S. Shafiee and E. Topal, When will fossil fuel reserves be diminished?, Energy Pol, vol.37, pp.181-190, 2009.

M. Ljunggren and G. Zacchi, Techno-economic evaluation of a two-step biological process for hydrogen production

, Biotechnol Prog, vol.26, pp.496-504, 2010.

K. Chandrasekhar, Y. Lee, and D. Lee, Biohydrogen production: strategies to improve process efficiency through microbial routes, Int J Mol Sci, vol.16, pp.8266-93, 2015.
DOI : 10.3390/ijms16048266

URL : https://www.mdpi.com/1422-0067/16/4/8266/pdf

H. Argun, P. Gokfiliz, and I. Karapinar, Biohydrogen production potential of different biomass sources, Biohydrogen Prod Sustain Curr Technol Future Perspect

, , pp.11-48

V. V. Pathak, S. Ahmad, A. Pandey, V. V. Tyagi, D. Buddhi et al., Deployment of fermentative biohydrogen production for sustainable economy in indian scenario: practical and policy barriers with recent progresses, Curr Sustain Energy Rep, vol.3, 2016.

P. C. Hallenbeck, D. Ghosh, M. T. Skonieczny, and V. Yargeau, Microbiological and engineering aspects of biohydrogen production, Indian J Microbiol, vol.49, pp.48-59, 2009.
DOI : 10.1007/s12088-009-0010-4

URL : http://europepmc.org/articles/pmc3450049?pdf=render

X. M. Guo, E. Trably, E. Latrille, H. Carr-ere, and J. Steyer, Hydrogen production from agricultural waste by dark fermentation: a review, Int J Hydrogen Energy, vol.35, pp.10660-73, 2010.
DOI : 10.1016/j.ijhydene.2010.03.008

S. V. Mohan, Waste to renewable energy: a sustainable and green approach towards production of biohydrogen by acidogenic fermentation, Sustain. Biotechnol. Sources Renew. Energy. Dordrecht, pp.129-64, 2010.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Panico, P. Lens et al., Hydrogen production by the thermophilic bacterium Thermotoga neapolitana, Int J Mol Sci, vol.16, pp.12578-600, 2015.
DOI : 10.3390/ijms160612578

URL : https://www.mdpi.com/1422-0067/16/6/12578/pdf

V. Cardoso, . Bb, F. T. Silva, J. G. Santos, F. R. Batista et al., Hydrogen production by dark fermentation, Chem Eng Trans, vol.38, pp.481-487, 2014.

M. Cappelletti, D. Zannoni, A. Postec, and B. Ollivier, Members of the order Thermotogales: from microbiology to hydrogen production, Microb BioEnergy Hydrogen Prod
URL : https://hal.archives-ouvertes.fr/hal-01027589

S. R. Chhabra, K. R. Shockley, S. B. Conners, K. L. Scott, R. D. Wolfinger et al., Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima, J Biol Chem, vol.278, 2003.

T. Nguyen, P. Kim, J. , S. Kim, M. et al., Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation, Int J Hydrogen Energy, vol.33, 2008.

A. D. Frock, J. S. Notey, and R. M. Kelly, The genus Thermotoga: recent developments, Environ Technol, vol.31, pp.1169-81, 2010.

C. Schr?-oder, M. Selig, and P. Sch?, Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophile ceubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway, Arch Microbiol, vol.161, pp.460-70, 1994.

A. S. Zaky, G. A. Tucker, Z. Y. Daw, and C. Du, Marine yeast isolation and industrial application, FEMS Yeast Res, vol.14, pp.813-838, 2014.
DOI : 10.1111/1567-1364.12158

URL : https://academic.oup.com/femsyr/article-pdf/14/6/813/19648679/14-6-813.pdf

B. Wu, C. K. Tseng, and W. Xiang, Large-scale cultivation of spirulina in seawater based culture medium, vol.36, 2009.

P. Domínguez-de-maría, On the use of seawater as reaction media for large-scale Applications in biorefineries, ChemCatChem, vol.5, 2013.

R. Saidi, P. P. Liebgott, H. Gannoun, B. Gaida, L. Miladi et al., Biohydrogen production from hyperthermophilic anaerobic digestion of fruit and vegetable wastes in seawater: simplification of the culture medium of Thermotoga maritima, Waste Manag, vol.71, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01728309

G. De-gioannis, A. Muntoni, A. Polettini, and R. Pomi, A review of dark fermentative hydrogen production from biodegradable municipal waste fractions, Waste Manag, vol.33, pp.1345-61, 2013.

H. Bouallagui, H. Lahdheb, E. Ben-romdan, B. Rachdi, and M. Hamdi, Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition, J Environ Manag, vol.90, pp.1844-1853, 2009.

Y. S. Gu, H. S. Yoon, D. C. Park, C. I. Ji, T. Y. Cho et al., Effects of muscle types and cooling on discoloration of canned skipjack, Fish Sci, vol.67, pp.1145-50, 2002.

K. E. Nnali and A. O. Oke, The utilization of fish and fish farm wastes in biogas production: "a review, Adv Agric Sci Eng Res, vol.3, pp.657-67, 2013.

D. Kim, S. Kim, H. Kim, M. Kim, and H. Shin, Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance, Bioresour Technol, vol.102, 2011.

A. Tenca, A. Schievano, F. Perazzolo, F. Adani, and R. Oberti, Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control, Bioresour Technol, vol.102, 2011.

J. Gomez-romero, A. Gonzalez-garcia, I. Chairez, L. Torres, and E. I. García-pe~-na, Selective adaptation of an anaerobic microbial community: biohydrogen production by codigestion of cheese whey and vegetables fruit waste, Int J Hydrogen Energy, vol.39, pp.12541-50, 2014.

R. M. Alqaralleh, K. Kennedy, R. Delatolla, and M. Sartaj, Thermophilic and hyper-thermophilic co-digestion of waste activated sludge and fat, oil and grease: evaluating and modeling methane production, J Environ Manag, vol.183, pp.551-61, 2016.

M. Cappelletti, G. Bucchi, J. Mendes, A. Alberini, S. Fedi et al., Biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains, J Chem Technol Biotechnol, vol.87, pp.1291-301, 2012.

I. M. Mackie, The effects of freezing on flesh proteins, Food Rev Int, vol.9, 1993.

M. Gao, M. Hirata, E. Toorisaka, and T. Hano, Acid-hydrolysis of fish wastes for lactic acid fermentation, Bioresour Technol, vol.97, issue.2414, 2006.

A. , Standard methods for the examination of water and wastewater, 2005.

X. F. Sun, R. C. Sun, J. Tomkinson, and M. S. Baird, Preparation of sugarcane bagasse hemicellulosic succinates using NBS as a catalyst, Carbohydr Polym, vol.53, pp.483-95, 2003.

M. Chalamaiah, B. Dinesh-kumar, R. Hemalatha, and T. Jyothirmayi, Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review, Food Chem, vol.135, pp.3020-3058, 2012.

M. S. Kalil, H. S. Alshiyab, and W. Yusoff, Effect of nitrogen source and carbon to nitrogen ratio on hydrogen production using C. acetobutylicum, Am J Biochem Biotechnol, vol.4, pp.393-401, 2008.

A. Ghimire, L. Frunzo, F. Pirozzi, E. Trably, R. Escudie et al., A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of byproducts, Appl Energy, vol.144, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01164829

M. Ferchichi, E. Crabbe, W. Hintz, G. Gil, and A. Almadidy, Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC 27021, World J Microbiol Biotechnol, vol.21, p.855, 2005.

K. D. Rinker and R. M. Kelly, Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima, Biotechnol Bioeng, vol.69, pp.537-584, 2000.

F. Ziegler, J. M. Ollivier, L. Cynober, J. P. Masini, C. Coudray-lucas et al., Efficiency of enteral nitrogen support in surgical patients: small peptides v non-degraded proteins, Gut, vol.31, pp.1277-83, 1990.

A. Venturin, G. Alves, A. Oliveira, N. S. Skoronski, E. Pessatti et al., Soluble fraction of sardine protein hydrolysates in the feeding of the South American catfish, Bol Inst Pesca, vol.42, 2016.

C. Prost, A. Hallier, M. Cardinal, T. Serot, and P. Courcoux, Effect of storage time on raw sardine (Sardina pilchardus) flavor and aroma quality, J Food Sci, vol.69, 2004.

R. Lakhal, R. Auria, S. Davidson, B. Ollivier, A. Dolla et al., Effect of oxygen and redox potential on glucose fermentation in Thermotoga maritima under controlled physicochemical conditions, Int J Microbiol, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01888723

G. Ravot, B. Ollivier, M. Magot, B. Patel, J. Crolet et al., Thiosulfate reduction, an important physiological feature shared by members of the order thermotogales, Appl Environ Microbiol, vol.61, pp.2053-2058, 1995.

S. K. Ainala, E. Seol, J. R. Kim, and S. Park, Effect of culture medium on fermentative and CO-dependent H2 production activity in CitrobacteramalonaticusY19, Int J Hydrogen Energy, vol.41, pp.6734-6776, 2016.

K. Willquist and E. Van-niel, Lactate formation in Caldicellulosiruptor saccharolyticus is regulated by the energy carriers pyrophosphate and ATP, Metab Eng, vol.12, 2010.

M. Verhaart, A. Bielen, . Oost-j-van-der, A. Stams, and S. Kengen, Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal, Environ Technol, vol.31, pp.993-1003, 2010.

P. M. Vignais and B. Billoud, Occurrence, classification, and biological function of hydrogenases: an overview, Chem Rev, vol.107, pp.4206-72, 2007.

L. Dipasquale, G. Ippolito, and A. Fontana, Capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana: an unexpected deviation from the dark fermentation model, Int J Hydrogen Energy, vol.39, pp.4857-62, 2014.

G. Ippolito, L. Dipasquale, and A. Fontana, Recycling of carbon dioxide and acetate as lactic acid by the hydrogen-producing bacterium Thermotoga neapolitana, ChemSusChem, vol.7, 2014.

N. T. Eriksen, M. L. Riis, N. K. Holm, and N. Iversen, H(2) synthesis from pentoses and biomass in Thermotoga spp, Biotechnol Lett, vol.33, 2011.

A. E. Mars, T. Veuskens, M. Budde, P. Doeveren, . Van et al., Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, Int J Hydrogen Energy, vol.15, 2010.

T. De-vrije, R. R. Bakker, M. A. Budde, M. H. Lai, A. E. Mars et al., Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, Biotechnol Biofuels, vol.2, p.12, 2009.

T. De-vrije, M. Budde, S. J. Lips, R. R. Bakker, A. E. Mars et al., Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, Int J Hydrogen Energy, vol.35, pp.13206-13219, 2010.

S. Fu, X. Xu, M. Dai, X. Yuan, and R. Guo, Hydrogen and methane production from vinasse using two-stage anaerobic digestion, Process Saf Environ Protect, vol.107, pp.81-87, 2017.

A. A. Abreu, F. Tavares, M. M. Alves, and M. A. Pereira, Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste, Bioresour Technol, vol.219, pp.132-140, 2016.

L. Alibardi and R. Cossu, Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials, Waste Manag, vol.36, pp.147-55, 2015.