T. Borch, R. Kretzschmar, A. Kappler, P. Cappellen, M. Ginder-vogel et al., Biogeochemical Redox Processes and their Impact on Contaminant Dynamics, Environmental Science & Technology, vol.44, issue.1, pp.15-23, 2010.
DOI : 10.1021/es9026248

URL : http://doi.org/10.1021/es9026248

R. Fimmen, R. Cory, Y. Chin, T. Trouts, and D. Mcknight, Probing the oxidation???reduction properties of terrestrially and microbially derived dissolved organic matter, Geochimica et Cosmochimica Acta, vol.71, issue.12, pp.3003-3015, 2007.
DOI : 10.1016/j.gca.2007.04.009

E. Tipping, The adsorption of aquatic humic substances by iron oxides, Geochimica et Cosmochimica Acta, vol.45, issue.2, pp.191-199, 1981.
DOI : 10.1016/0016-7037(81)90162-9

D. Lovley, J. Coates, E. Blunt-harris, E. Phillips, and J. Woodward, Humic substances as electron acceptors for microbial respiration, Nature, vol.382, issue.6590, pp.445-448, 1996.
DOI : 10.1038/382445a0

D. Lovley, J. Fraga, J. Coates, and E. Blunt-harris, Humics as an electron donor for anaerobic respiration, Environmental Microbiology, vol.37, issue.1, pp.89-98, 1999.
DOI : 10.1016/0038-0717(83)90092-5

N. Ratasuk and M. Nanny, Characterization and Quantification of Reversible Redox Sites in Humic Substances, Environmental Science & Technology, vol.41, issue.22, pp.7844-7850, 2007.
DOI : 10.1021/es071389u

M. Aeschbacher, M. Sander, and R. Schwarzenbach, Novel Electrochemical Approach to Assess the Redox Properties of Humic Substances, Environmental Science & Technology, vol.44, issue.1, pp.87-93, 2010.
DOI : 10.1021/es902627p

M. Aeschbacher, C. Graf, R. Schwarzenbach, and M. Sander, Antioxidant Properties of Humic Substances, Environmental Science & Technology, vol.46, issue.9, pp.4916-4925, 2012.
DOI : 10.1021/es300039h

F. Dunnivant, R. Schwarzenbach, and D. Macalady, Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter, Environmental Science & Technology, vol.26, issue.11, pp.2133-2141, 1992.
DOI : 10.1021/es00035a010

G. Curtis and R. M. , Reductive Dehalogenation of Hexachloroethane, Carbon Tetrachloride, and Bromoform by Anthrahydroquinone Disulfonate and Humic Acid, Environmental Science & Technology, vol.28, issue.13, pp.2393-2401, 1994.
DOI : 10.1021/es00062a026

D. Scott, D. Mcknight, E. Blunt-harris, S. Kolesar, and D. Lovley, Quinone Moieties Act as Electron Acceptors in the Reduction of Humic Substances by Humics-Reducing Microorganisms, Environmental Science & Technology, vol.32, issue.19, pp.2984-2989, 1998.
DOI : 10.1021/es980272q

M. Bauer, T. Heitmann, D. Macalady, and C. Blodau, Electron Transfer Capacities and Reaction Kinetics of Peat Dissolved Organic Matter, Environmental Science & Technology, vol.41, issue.1, pp.139-145, 2007.
DOI : 10.1021/es061323j

I. Bauer and A. Kappler, by Humic Substances, Environmental Science & Technology, vol.43, issue.13, pp.4902-4908, 2009.
DOI : 10.1021/es900179s

Z. Struyk and G. Sposito, Redox properties of standard humic acids, Geoderma, vol.102, issue.3-4, pp.3-4329, 2001.
DOI : 10.1016/S0016-7061(01)00040-4

A. Kappler, M. Benz, B. Schink, and A. Brune, Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment, FEMS Microbiology Ecology, vol.47, issue.1, pp.85-92, 2004.
DOI : 10.1016/S0168-6496(03)00245-9

J. Coates, D. Ellis, E. Blunt-harris, C. Gaw, E. Roden et al., Recovery of humic-reducing bacteria from a diversity of environments, Appl Environ Microbiol, vol.64, issue.4, pp.1504-1509, 1998.

A. Kappler, M. Benz, B. Schink, and A. Brune, Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment, FEMS Microbiology Ecology, vol.47, issue.1, pp.85-92, 2004.
DOI : 10.1016/S0168-6496(03)00245-9

URL : https://academic.oup.com/femsec/article-pdf/47/1/85/18092677/47-1-85.pdf

E. Roden, A. Kappler, I. Bauer, J. Jiang, A. Paul et al., Extracellular electron transfer through microbial reduction of solid-phase humic substances, Nature Geoscience, vol.103, issue.6, pp.417-421, 2010.
DOI : 10.1097/00010694-197306000-00006

B. Thamdrup, Bacterial Manganese and Iron Reduction in Aquatic Sediments, Adv Microb Ecol, vol.16, pp.41-84, 2000.
DOI : 10.1007/978-1-4615-4187-5_2

M. Aeschbacher, D. Vergari, R. Schwarzenbach, and M. Sander, Electrochemical Analysis of Proton and Electron Transfer Equilibria of the Reducible Moieties in Humic Acids, Environmental Science & Technology, vol.45, issue.19, pp.8385-8394, 2011.
DOI : 10.1021/es201981g

H. Dong, J. Fredrickson, D. Kennedy, J. Zachara, R. Kukkadapu et al., Mineral transformations associated with the microbial reduction of magnetite, Chemical Geology, vol.169, issue.3-4, pp.3-4299, 2000.
DOI : 10.1016/S0009-2541(00)00210-2

M. Schütz, O. Bildstein, M. Schlegel, and M. Libert, Biotic Fe(III) reduction of magnetite coupled to H2 oxidation: Implication for radioactive waste geological disposal, Chemical Geology, vol.419, pp.67-74, 2015.
DOI : 10.1016/j.chemgeo.2015.10.039

J. Kostka and K. Nealson, Dissolution and Reduction of Magnetite by Bacteria, Environmental Science & Technology, vol.29, issue.10, pp.2535-2540, 1995.
DOI : 10.1021/es00010a012

J. Byrne, N. Klueglein, C. Pearce, K. Rosso, E. Appel et al., Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria, Science, vol.129, issue.1, p.1473, 2015.
DOI : 10.1016/S0168-583X(97)00284-X

A. Scheinost and L. Charlet, Selenite Reduction by Mackinawite, Magnetite and Siderite: XAS Characterization of Nanosized Redox Products, Environmental Science & Technology, vol.42, issue.6, pp.1984-1989, 2008.
DOI : 10.1021/es071573f

URL : https://hal.archives-ouvertes.fr/insu-00335668

C. Heijman, C. Holliger, M. Glaus, R. Schwarzenbach, and J. Zeyer, Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture, Appl Environ Microbiol, vol.59, issue.12, pp.4350-4353, 1993.

C. Gorski and M. Scherer, Uptake and Nitrobenzene Reduction, Environmental Science & Technology, vol.43, issue.10, pp.3675-3680, 2009.
DOI : 10.1021/es803613a

A. Swindle, A. Madden, I. Cozzarelli, and M. Benamara, Size-Dependent Reactivity of Magnetite Nanoparticles: A Field-Laboratory Comparison, Environmental Science & Technology, vol.48, issue.19, pp.11413-11420, 2014.
DOI : 10.1021/es500172p

P. Vikesland, A. Heathcock, R. Rebodos, and K. Makus, Particle Size and Aggregation Effects on Magnetite Reactivity toward Carbon Tetrachloride, Environmental Science & Technology, vol.41, issue.15, pp.5277-5283, 2007.
DOI : 10.1021/es062082i

A. Swindle, I. Cozzarelli, E. Madden, and A. , Using Chromate to Investigate the Impact of Natural Organics on the Surface Reactivity of Nanoparticulate Magnetite, Environmental Science & Technology, vol.49, issue.4, pp.2156-2162, 2015.
DOI : 10.1021/es504831d

J. Jiang and A. Kappler, Kinetics of Microbial and Chemical Reduction of Humic Substances: Implications for Electron Shuttling, Environmental Science & Technology, vol.42, issue.10, pp.3563-3569, 2008.
DOI : 10.1021/es7023803

M. Benz, B. Schink, and A. Brune, Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria, Appl Environ Microbiol, vol.64, issue.11, pp.4507-4512, 1998.

J. Byrne, N. Telling, V. Coker, R. Pattrick, G. Laan et al., Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens, Nanotechnology, issue.45, p.22455709, 2011.

C. Pearce, O. Qafoku, J. Liu, E. Arenholz, S. Heald et al., Synthesis and properties of titanomagnetite (Fe3???xTixO4) nanoparticles: A tunable solid-state Fe(II/III) redox system, Journal of Colloid and Interface Science, vol.387, issue.1, pp.24-38, 2012.
DOI : 10.1016/j.jcis.2012.06.092

U. Schwertmann and R. Cornell, Iron Oxides in Laboratory, Soil Science, vol.156, issue.5, p.188, 2000.
DOI : 10.1097/00010694-199311000-00012

L. Stookey, Ferrozine---a new spectrophotometric reagent for iron, Analytical Chemistry, vol.42, issue.7, p.779, 1970.
DOI : 10.1021/ac60289a016

K. Porsch and A. Kappler, FeII oxidation by molecular O2 during HCl extraction, Environmental Chemistry, vol.8, issue.2, pp.190-197, 2011.
DOI : 10.1071/EN10125

K. Porsch, U. Dippon, M. Rijal, E. Appel, and A. Kappler, In-Situ Magnetic Susceptibility Measurements As a Tool to Follow Geomicrobiological Transformation of Fe Minerals, Environmental Science & Technology, vol.44, issue.10, pp.3846-3852, 2010.
DOI : 10.1021/es903954u

C. Berthold, A. Bjeoumikhov, and L. Brugamann, Fast XRD2 Microdiffraction with Focusing X-Ray Microlenses, Particle & Particle Systems Characterization, vol.22, issue.3, pp.107-111, 2009.
DOI : 10.1002/ppsc.200800038

A. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, vol.74, issue.10, pp.978-982, 1939.
DOI : 10.1098/rspa.1938.0079

D. Rancourt and J. Ping, Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in M??ssbauer spectroscopy, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.58, issue.1, pp.85-97, 1991.
DOI : 10.1016/0168-583X(91)95681-3

C. Gorski and M. Scherer, Determination of nanoparticulate magnetite stoichiometry by Mossbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review, American Mineralogist, vol.95, issue.7, pp.1017-1026, 2010.
DOI : 10.2138/am.2010.3435

S. Poulton and D. Canfield, Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates, Chemical Geology, vol.214, issue.3-4, pp.3-4209, 2005.
DOI : 10.1016/j.chemgeo.2004.09.003

H. Dong, J. Fredrickson, D. Kennedy, J. Zachara, R. Kukkadapu et al., Mineral transformations associated with the microbial reduction of magnetite, Chemical Geology, vol.169, issue.3-4, pp.1-4299, 2000.
DOI : 10.1016/S0009-2541(00)00210-2

C. Gorski, J. Nurmi, P. Tratnyek, T. Hofstetter, and M. Scherer, Redox Behavior of Magnetite: Implications for Contaminant Reduction, Environmental Science & Technology, vol.44, issue.1, pp.55-60, 2010.
DOI : 10.1021/es9016848

D. Latta, C. Gorski, M. Boyanov, O. Loughlin, E. Kemner et al., Reduction, Environmental Science & Technology, vol.46, issue.2, pp.778-786, 2012.
DOI : 10.1021/es2024912

M. Fujii, A. Imaoka, C. Yoshimura, and T. Waite, Effects of Molecular Composition of Natural Organic Matter on Ferric Iron Complexation at Circumneutral pH, Environmental Science & Technology, vol.48, issue.8, pp.4414-4424, 2014.
DOI : 10.1021/es405496b

A. Chassé, T. Ohno, S. Higgins, A. Amirbahman, N. Yildirim et al., Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces, Environmental Science & Technology, vol.49, issue.16, pp.9733-9741, 2015.
DOI : 10.1021/acs.est.5b01877

C. Mullins, MAGNETIC SUSCEPTIBILITY OF THE SOIL AND ITS SIGNIFICANCE IN SOIL SCIENCE - A REVIEW, Journal of Soil Science, vol.21, issue.2, pp.223-246, 1977.
DOI : 10.5636/jgg.25.213

E. Murad, M??ssbauer spectroscopy of clays, soils and their mineral constituents, Clay Minerals, vol.45, issue.4, pp.413-430, 2010.
DOI : 10.1180/claymin.2010.045.4.413

C. Gorski, Redox behavior of magnetite in the environment: moving towards a semiconductor model, 2009.

I. Nedkov, T. Merodiiska, L. Slavov, R. Vandenberghe, Y. Kusano et al., Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation, Journal of Magnetism and Magnetic Materials, vol.300, issue.2, pp.358-367, 2006.
DOI : 10.1016/j.jmmm.2005.05.020

S. Brice-profeta, M. Arrio, E. Tronc, N. Menguy, I. Letard et al., Magnetic order in - nanoparticles: a XMCD study, Journal of Magnetism and Magnetic Materials, vol.288, pp.354-365, 2005.
DOI : 10.1016/j.jmmm.2004.09.120

URL : https://hal.archives-ouvertes.fr/hal-00112611

C. Carvallo, P. Sainctavit, M. Arrio, N. Menguy, Y. Wang et al., Biogenic vs. abiogenic magnetite nanoparticles: A XMCD study, American Mineralogist, vol.93, issue.5-6, pp.5-6880, 2008.
DOI : 10.2138/am.2008.2713

URL : https://hal.archives-ouvertes.fr/hal-00643518