bapx1 expression in amniotes has been specifically correlated with the PQ–MC articulation (i.e., with the ‘primary’ jaw articulation; Lettice et al., 2001; Miller et al., 2003; Tucker et al., 2004), and therefore Bapx1 represents a notable hinge-centric gene (Fig. 5G). In pharyngula stage S. canicula embryos from stage 19 to stage 27, ScBapx1 is hinge-centric, being elaborately expressed around the MMC as well as in positionally aligned cells of the caudal BA (Fig. 5E and F). In particular, at stages 25 and 27, ScBapx1 transcripts are found in both the endoderm and the ectoderm associated with the pharyngeal clefts, being off-set between the oral (rostral; blue arrows) and aboral (caudal; yellow arrows) aspects of each BA (Fig. 5E and F).

We further considered evidence of either the specific absence, or the relative down-regulation, of gene expression at the MMC (and its positional correlates in the caudal BA) to be further evidence of hinge-related patterns of gene expression. In this regard, we found ScShh expression to be an exemplar of the latter category. Specifically, the extensive ScShh expression that characterized the proximo-distal axes of the endodermal linings of the BA from stage 21 to stage 25 was found to be distinctly diminished at the MMC as well as midway along the proximo-distal axes of the more caudal BA (Fig. 5H).

Conservation of caps-centric patterns of gene expression

Finding that S. canicula shared with amniote embryos hinge-centric patterns of expression of specific genes, we sought further evidence of shared, conserved (symplesiomorphic) patterns of expression within the ‘Caps’ regions of shark embryos.
Specifically, we examined three subtypes of gene expression: (1) genes dually expressed in both the proximal BA1 associated with the amniote λ-junction and the distal mdBA1, including Prx1, Alox4, Tbx2 and Bmp4 (Fig. 6; Ashique et al., 2002; Barlow and Francis-West, 1997; Bei and Mass, 1998; ten Berge et al., 1998; Beverdam et al., 2001; Foppiano et al., 2007; Furuta and Hogan, 1998; Chesterman and Kern, 2002; Depew et al., 2002b; Francis-West et al., 2003; Gong and Guo, 2003; Liu et al., 2005a, b; McGonnell et al., 2011; Qu et al., 1998, 1999; Satokata and Maas, 1994; Wall and Hogan, 1995; Wu et al., 2004; Zirzowa et al., 2001; Zhang et al., 2007; Zhang and Guo, 2003).
hand2, solely associated in amniotes (and osteichthyans) with the distal midline of mdBA1 and the more caudal BA (Thomas et al., 1998; Kuraku et al., 2010; Miller et al., 2003; Fig. 7); and (3) a gene, Raldh3, solely associated in amniotes with the proximal BA1 associated with the \(\lambda\)-junction (Dupe et al., 2003; Compagnucci et al., 2011) (Fig. 7).

Genes expressed in amniotes in both sets of ‘Caps’ can be further sub-categorized in a number of ways, including through separation of those differentially expressed in epithelial cells of one cap and mesenchymal cells in the other (such as Dlx3) and those expressed the same type of cells in each cap, such as Prx1 in the mesenchyme. With regard to the former, and as described above, ScDlx3 is indeed expressed in the mesenchyme of BA1 of the shark distal to the MMC while in the epithelium of the proximal mxBA1 (Fig. 6B and C). It is further expressed in the epithelium associated with the olfactory placode but is not expressed in epithelial cells bridging the placode with mxBA1.

Prx1, moreover, bears a notable level of conservation between its expression in amniotes and chondrichthyans (compare Fig. 6D and E). Both ScPrx1 and Prx1 are expressed in the polar ends, or caps, of BA1 (blue and white arrows at the mxBA1 portion of the \(\lambda\)-junction and blue arrows at the distal end of mdBA1) in their respective taxonomic correlates. Each, moreover, displays a distinct oral/rostral-aboral/caudal separation in expression (compare blue and yellow arrows with blue and white arrows in Fig. 6D, stage 23 and 6E), especially within the proximal BA, including a distinguished caudal swath of expression in cells of the proximal BA2 (green arrows, Fig. 6D and E). This oral/aboral separation correlates with the discrete bulges in the BA1 identified in the scanning electron micrographs (Fig. 3E). Notably, at early stages of BA development, ScPrx1 expression is expansive throughout the caudal BA but with ontogenetic progression expression becomes restricted to the caps. In the mouse, the mxBA1 and mdBA1 domains are connected by a small bridge of expression, which is absent in the shark.

As with Msx1 in amniotes, ScMsx1 transcripts are found in the mesenchyme of both proximal and distal caps in pharyngula stage shark embryos (Fig. 6F and G). Similar to ScPrx1, ScMsx1 is initially expressed extensively through the BA as they form (stage 22, Fig. 6F) but becomes restricted to the caps regions with ontogenetic progression of each BA (stage 25+, Fig. 6F). Notably, the oral/aboral polarity evinced with ScPrx1 in the proximal BA is also encountered with ScMsx1 (see blue and white and blue and yellow arrows, Fig. 6F), though in the caudal BA transcripts appear aborally restricted. There are, however, differences with murine expression evident: for instance, while Msx1 is continuously expressed from the frontonasal processes through the mxBA1 at the \(\lambda\)-junction, ScMsx1 is not. Moreover, a thin hinge-positioned proximo-distal line of ScMsx1 expression is seen in BA1 of S. canicula, although whether this has any correlation with the symmetrical expression of amniote Msx1 at the hinge region is unclear (green arrows, Fig. 6F and G). Furthermore, ScTbx2 expression, which is rather dynamic, bears a numbers of similarities with ScMsx1 and ScPrx1 and is likewise caps-centric in expression (Fig. 6H and I).

Bmp4 expression in the caps epithelium of the amniote BA1 of both the \(\lambda\)-junction and distal mdBA1 midline (Fig. 6K) has been well recorded (e.g., Abzhanov et al., 2004; Ashique et al., 2002; Barlow and Francis-West, 1997; Bei and Mass, 1998; Foppiano et al., 2007; Gong and Guo, 2003; Lee et al., 2001; Liu et al., 2005a, 2005b; Shigetani et al., 2000) and was a distinct component of the evestodermal scaffold establishing the ‘Hinge and Caps’ model (see Depew and Simpson, 2006). In S. canicula embryos, ScBmp4 transcripts are detectable in the distal mdBA1 (blue arrows, Fig. 6J) and the proximal, maxillary BA1 (blue and white arrows, Fig. 6J). Although ScBmp4 is expressed in the optic primordia, just as Bmp4 is in the mouse, we failed to detect frontonasal expression connecting with mxBa1 in shark embryos.

The osteichthyan BA, including those of the mouse, are characterized by hand2 expression solely at their distal, or mandibular cap, ends (light green arrow, Fig. 7B). This pattern is ancestral for gnathostomes as it likewise characterizes the BA of S. canicula embryos (light green arrows, Fig. 7B). The opposite, or \(\lambda\)-junctural, pole of amniote BA1 in early pharyngula stage embryos, moreover, is characterized by the expression of Raldh3 (Fig. 7F; Dupe et al., 2003), a gene encoding a dehydrogenase involved in the synthesis of the potent signaling molecule, retinoic acid (Brickell and Thorogood, 1997). Indeed, in murine embryos at E9.5, Raldh3 transcripts are typically found in the optic primordia and ventrally in the ectoderm positioned located between the proximal most mxBa1 and the edge of the olfactory placode, while by E10.5 transcripts are more restricted, being detected in the optic primordia and the ventral olfactory pits (i.e., associated with the \(\lambda\)-junction) (Fig. 7F). In a manner akin to E9.5 murine embryos, stage 21 S. canicula embryos express ScRaldh3 in the optic primordia as well in the ectoderm between the proximal-most mxBa1 and the edge of the olfactory placode (Fig. 7E). In line with homologous expression in the E10.5 murine embryo (Fig. 7F), ScRaldh3 continues to be expressed in the optic primordia of stage 25+ shark embryos, as well as in cells associated with the ventral most portion of the olfactory pit (Fig. 7E); in the shark embryo, however, additional circum-optic expression is encountered at this later stage.

Detection of heterotopic patterns of gene expression between amniote and Scyliorhinus canicula embryos: Exemplars

While we were interested in assessing whether a basic ‘cap-to-hinge-to-cap’ architecture of gene expression was a shared feature of gnathostome craniofacial primordia, we were equally interested in discerning the possible presence of heterotopic and/or heterochronic patterns in gene expression between amniote and chondrichthyan embryos. Below, we present three further examples of heterotopic patterns of gene expression of varying degrees between amniotes and chondrichthyan embryos.

As the Alx homeobox genes are thought to have disparate patterns of gene expression in tetrapods (McConnall et al., 2011), we examined the expression of one member of this family, Alx4, in pharyngula stage S. canicula embryos. In amniotes, Alx4 is...
expressed in a caps pattern, being detected in the both the mxBA1 and FNP of the 7-junction and in the distal midline of mdBA1 (McGonnell et al., 2011; Twigg et al., 2009, and Supplementary Fig. 3B). Moreover, in chicks – but not in mice – Alx4 is also expressed circum-orbitally. ScAlx4 is detected circumscribing the developing eye, as well as in the developing FNP, like its
orthologue in the chick (Supplementary Fig. 3A). However, we failed to detect significant ScAlx4 signal in mdBA1 mesenchyme in stage 21 to 27 shark embryos.

Meis genes encode proteins that form dimerization partners with the protein products of Pbx1-3, genes that have recently been implicated in playing significant-tissue specific roles in amniote craniofacial development (Ferretti et al., 2011; Selleri et al., 2001), as well as acting as Hox-cofactors. We therefore examined ScMeis2 expression in S. canicula embryos (Supplementary Fig. 3C). We found that, as might be expected of a Hox co-factor, ScMeis2 expression is absent in BA1 in stage 20 and 23 S. canicula embryos although significant proximo-distal lines of expression were detected from BA2 and the caudal BA. Unlike what we see with its murine orthologue (Supplementary Fig. 3D), significant levels of ScMeis2 were also found associated with the optic primordia (black arrows, Supplementary Fig. 3C). In line with amniote expression, ScMeis2 was detected in the FNP and in mxBA1 (yellow arrow, Supplementary Fig. 3C) though, unlike in amniotes, it was not detected in the non-optic cells between the two. In contrast to what we found with ScMeis2, murine Meis2 is also found in mdbA1 and in a more significant proportion of BA2.

Fgf8, encoding a fibroblast growth factor with significant developmental roles during development, has distinct cephalic expression patterns during ontogeny (Fig. 8; Abu-Issa et al., 2002; Abzhanov and Tabin, 2004; Compagnucci et al., 2011; Crossley and Martin, 1995; Neubüser et al., 1997; Song et al., 2004; Szabo-Rogers et al., 2008; Trumpet et al., 1999; Tucker et al., 1999). In both the chick and mouse, for instance, Fgf8 is expressed in the isthmus (the midbrain/hindbrain boundary), in the ventro-lateral cephalic ectoderm (including the lining of the olfactory pits), in the pharyngeal plates, and, significantly, in the hing-encephalic oral ectoderm of both mxBA1 and mdbA1 (Fig. 8D and E). One notable distinction between the chick and the mouse, however, is that in the mammal Fgf8 expression along the dorsal olfactory pit spreads ventrally during ontogeny and eventually unites at the l junction with the ectoderm of the mxBa1 (see red arrows, E10.5 embryo, in Fig. 8E) while that in the avian does not (as exemplified by red arrows in the HH23 embryo, Fig. 8D). As with the amniote embryos, ScFgf8 is detected at the isthmus and in the ventro-lateral cephalic ectoderm, including in the dorsal olfactory pit (Fig. 8B and C). ScFgf8 is also significantly expressed in both the rostral/oral and caudal/aboral aspects of the pharyngeal clefs. Strikingly at odds with what is seen with the amniotes, however, we failed to detect expression within the oral ectoderm of either mxBA1 or mdbA1 of the shark embryo.

Discussion

As their taxonomic appellation implies, jaws have been of central importance to the evolution and diversification of gnathostomes. Tracing the paleontologic pattern of the intricate evolution of jaws and their associated structures has long been an active endeavor. More recently, approaching a molecular, cellular, and genetic reconstruction of this pattern has also come to the fore to partner these studies.

The seminal evolutionary event leading to jaws appears to have been the acquisition in an ancient agnathan taxa – possibly one related to a diplomich ostracoderm – of a segmented, articulated, iterated branchial skeleton (Fig. 1; Forey and Janvier, 1993; Gai et al., 2011; Gregory, 1933; Janvier, 1993, 1996; Kuratani, 2012; Kuratani et al., 2012; Mallatt, 1997; Moore, 1981; Radinsky, 1987; Romer, 1966; Young, 1981). From this, the first gnathostome fish subsequently appeared, over 400+ million years ago, and rather quickly thereafter four major groups of jawed fish appeared: Placoderms, Acanthodians, Chondrichthyans and Ostechthyans (Carroll, 1988; Janvier, 1996; Jarvik, 1980; Jollie, 1962; Moy-Thomas and Miles, 1971; Miles, 1964; Schultz, 1993; Watson, 1937). In line with a fundamental reorganization of the agnathan crania, these first gnathostome fish all possessed paired nostrils, paired nasal capsules and paired trabecula cranii, as well as three semicircular canals: notably, moreover, these initial gnathostomes shared a fundamental design and structural organization to their jaws, features that have been conserved attributes of all subsequent gnathostomes (e.g., Barghusen and Hopson; 1979; de Beer, 1985; Goodrich, 1958; Gregory, 1933; Halstead, 1968; Hildebrand, 1988; Moore, 1981; Schultz, 1993). Placoderms, however, possessed a number of anatomical features differing from the other three groups: for instance, the placodermal PQ was lateral to the jaw musculature rather than being medial and typically a joint formed between the well sutured (but rigid) head and the shoulder portions (Carroll, 1988; Dean, 1909; Maisey, 2001; Schaeffer and Williams, 1977). Such differences, among others, have suggested to many that Placoderms were derived from a basal lineage different than that giving rise to the Acanthodians and the extant gnathostomes (Davis et al., 2012; Schaeffer and Williams, 1977). The evolutionary inter-relationships between the other three groups – the Acanthodians, Chondrichthyans, and Ostechthyans – have been somewhat more elusive but have been intriguing points of investigation for some time (Brazeau and Ahlgren, 2006; Carroll, 1988; Davis et al., 2012; Dean, 1909; Halstead, 1968; Holmgren, 1942; Miles, 1964; Schaeffer and Williams, 1977; Schultz, 1993; Watson, 1937). Acanthodians, though restricted to the Paleozoic, are particularly significant in these investigations as they constitute one of the oldest known groups (if not the oldest) of gnathostomes and possessed characteristics of both Chondrichthyans and Ostechthyans. For instance, they possessed bony cranial skeletal elements but also had upper jaw PQ elements with shark-like morphology (Carroll, 1988). Historically, the questions have been whether Acanthodians were thus to be aligned with basal sharks or with basal bony fish and what this then might tell us about which morphologic (or, by extension with the extant groups, what molecular) character states might be ancestral (pleiomorphic) and which derived (apomorphic) in nature.

Fig. 6. Comparative shark (S. canicula) and murine (Mus musculus) caps-centric gene expression. (A) Schema delineating the expected positioning of caps-centric patterns of gene expression. PC: proximal cap. DC: distal, mandibular cap. O: oral. AB: aboral. (B), (C) Comparison of shark ScDlx3 (B) and mouse Dlx3 (C) expression evincing a distinct conservation both of the mesenchymal expression (purple arrows) distal to the maxillary–mandibular constriction (MMC; black arrows) and of the maxillary and olfactory ectoderm (purple-bordered white arrows). Unlike the shark, the mouse has continuous expression of Dlx3 at the lambdoidal junction (l). (D), (E) Comparative Pax1 expression. Purple-bordered white arrows indicate histo-proximal caps expression associated with the maxillary ba1 while purple arrow point to distal caps expression. Purple-bordered yellow arrows indicate distinct caudo-proximal maxillary expression. The dark green arrows highlight the distinct trans-ba2 swath of expression of Pax1 evinced in the proximal-most ba2 of both the shark and the mouse. Black arrow: mnc. The yellow arrows and asterisks in the stage 21 and stage 23 shark embryos highlight the notion that a proximo-distally oriented medial line of transcript is initially found in the post-ba1 arcs but which dissipates during ontogeny. (F), (G) Comparative Mxs1 expression. Arrows as above though the purple-bordered yellow arrows indicate the proximo-caudal aspect of the caudal BA in addition to that of ba1. The light green arrows indicate hinge-centered expression that appears as a proximo-distally oriented medial line in the shark and at the first pharyngeal plate in the mouse. The red arrow in the mouse highlights the continuity of expression at the lambdoidal junction (l) of the mouse. (H), (I) S. canicula (H) and M. musculus (I) expression of Tbx genes. Arrows as above. (J), (K) Comparison of ScBmp4 and Bmp4 expression. Yellow arrow indicates expression in ba1 and ba2 at the first pharyngeal cleft in the mouse. Other arrows as above. Abbreviations: ba1–6, branchial arches, 1 through 6; hym, hyomandibular second branchial arch; md, mandibular first branchial arch; mx, maxillary first branchial arch; ng, neurogandia; olf, olfactory primordia; opt, optic primordia; otc, otic primordia; s, stage; l, lambdoidal junction.
Recent investigations, including principle component (phenetic) analysis coupled with phylogenetic analysis of Acanthodian, Chondrichthyan and Osteichthyan crania, have suggested that the more shark-like characteristics of Acanthodians are, in fact, shared ancestral states (symplesiomorphic) for crown group gnathostomes: that is, the last common ancestor of extant gnathostomes was *shark-like* (rather than bony fish-like) in morphologic specificity and character (*Davis et al., 2012*; *Brazeau, 2009*). Thus, our advances in the understanding of the molecular, cellular and genetic characteristics of the developing shark jaw primordia yield further insight into the basal organizational state of the gnathostome jaw and subsequently provide a platform for investigations into the patterning mechanisms underlying jaw development and evolution throughout the Gnathostomata.

Pattern and polarity in gnathostome jaw development

Herein, we have presented an anatomical and molecular examination of early jaw development, conceptually centered around the ‘Hinge and Caps’ model, in embryos of the lesser spotted dogfish, *S. canicula*. One patent purpose was to gain insight into the basal molecular organizational state of the gnathostome jaw primordia, as epitomized by this particular elasmostrachian, and then initiate a comparison with other gnathostome taxa by searching for evidence of heterotopic and/or heterochronic patterns of gene expression through comparison with other taxa about which we have a greater degree of understanding of their jaw development—namely the amniotes *Gallus gallus* (chicks) and *Mus musculus* (mice).

Though a developmental staging series (followed herein) has been put forth for early *S. canicula* embryos (*Ballard et al., 1993*) it does not give any specific thought to the relative development of the craniofacial primordia that give rise to the jaws. To facilitate subsequent comparisons with amniote development, we followed this staging series and utilized scanning electron microscopy to examine the ontogeny of the early embryonic development of *S. canicula*, paying particular attention to the relative development of the BA and the olfactory, optic, and hypophyseal placodes and pits (Fig. 3). From our SEM analysis, it became clear that proximo-distal, medio-lateral and rostro-caudal polarities in morphology are patent early in shark BA ontogeny and that some of these polarities are iterative within the BA as a series. Thus both the jaws and their primordia exhibit polarity; a significant consequence of such developmental polarity is the potential for the establishment of modularity in jaw construction (*Depew and Compagnucci, 2008*; *Fish et al., 2011*).

We found that polarity of gene expression patterns also characterizes the developing branchial arches of *S. canicula*. For instance, along the proximo-distal axes of the BA, we recognized at least four basic patterns: (1) expression centered at the midpoints of the BA (i.e., at the ‘hinge’), as evinced by *ScBapx1*, *ScEmx1*, and *ScEmx2*; (2) expression, complementary to this first category, at the polar ends of the BA (i.e., the ‘caps’), as exemplified by *ScMx1*, *ScPrx1*, *ScTbx2*, and *ScBmp4*; (3) nested expression of related genes, such as the tiered, terraced nesting of *ScDlx1/2*, *ScDlx3/4* and *ScDlx5/6*; and (4) expression confined to one BA1 polar extreme or the other, as typified by expression of *ScHand2* in the distal-most mBxA1 and *ScRaldh2* at the proximal end of mBxA1. These patterns also characterize the amniote state.

Sharks and modeling the etiology of BA polarity and modularity in jaw development

Because modularity plausibly explains both integration within jaw structures and autonomy between jaw structures, as well as potentially providing a mechanism for evolutionary modifications and transformations of jaws, understanding the developmental origins of polarity and modularity within the developing jaws is a key endeavor in addressing jaw development and evolution (*Fish et al., 2011*). Current models of jaw development typically...
address, at a minimum, the polarity of BA gene expression patterns and subsequent structure in the developing jaws.

For example, genetic and experimental manipulation mainly in zebrafish and lamprey embryos, but including some murine studies, coupled with analysis of basic patterns of gene expression, has led to one model of 'dorso-ventral' polarity of the BA that postulates the presence of a regulatory network involving the 'ventral' (i.e., topographically synonymous with 'distal' as used herein) expression of Bmp4 and Endothelin 1 (Edn1), and their Msx and Hand2 targets, reciprocally regulating (in part through Mef2c) the nested Dlx genes to establish a combinatorial expression code which resolves into zones within the developing BA of 'ventral' and 'intermediate' nature (e.g., Talbot et al., 2010; Medeiros and Crump, 2012; Tavares et al., 2012). In this model, the intermediate zone becomes permissive of 'jaw joint' formation as revealed by the eventual induction of Bapx1 (Nkx3.2), and a 'dorsal' (proximal) zone is further established by repulsion of the intermediate zone. At the heart of this mandibular-centric model, however, is the establishment of the ventral/distal zone as established by Edn1 signaling as dorso-ventral polarity is posited to flow from this.

Fig. 8. Notable heterotopy of Fgf8 expression in the oral ectoderm. (A) Schema delineating the expected positioning of caps-centric patterns of gene expression. O: oral (in green). AB: aboral (in yellow). ((B), (C)) ScFgf8 in S. canicula embryos ranging from stage 19 to stage 27. Green arrows indicate the oral ectoderm, while yellow arrows indicate the pharyngeal clefts formed from the plates. Red arrows highlight the ectoderm between the olfactory pit and mxBA1. (D) Fgf8 in HH19 and HH23 chick (G. gallus) embryos. Arrows are as in '(D). Abbreviations: ba1–6, branchial arches, 1 through 6; cBA, caudal branchial arches; cp, commissural plate; gbd, gill bud; is, isthmus at midbrain-hindbrain boundary; lb, limb bud; lFNP, lateral frontonasal process; md, mandibular first branchial arch; mFNP, medial frontonasal process; mx, maxillary first branchial arch; odl, odontogenic line; oe, oral ectoderm; ofl, olfactory primordia; opt, optic primordia; otc, otic primordia; pp, pharyngeal plate; som, somite; stg, stage; vle, ventro-lateral cephalic ectoderm; lJ, lambdoidal junction.
We find that a number of patterns of gene expression in *S. canicula* are, on their surfaces at least, in line with such a model. *SchHnd2*, as a presumed target of Edn1 signaling in the shark, is distally (ventrally) expressed in the BAs. Likewise, both *ScBmp4* and its presumptive target, *ScMsx1*, are expressed in the distal BAs. We further find that *ScDlx* genes are nested, and that *ScBapx1* is expressed around the MMC, which is in line with a potential intermediate position.

A number of additional, compounding factors, however, must be taken into consideration when modeling the etiology of polarity and modularity within the developing jaws: For instance, in addition to establishing a developmental mechanism to regulate and elaborate the inherent polarity of the BA, it is patent that whatever patterning mechanisms inform the developing jaw primordia must (1) account for the functional integration and registration of the upper jaws with the lower jaws (and neurocranium) as well as (2) be tractable to potential selective pressures for disparate upper and lower jaw development (Depew and Compagnucci, 2008; Depew and Simpson, 2006; Fish et al., 2011).

These additional notions are fundamental to, and explicit within, the ‘Hinge and Caps’ model, making this model distinct from other models (such as the one described above) of jaw polarity and modularity. This particular model posits that the achievement of notions 1 and 2 above is possible if the patterned placement of the articulation of the upper and lower jaws — the position where registration is absolutely required — is balanced by patterned placement of the developing tips of both the upper and lower jaws, i.e., the proximal-most mxBA1 and distal-most mdBA1. Jaw registration is thus plausibly achieved by the integration of patterning cues from the hinge-associated region with those from each of the two caps. In effect, epithelial-mesenchymal interactions emanating from the hinge region, integrating with those from the caps, set up coordinated, polarized BA tissues: Polarity is thus oriented from hinge to cap for both the developing upper and lower jaws (see arrow orientation in Fig. 2c and d). Integrated signaling along the polar axes subsequently partitions the developing jaw primordium into multiple nested and overlapping developmental fields (discussed in Fish et al., 2011). Within these developmental fields of the jaw primordia, relatively independent sets of character states, including fokiized autonomous cellular behaviors, are encountered. One reflection of such behaviors is the presence of coordinated cellular transcription within subpopulations of each primordia: Understanding that modules can be minimally defined as units consisting of integrated characters that are relatively independent of other characters, these fociized autonomous cellular behaviors delineate modules.

The ‘Hinge and Caps’ model suggests at least two significant, testable notions with regard to polarity and modularity in the BA. First, it would be expected that a hallmark of hinge-associated patterning cues would be the expression of genes in a symmetrical pattern within the center of the proximo-distal axis of BA1 (i.e., at the mxBA1–mdBA1 junction, or MMC) and caps-associated patterning cues by the balanced expression of genes likewise symmetrically expressed at both caps. These expectations are indeed met with in *S. canicula* embryos. As noted above, analysis of *ScBapx1, ScEmx1* and *ScEmx2* expression demonstrated that these genes are expressed in the center of the proximo-distal axes of the BA (e.g., at the MMC) and represent conserved, hinge-associated genes in gnathostomes. Moreover, we found evidence of balanced expression of genes symmetrically expressed at both caps of the BA, as exemplified by *ScMxs1, ScPrx1, ScTbx2*, and *ScBmp4*. This pattern of hinge-to-caps expression is notably associated with the bi-directional pattern of gill bud fluorescence emanating from the BA-midpoints to the caps ends.

Second, the ‘Hinge and Caps’ model posits a correlation between patterns of expression and modular behavior during development. Gnathostome BAs are meristic (segmentally repeated) vertebrate structures. One demonstration of modularity in development of meristic structures is their capacity for homeotic transformation. Homeosis has been demonstrated for the BA of amniotes, which are metameric both between each other within the rostro-caudal series and within each individual arch along the proximo-distal axis (e.g., Beverdam et al., 2002; Depew et al., 2002a,b; Goodrich, 1958; Halstead, 1968; Kuratani, 2004, 2015; Nelsen, 1953; Rijli et al., 1993). Developmental mechanisms are in place to ensure that each BA of the series acquires a unique identity and that each structure within the proximo-distal axis of each arch does so as well. It is believed that regional specification of meristic structures is controlled by the nested expression of related genes resulting in a regional code: such is the case with the amniote BA, where the *Hox* and *Dlx* genes regulate inter- and intra-BA identity, respectively (reviewed in Depew et al., 2005; Kuratani, 2004, 2012; Minoux and Rijli, 2010).

Individual BA-identity as regulated by the rostro-caudally nested *Hox* genes has been well investigated in mice. The genetic ablation in mice of *Hoxa2*, whose proximal-most BA expression is BA2, yields skulls with a notable enantiomorphic homeotic transformation of BA2 jaw-related structures into BA1 structures (Rijli et al., 1993). Significantly with regard to the polarity of the developing jaws, it is those structures formed nearest to the hinge region — a region topographically akin to the MMC in the shark embryo — associated with the pharyngeal plate between BA2 and BA1 that are found to be transformed in these mice. Together, with anatomical and paleontological evidence demonstrating that basal gnathostomes exhibit significant reliance on the coordination of BA2 skeletal structures with BA1 structures for the important task of connecting their jaws to their neurocranium (Barghusen and Hopson, 1979; de Beer, 1985; Carroll, 1988; Gregory, 1933; Halstead, 1968; Jollie, 1962; Maisey, 2001, 2008; Romer, 1966; Schaeffer and Williams, 1977; Wilga, 2002), this suggests the presence of a focal BA-associated source of patterning information centered at the hinge region—a notion that is very much in line with the ‘Hinge and Caps’ model.

Hox profiles have recently been examined in chondrichthians, including in *S. canicula* and the holocephalan *Callorhinchus milli* (Freitas et al., 2006, 2007; Mulley et al., 2009; Oulion et al., 2011; Ravi et al., 2009; Rodriguez-Moldes et al., 2011; Sakamoto et al., 2009). Studies of *ScHoxa2* indicate that a rostral expression limit set at BA2 is ancestral for *Hoxa2* orthologues. Likewise, expression profiling of *ScOtx2*, thought to be a default marker of BA1 as it is expressed throughout BA1 but not in the caudal BA (Kuratani, 2005; Matsuo et al., 1995), has suggested amniote *Otx2* likewise represents a conserved cognate (Germot et al., 2001; Plouhinec et al., 2005). Thus, it appears that this core molecular architecture for inter-BA identity is a conserved feature of gnathostomes. It is worth noting, however, that we did find differences in BA expression profiles of genes implicated as co-factors for the *Hox* genes, including between the TALE co-factor *ScMeis2/Meis2* orthologues (Fig. 8C).

To correlate intra-BA morphologic polarity and potential modularity in *S. canicula* with its plausible genetic etiology, we asked whether *S. canicula* embryos displayed an amniote-like nested pattern of *Dlx* expression in their developing BA. We found that *S. canicula* embryos did indeed display an overall amniote-like pattern of tiered, terraced nesting of *Dlx* genes (Fig. 4 and Supplementary Figs. 1 and 2), which makes such nesting of *Dlx* genes ancestral (sympleiomorphic) for crown group gnathostomes. Moreover, although it has been suggested that *Dlx2* orthologues may be expressed in CNC only once they enter the BA (see Blentic et al., 2008), we detected the presence of *ScDlx2*...
transcripts in streams of CNC entering the shark BA just as has been seen with mice (Fig. 4F). A number of differences in cephalic Dlx expression between the shark and chicks and mice are, however, notable. For instance, a regression, similar to that seen by stage 27 in ScDlx2 expression, from the mdBA1 to a position proximal to the MMC has yet to be reported for any other Dlx2 orthologue in a similarly staged amniote embryo. This regression is accompanied by an expansion of ScDlx5 expression proximal to the MMC in later stage embryos. It is uncertain whether such an expansion in ScDlx5 represents either a heterotopy or heterochrony as a similar expansion actually occurs in murine embryos after E10.5 and in chick embryos at later stages; what is distinct in S. canicula expression, however, is the oral–aboral asymmetry in expression in this proximal ScDlx5 domain.

Notably, extant agnathans such as the lamprey have a BA skeletal architecture that is neither hinged nor articulated and thus they do not have jaws: this lack of articulated segmentation within the BA is correlated with a pattern of Dlx gene expression that is not nested (Kuraku et al., 2010; Kuratani, 2005, 2012; Neidert et al., 2001; Myojin et al., 2001; but also see Cerny et al., 2010). A number of issues regarding the relationship between Dlx nesting and jaw evolution are outstanding, however: It remains unclear, for instance, whether Dlx nesting is a prerequisite for articulated segmentation, and therefore for jaw formation, or if it is simply a permissive factor (though the latter might seem most parsimonious). Approaching these questions is now possible as a much more comprehensive comparative analysis of vertebrate Dlx gene expression and biology is now a salient, achievable goal.

The developmental mechanism patterning the gnathostome BA thus includes a molecular bauplan involving the coordinated, nested expression of Hox (plus Otx) and Dlx genes. Such nesting reflects the potential for modularity, and evidence from the expression of ScHox and ScDlx genes in S. canicula embryos therefore supports a correlation between patterns of expression and modular behavior in gnathostome BA development.

The evolving upper jaw: On the maxillary BA1 and eventual FNP involvement in gnathostomes

Although a coordinated Hox-Dlx grid might regulate both inter- and intra-BA skeletal identity, it is clear that proximo-distal polarity in BA1 involves more than just nested Dlx gene expression (Depew and Compagnucci, 2008; Depew and Simpson, 2006). Indeed, even in BA1 involves more than just nested and intra-BA skeletal identity, it is clear that proximo-distal polarity reflects the potential for modularity, and evidence from the involvement in gnathostomes (Depew and Compagnucci, 2008) that formation of the upper jaws is more than just an afterthought to the formation of the lower jaws and trabeculae cranii (i.e., rostral neurocranium). Indeed, mdBA1 expression of ‘Caps’ related genes is equally represented by mxB1 ‘Caps’ expression: In the expression patterns of ScMsx1, ScPrlx1, and ScTbx2 we note an overall correspondence between the amniote and chondrichthyan homologues with regards to dual (presumably coordinated) ‘Caps’ expression (Fig. 6).

Notably, amniote Bmp4 expression in the ‘Caps’ epithelium of both the λ-junction and distal mdBA1 midline and in the pharyngeal plate region (as well as functional data stemming from gene-targeting experiments in mice) provided substantive evidentiary support to the ‘Hinge and Caps’ model (see Depew and Simpson, 2006; Depew and Compagnucci, 2008); ScBmp4 transcripts are similarly detectable in the distal mdBA1 as well as in the proximal mxB1. Two areas of difference in expression are notable, however. First, we did not detect an ScBmp4 pharyngeal plate expression pattern topographically akin to that of amniote Bmp4 (Fig. 6). Second, though ScBmp4 is expressed in the optic primordia, just as its orthologue Bmp4 is in the mouse, frontonasal expression connecting with mxB1 is absent in shark embryos. Such a lack of connection, or continuity of expression, between the developing fronto-nasal/olfactory apparatus and mxB1 is a common theme with the gene expression patterns of chondrichthyan, also characterizing, for example, ScDlx2, ScDlx3, ScMsx1 and ScMeis2 expression.

This lack of expression highlights a central difference between elasmobranch chondrichthyans and osteichthyans in the elaboration of the developing upper jaw’s association with the neurocranium: With osteichthyans, there is a fundamental association (incorporation) between the premaxillary skeleton, derived from the FNP, and the mxB1-derived maxillary and palatoquadrate skeletons (Fig. 1; detailed in Gregory, 1933; Schultz, 1993). The osteichthyian premaxillary arcade further develops in intimate association with the rostral neurocranium, in particular with the derivatives of the trabecular cranii and the nasal capsules, integrating and binding the BA derivatives with the rostral neurocranium and its associated dermocranium. Generating an integrated upper jaw arcade, one involving integrated maxillary and premaxillary elements, necessitates coordinated frontonasal and mxB1 development. Hence, it is reasonable to expect that such coordination would be reflected at some level in osteichthyian patterns of gene expression and not in chondrichthyan patterns.

Once established, maxillary–premaxillary–neurocranial ossaceous interconnectivity was central to a number of significant evolutionary transitions and radiations: For instance, making the maxillary–premaxillary–neurocranial connectivity less rigid and more movable enabled a distinct adaptive radiation in teleost (i.e., ray-finned fish such as the zebrafish) lineages (Gregory, 1933). Moreover, many of the most profound, propulsive gnathostome transitions involved elaborated development at the mxB1–FNP connection, including both the acquisition of internal choanae enabling the colonization of land by tetrapods and the presence of a secondary palate, forming at the λ-junction, enabling mastication while breathing in the lineage leading to mammals (Fig. 1; see Halstead, 1968; Hildebrand, 1988; Kemp, 2005; Kingsley, 1912; Moore, 1981; Panchen, 1967; Rosen et al., 1981; Schmalhausen, 1968; Tamarin, 1982; Zhu and Ahlberg, 2004).

It is apodictic, then, that gaining greater understanding of jaw evolution, and the significant evolutionary transitions involving the jaws, requires further detailing which of the aspects of
gnathostome jaw development are shared within gnathostomes and which are derived and specific to a particular lineage, and then correlating molecular and genetic etiology with phenotypic end-product. Recognition, stemming from its posited importance in the ‘Hinge and Caps’ model, of the central importance of the \(\lambda \)-junction in craniofacial evolution has allowed us, for instance, to characterize a \(Pbx\)-\(Wnt-63\) regulatory module that correlates with the gradual increase in complexity of the \(mxB1\)–\(FNP \) connection and associated structures (e.g., the choanae, upper lips and secondary palate) through evolutionary transitions from bony fish to mammals (Ferretti et al., 2011). Despite not possessing an elaborate \(mxB1\)–\(FNP \) connection, chondrichthyans do exhibit clear ‘Caps’ associated gene expression patterns as predicted by the ‘Hinge and Caps’ model: Further investigation of the chondrichthyan maxillary ‘Cap’, therefore, will enable understanding of the evolution of the osteichthyan \(\lambda \)-junction.

Evidence of heterotopy as exemplified by Fgf8 expression

Gnathostome BAs therefore exhibit, in addition to a \(Hox-Dlx \) molecular construction, a well-conserved, basic ‘cap-to-hinge-to-cap’ architecture of gene expression along their proximo-distal axes. We found, however, a number of heterotopic patterns in gene expression. While we believe in the general caveat that each identified change in the timing and/or topography of the expression of a particular gene, whether seemingly minute or striking, must be further scrutinized and considered with more refined reference to homologous tissues and developmental staging – not necessarily a straight-forward endeavor – we also believe that some of the differences that we noted in gene expression between shark and amniote embryos will prove to be more profound than others. In particular, we believe that heterotopic differences between shark and amniote oral ectodermal expression of \(Fgf8 \) – a secreted signaling factor with notable roles during development and a distinct cephalic expression pattern during ontogeny – is potentially significant (Fig. 8; Compagnucci et al., 2011; Crossley and Martin, 1995; Trump et al., 1999; Griffin et al., 2012). In both chick and mouse, \(Fgf8 \) is expressed in the isthmus, ventro-lateral cephalic ectoderm, the olfactory pits, the pharyngeal plates and the hinge-centric oral ectoderm of both \(mxB1 \) and \(mdxB1 \) (Fig. 8C and D). One notable difference between the chick and the mouse, however, is that murine \(Fgf8 \) expression extends along the dorsal olfactory pit and spreads ventrally during ontogeny to eventually unite ventrally at the \(\lambda \) junction with the expression from the \(mxB1 \) while that in the avian does not appear to. As with amniote embryos, \(ScFgf8 \) is detected at the isthmus and in the ventro-lateral cephalic ectoderm, including in the dorsal olfactory pit (Fig. 8B and C). \(ScFgf8 \) is also significantly expressed in the pharyngeal clefts: Strikingly, however, we failed to detect expression within the oral ectoderm of either \(mxB1 \) or \(mdxB1 \) of the shark embryo at anytime point.

Using a Cre-mediated cephalic ectodermal conditional knockout, we previously demonstrated that loss of \(Fgf8 \) in the oral ectoderm of the mouse is accompanied by catastrophic loss of the hinge region of the jaws (Trump et al., 1999). Notably, however, in these experiments the loss of \(Fgf8 \) in the pharyngeal plate occurred slightly later and was correlated with the maintenance of a small population of cells at the pharyngeal cleft that gave rise to the malleus, the mammalian articular element homologue. Moreover, genetic attenuation of \(Fgf8 \) dosage in mice leads to an associated disintegration of hinge structure and morphology (Griffin and Depew, in preparation). These and other studies have indicated that in amniotes, hinge-related \(Fgf8 \) signaling is balanced between the epithelium of the oral ectoderm and that of the pharyngeal plate (Depew et al., 2002b; Depew and Compagnucci, 2008). Moreover, \(Fgf8 \) cognate expression in the lamprey, in a position topographically akin to the oral ectoderm, has been hypothesized as part of a heterotopic shift during the transition of gnathostomes from agnathans (see discussion in Shigetani et al., 2000, 2002, and Kuratani, 2012). Thus, discerning the functional significance of the absence of \(ScFgf8 \) in the oral ectoderm is conceivably profound with regard to our understanding jaw development and evolution.

Conclusions

At present, the non-amniote gnathostome most studied at any depth for its jaw development is the teleostean fish, \(D. rerio \) (the zebrafish). While the zebrafish has proven to be a model organism tractable to genetic manipulation, at least two caveats regarding aspects of zebrafish jaw development and evolution must be taken into consideration when appraising zebrafish data with an eye toward comparisons amongst gnathostomes. First, teleosts represent a highly diverse, speciose crown group amongst gnathostomes (Gregory, 1933). The importance of this is epitomized by the fact that the developmental consequences for the patterning of the jaws of the additional chromosomal duplications that characterize the teleost radiation are yet to be fully understood. Second, the zebrafish embryo is extremely small, especially the region generating the jaws, and it is conceivable that such miniaturization effects how patterning information is exchanged between developing tissues. This issue is especially important, for example, when considering the effective radius, or sphere of influence, of secreted signals and their associated buffering.

Focused comparisons between chondrichthyans and the osteichthyan clades, including both bony fish and tetrapods, is nonetheless essential and is now possible. The great similarities between shark and amniote BA patterning may be reflective of a shared ancestry; they may also be reflective of convergence in jaw patterning. For numerous reasons, including its more parsimonious nature, we favor the former interpretation. Further investigation of the genetic, molecular and cellular underpinnings of BA patterning in other, and more basal, osteichthyan fish in comparison to those evinced in chondrichthyan as well as tetrapod organisms, will enable a fuller picture of which molecular characteristics are ancestral for gnathostomes and which are derived and specific for each clade.

In summary, the presence of clear caps-to-hinge-to-caps polarity in gene expression patterns in the shark embryo establishes a baseline molecular bauplan for BA-derived jaw development, and further validates the utility of the ‘Hinge and Caps’ model in comparative studies of jaw development and evolution. Moreover, the absence of an elaborated \(\lambda \)-junction in chondrichthyans makes the investigation of shark jaw development all the more important for purposes of comparing and understanding jaw development and evolution. Because the elaboration of structure and function associated with the junction of the \(mxB1 \) and FNP have been integral to so many gnathostome radiations, further understanding the basal molecular bauplan informing jaw development, as represented by the shark, becomes essential.

Acknowledgments

The authors would like to thank the FR 2424 Marine Model Facility, Roscoff Marine Station, who provided dogfish eggs. EST sequences were obtained with the support of Genoscope, Evry, France. The Depew lab would also like to thank Mara Beo and Dingle (Ireland) Oceanworld. This work was supported by funding to M.J.D. from the Royal Society, the Dental Institute of King’s College London, and Friends of Guy’s Hospital. C.C. and J.G. were
Appendix A. Supplementary materials

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.ydbio.2013.02.022.

