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UNBALANCED L1 OPTIMAL TRANSPORT FOR VECTOR VALUED

MEASURES AND APPLICATION TO FULL WAVEFORM INVERSION

GABRIELE TODESCHI, LUDOVIC MÉTIVIER, AND JEAN-MARIE MIREBEAU

Abstract. Optimal transport has recently started to be successfully employed to define
misfit or loss functions in inverse problems. However, it is a problem intrinsically defined
for positive (probability) measures and therefore strategies are needed for its applications in
more general settings of interest. In this paper we introduce an unbalanced optimal transport
problem for vector valued measures starting from the L1 optimal transport. By lifting data
in a self-dual cone of a higher dimensional vector space, we show that one can recover a
meaningful transport problem. We show that the favorable computational complexity of the
L1 problem, an advantage compared to other formulations of optimal transport, is inherited
by our vector extension. We consider both a one-homogeneous and a two-homogeneous
penalization for the imbalance of mass, the latter being potentially relevant for applications
to physics based problems. In particular, we demonstrate the potential of our strategy for
full waveform inversion, an inverse problem for high resolution seismic imaging.

Keywords: Optimal transport, vector valued measures, inverse problems, seismic imaging,
proximal splitting

1. Introduction

Optimal transport is the problem of finding the optimal way of reallocating distributions
of mass. Among its many interesting features, it allows to define, in a natural and meaningful
way, distances between probability measures. For this reason, it has started recently to be
considered for applications to inverse problems to propose misfits between real and synthetic
data. Inverse problems are usually highly non-linear and non-convex variational problems
and a fundamental role is played by the misfit or loss function. The use of optimal transport
based distances has revealed to be helpful in attenuating the lack of well-posedness of the
problem and increasing the robustness of the inversion approach. Full Waveform Inversion
(FWI), a seismic inversion problem, is one particular example, with a lot of recent literature
(see for example the review paper [22]).

1.1. Optimal transport. Consider Ω ⊂ Rd, compact and convex with non-empty interior,
and two positive probability measures µ, ν ∈ P(Ω), that is non-negative measures with the
same total mass,

∫
Ω µ =

∫
Ω ν. Given a scalar non-negative real valued continuous function

c : Ω× Ω → R+, the optimal transport problem between µ and ν is

(1.1) OTc(µ, ν) := min
γ∈Π(µ,ν)

∫
Ω×Ω

c(x, y)dγ ,

where the set of admissible transport plans γ is defined as

(1.2) Π(µ, ν) = {γ ∈ P(Ω× Ω) , (π1)#γ = µ, (π2)#γ = ν} ,
i.e. the subset of probability measures on the product space Ω×Ω that have first and second
marginals µ and ν. The ground cost c(x, y) is the cost for transporting one unit of mass from
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x to y. An interesting case is provided by the choice c(x, y) = |x − y|p. In this case (1.1) is
called Lp optimal transport problem and can be shown to provide a (p-th power of a) distance
on the space of probability measures which is referred to as the p-Wasserstein distance, Wp.
This distance translates in a natural way to the measure setting properties of the ground
cost function. Importantly, it characterizes weak convergence of measures. We suggest for
example the monographs [36, 39] for an introduction to the subject.

In this paper we deal with the specific case p = 1, namely the L1 optimal transport problem.
In this case problem (1.1) enjoys three equivalent formulations:

W1(µ, ν) := min
γ∈Π(µ,ν)

∫
Ω
|y − x|dγ(1.3)

= max
ϕ∈C(Ω)

{∫
Ω
ϕ(µ− ν), |∇ϕ|∞ ≤ 1

}
(1.4)

= min
σ∈M(Ω;Rd)

{∫
Ω
|σ| , div(σ) = µ− ν

}
.(1.5)

The maximization problem (1.4) is known as the dual formulation of the L1 transport whereas
(1.5) is known as Beckmann’s minimal flow problem. These two formulations are particularly
interesting for at least two reasons. Firstly, they appear as simpler problems as they present
only local constraints differently from (1.3). In particular, notice that given a solution γ it
is possible to recover solutions σ and ϕ (see [36, Chapter 4]) but the opposite is not true.
For this reason they are much more amenable for numerical computations. Furthermore, they
can be generalized straightforwardly to more general signed measures, contrary to the original
form of the problem.

1.2. Applications to inverse problems. Two major issues arise for the application of
optimal transport to inverse problems. The first one is the computational cost. Problem (1.1)
is evidently more expensive than evaluating simple Lp distances which are usually considered.
However, there has been a significant improvement on this side in the past years (see for
example [30, 20]), which mostly contributed to the recent development of optimal transport.
We highlight also that for the specific applications to inverse problems computing an optimizer
γ is not strictly necessary: the only requirement is to be able to evaluate the misfit function,
i.e. compute the transport cost, and compute its gradient with respect to the measures. This
may allow to devise a cheaper numerical strategy. In this regard, the L1 problem offers a
cheaper alternative as previously remarked.

The second issue is that problem (1.1) is defined for probability measures, i.e. non-negative
measures with fixed total mass. Generalizations have been proposed to deal with non-negative
Radon measures [31, 12]. However, inverse problems may have to deal in general with signed
data which therefore need to be handled properly. Trivial transformation such as transporting
separately positive and negative parts [17], taking the exponential or powers of the data [34],
adding positive mass everywhere [41], may not result effective. These transformations tend
to destroy the structure of the data. Two effective and general ideas have been proposed in
[1, 21].

In [1] the authors started from the dual formulation (1.4) of the L1 problem to propose
an optimal transport misfit for signed data. As previously remarked, this optimal transport
problem has the advantage that it can be extended directly. They considered then the misfit
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provided by:

(1.6) KR(µ, ν) = max
ϕ∈C(Ω)

{∫
Ω
ϕ(µ− ν), |∇ϕ|∞ ≤ 1, |ϕ|∞ ≤ λ

}
for some parameter λ ∈ R+. The L∞ bound on the potential is added in order to be able
to deal with measures that do not have the same total mass. Problem (1.6) is known as
the Kantorovich-Rubenstein norm, or bounded-Lipschitz metric, and is a distance on the
space of signed measures. This misfit function provides good results and the approach is also
computationally appealing, since the problem can be solved effectively up to high dimensions.
However, as problem (1.6) is not framed on positive measures it does not ensure sensitivity
to horizontal shifts of the data (see Example 3.7). The growth of the optimal transport cost
with respect to shifts of the measures is a key feature for its application to inverse problems.

In [21], the authors proposed to lift signed data to a higher dimensional space, where it
can be regarded as a positive measure on its trace. Then, the positive lifted measures can
be discretized and transported according to (1.1). Since the value assigned to the measure
is arbitrary, the ground cost c(x, y) needs to be tuned properly in order to encode transport
along the time direction and not along the amplitude one. The approach in the end is effective
and leads to a robust inversion problem. On the other hand, it is computationally expensive
and not suited to scale to high dimensions.

1.3. Contribution and structure of the paper. In this paper we propose a generalization
of the L1 optimal transport problem (1.3) to vector valued measures. Assuming to be able
to lift, without loss of information, signed data into a (self-dual) cone C of a general vector
space V , this generalization can serve as a meaningful misfit function in inverse problems. In
this sense, our approach can be seen as an extension of the Kantorovich-Rubenstein approach
(1.6) proposed in [1], aiming at recovering a transport problem between positive measures.
By extending the L1 transport we take advantage of the lower computational complexity
this problem offers. We consider as a specific application the FWI problem, where one can
consider multi-component signals as data and naturally lift them in the space of Symmetric
Positive Definite (SPD) valued measures. Some good preliminary results we obtained indicate
the effectiveness of the approach.

Extensions of the optimal transport problem to vector valued measures (and more specif-
ically SPD valued measures) have already been proposed recently, starting from the seminal
work [26], where the authors proposed a generalization of the formulation (1.1) inspired by
quantum mechanics arguments. Later on, several other works appeared, considering either
a static formulation [29] or extensions of the dynamical formulation for the L2 transport
problem [10, 7, 24, 4, 11]. Dynamical formulations of optimal transport are not suited for
applications to inverse problems as they demand a higher computational cost to fully compute
trajectories. On the other hand, the entropic regularization approach can be extended to this
setting as shown in [29]. However, the blurring effect of entropic regularization may require
low values of the temperature parameter to provide meaningful descent directions in the in-
verse problem, vanishing the favorable computational complexity. The most natural way of
extending optimal transport to a vector setting is probably to consider the dual formulation
(1.4) (or the Beckmann’s one (1.5)) of the L1 transport. This has been originally done in
[25, 9, 35], where the authors proposed an extension of L1 transport to the setting of SPD
valued measures inspired again from quantum mechanics. More recently, in [15, 14] a similar
extension has been considered for functional analysis applications.

After setting our notation in Section 2, we present the unbalanced L1 optimal transport
problem for vector valued measures in Section 3. We first introduce the straightforward
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extension of the dual (1.4) and the Beckmann’s (1.5) formulations, in the balanced setting.
These coincide with the ones already considered in [14]. Differently from these and the
other works we mentioned just above, we consider however a general setting and justify our
results via convex analysis arguments. In order to deal with general measures, we propose
an unbalanced problem similarly to the (scalar) unbalanced L1 problem introduced in [31].
We show its equivalence to the vector extension of the Kantorovich-Rubenstein norm (1.6)
(analogously to what has been done in [32] in the scalar case) and also to a relaxed version of
the Beckmann’s formulation. We then consider a different way of penalizing transport in the
unbalanced model, namely an L2 penalization instead of an L1, which can be beneficial for
applications to inverse problems. In Section 4 we present our finite difference discretization
and show that the use of proximal-splitting algorithms, an efficient strategy to solve problem
(1.6) in the scalar setting, can be extended to the vector setting with a simple linear increase
in the computational complexity. Finally, in Section 5 we present some numerical results and
the application to the inverse problem of FWI.

2. Notations

The standard Euclidean scalar product and norm are denoted by x ·y and | · |, for x, y ∈ Rd,
where d is the dimension of the compact optimal transport domain Ω ⊂ Rd. We denote by
V another real vector space of dimension n endowed with its scalar product ⟨·, ·⟩V and the
respective norm | · |V . In V we consider a convex cone C. We recall that the dual cone of C
is defined as

C∗ = {u ∈ V : ⟨u, v⟩V ≥ 0, ∀v ∈ V },

and we restrict to considering cones such that C ⊆ C∗. In particular, this implies that
⟨v1, v2⟩V ≥ 0, ∀v1, v2 ∈ C. Possible examples are V = Rn and C equal to the non-negative

orthant [R+]
n, or V = Sn

′
the space of symmetric matrices and C = Sn

′
+ the subspace of

positive semi-definite matrices (where n = n′(n′ + 1)/2). For these two cases in particular it
holds C = C∗ and the cones are called self-dual. We further introduce the vector space V d

endowed with the scalar product ⟨·, ·⟩V d =
∑d

l=1⟨·, ·⟩V and the respective norm | · |V d . One has

a natural isomorphism of vector spaces V d ≃ L(Rd;V ), and as a result V d is also equipped
with the operator norm | · |L(Rd;V ). The two norms are comparable, namely

(2.1) | · |L(Rd;V ) ≤ | · |V d ≤
√
d| · |L(Rd;V ),

which is easily established using the singular value decomposition. However in dimension
d > 1 these norms are distinct, and | · |L(Rd;V ) is not related to an inner product. For

A,B ∈ L(Rd;V ), ⟨A,B⟩V d = Tr(A⊤B) is known as the Frobenius inner product.
We denote C(Ω;V ) and C(Ω;V d) the spaces of continuous functions defined on the compact

domain Ω ⊂ Rd and valued in V and V d. These spaces are endowed respectively with the sup
norms

|ϕ|V,∞ = sup
x∈Ω

|ϕ(x)|V , |ψ|V d,∞ = sup
x∈Ω

|ψ(x)|V d , for ϕ ∈ C(Ω;V ), ψ ∈ C(Ω;V d).

The space of finite vectorial measures valued in V is M(Ω;V ) and is the dual space of
C(Ω;V ) via the duality product (ϕ, µ) 7→

∫
Ω⟨ϕ, µ⟩V . The convex subspace of measures which

take value in the cone C is M(Ω;C). A measure µ ∈ M(Ω;V ) belongs to M(Ω;C) if and
only if

∫
Ω⟨φ, µ⟩V ≥ 0 for all φ ∈ C0(Ω;C∗). To any measure µ we can associate a positive
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scalar measure |µ|V ∈ M(Ω;R+) defined as

(2.2) |µ|V (K) = sup
φ∈C(K;V )
|ϕ|V,∞≤1

∫
K
⟨φ, µ⟩V , for all Lebesgue measurable subsets K ⊂ Ω .

The map

µ ∈ M(Ω;V ) 7−→ |µ|M(Ω;V ) := |µ|V (Ω)
is a norm on M(Ω;V ) and is called the total variation norm. On M(Ω;V ) we consider
also the weak-* topology. Importantly, closed balls of M(Ω;V ) with respect to the strong
topology are weakly-* compact. Furthermore, from definition (2.2), the total variation norm
is lower semi-continuous with respect to the weak-* convergence. Finally, we define the
space of finite vectorial measures valued in V d, M(Ω;V d), in duality with C(Ω;V d) through
(ψ, σ) 7→

∫
Ω⟨ψ, σ⟩V d . The space M(Ω;V d) endowed with the total variation norm |σ|M(Ω;V d),

defined in the same way as above, is again a normed vector space. In the following we will
use the notation:

|µ|M(Ω;V ) =

∫
Ω
|µ|V , |σ|M(Ω;V d) =

∫
Ω
|σ|V d , for µ ∈ M(Ω;V ) and σ ∈ M(Ω;V d).

On V and V d we can consider two orthonormal bases, respectively (vk)
n
k=1 and wk,l = vk⊗el,

for (el)
d
l=1 canonical basis of Rd. Using these bases, a function ϕ belongs to C(Ω;V ) if and only

if there exists (ak)
n
k=1 ⊂ C(Ω;R) such that ϕ(x) =

∑n
k=1 ak(x)vk,∀x ∈ Ω, and analogously for

ψ ∈ C(Ω;V d). In the same way a measure µ ∈ M(Ω;V ) can be written as µ =
∑n

k=1 bkvk for

a sequence of real valued measures (bk)
n
k=1 ⊂ M(Ω;R), and analogously for σ ∈ M(Ω;V d).

The gradient ∇′ϕ ∈ C(Ω, V d) of a function ϕ ∈ C1(Ω, V ) is defined componentwise as
follows

∇′ϕ =
∑
k

vk ⊗∇ϕk for ϕ =
∑
k

ϕkvk .

Likewise, for ψ ∈ C1(Ω, V d), the divergence div′ ψ ∈ C(Ω, V ) is defined as

div′ ψ =
∑
k

div(ψk)vk for ψ =
∑
k

vk ⊗ ψk .

In the following, we drop the superscript over ∇ and div for the sake of notational simplicity.
A function ϕ ∈ C(Ω;V ) is 1-Lipschitz if

|ϕ(y)− ϕ(x)|V ≤ |y − x| , ∀x, y ∈ Rd .

Since Ω is supposed to be convex,

(2.3) ϕ is 1-Lipschitz ⇐⇒ |∇ϕ|L(Rd;V ),∞ ≤ 1 ,

where |∇ϕ|L(Rd;V ) is the operator norm. By convention, |∇ϕ|L(Rd;V ),∞ = ∞ if the distribu-

tional derivative ∇ϕ does not admit an L∞ representative; the quantity |∇ϕ|L(Rd;V ),∞ can also

be expressed using duality, similarly to (2.5) below. There is no counterpart of the equivalence
(2.3) involving the Frobenius | · |V d norm, and thus we define instead the set

(2.4) Fr-Lip(Ω, V ) := {ϕ ∈ C(Ω;V ) , |∇ϕ|V d,∞ ≤ 1}.

We refer to |∇ϕ|V d,∞ as the Fr-Lipschitz constant, and note again that it is defined as ∞ by
convention if the distributional derivative ∇ϕ has no L∞ representative. By definition of the
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distributional derivative, and since L∞ = (L1)∗, one has for any ϕ ∈ C(Ω;V )

(2.5) |∇ϕ|V d,∞ := sup
ψ∈C∞

c (int(Ω);V d)

{∫
Ω
⟨ϕ, divψ⟩V , |ψ|V d,1 ≤ 1

}
,

where C∞
c denotes the space of smooth and compactly supported test functions, int(Ω)

stands for the interior of the domain and |ψ|V d,1 :=
∫
Ω |ψ|V d . Notice that 1- Lip(Ω, V ) ⊂

Fr-Lip(Ω, V ) ⊂
√
d- Lip(Ω, V ). Furthermore, Fr-Lip(Ω, V ) is closed w.r.t. uniform conver-

gence, since (2.5) is lower-semi-continuous for this topology (as a supremum of continuous
maps).

3. Unbalanced L1 optimal transport problem for vector valued measures

In this section we introduce an unbalanced L1 optimal transport problem for vector valued
measures. In order to ease the presentation of the unbalanced model, we first consider the
balanced case, i.e. the case of measures µ and ν with the same total mass, and present the
vector extension of the dual and Beckmann’s formulation of the L1 transport, problems (1.4)
and (1.5). These extensions coincide with the ones introduced in [14]. We then extend these
models to the unbalanced setting. We will consider two different penalization for the mass
imbalance, an L1 and an L2 penalization, respectively in Sections 3.2 and 3.3.

For the sake of generality, we stick to considering µ, ν ∈ M(Ω;V ) instead of µ, ν ∈ M(Ω;C).
As in the scalar case in fact, the vectorial extension of the L1 problem does not require
the measures to be positive. Of course, considering positive measures will be key for the
application to inverse problems, see Section 5 and Example 3.6.

3.1. Balanced case. We consider two measures µ, ν ∈ M(Ω;V ) with the same total mass,∫
Ω µ =

∫
Ω ν, i.e.

(3.1)

∫
Ω
µk =

∫
Ω
νk , ∀ 1 ≤ k ≤ n , for µ =

n∑
k=1

µkvk and ν =
n∑
k=1

νkvk .

We can define straightforwardly in this setting the dual problem (1.4) as:

(3.2) sup
ϕ∈C(Ω;V )

{∫
Ω
⟨ϕ, ν − µ⟩V , |∇ϕ|V d,∞ ≤ 1

}
.

Proposition 3.1. For all µ, ν ∈ M(Ω;V ), with the same total mass, problem (3.2) admits a
solution ϕ ∈ Fr-Lip(Ω;V ).

Proof. The proof is similar to the scalar case (see e.g. [36, Proposition 1.11]). Thanks to the
regularity constraint, a maximizing sequence ϕn is equi-continuous. Furthermore, since the
problem is independent of the addition of a constant, we can fix an arbitrary one for each
potential ϕn and derive a uniform bound using the equi-continuity and the boundedness of the
domain Ω. By Ascoli-Arzelà one can extract a subsequence converging uniformly on Ω. For
the uniform topology, the functional is continuous, and the space Fr-Lip closed as observed
below (2.5), hence the limit solves (3.2). □

The Beckmann formulation (1.5) can also be extended in a straighforward way. For σ ∈
M(Ω;V d) and δ ∈ M(Ω;V ), the continuity equation div(σ) = δ with zero flux boundary
conditions is defined in the following weak sense

−
∫
Ω
⟨∇ϕ, σ⟩V d =

∫
Ω
⟨ϕ, δ⟩V , ∀ϕ ∈ C1(Ω;V ) .
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As a consequence of this definition, (σ, µ) can be a weak solution only if δ has zero total mass,
i.e.

∫
Ω δ = 0 according to (3.1). Then we can write the problem:

(3.3) inf
σ∈M(Ω;V d)

{∫
Ω
|σ|V d , div(σ) = µ− ν

}
.

As in the scalar case, (3.2) and (3.3) are in duality and the problems are equivalent, as it can
be noticed via formal computations. Enforcing the divergence constraint in (3.3),

inf
σ

sup
ϕ

∫
Ω
|σ|V d +

∫
Ω
⟨ϕ, div(σ)− µ+ ν⟩V ,

exchanging inf and sup and integrating by parts, we obtain the following dual problem

sup
ϕ

inf
σ

∫
Ω
|σ|V d −

∫
Ω
⟨∇ϕ, σ⟩V d +

∫
Ω
⟨ϕ, ν − µ⟩V .

The minimization in σ provides then

inf
σ

∫
Ω
|σ|V d −

∫
Ω
⟨∇ϕ, σ⟩V d =

{
0 if |∇ϕ|V d,∞ ≤ 1 ,

−∞ else ,

so that we obtain problem (3.2).
In order to rigorously prove the equivalence of problem (3.2) with (3.3) we need to justify the

swapping of inf and sup. We can establish this duality result adapting an approach proposed
in [36, Section 1.6.3] for proving the equivalence between the primal and dual Kantorovich
problems (in the scalar setting). As a byproduct of this result, we also derive existence of a
solution for the Beckmann formulation (3.3).

Theorem 3.2. For all µ, ν ∈ M(Ω;V ), with the same total mass, problems (3.2) and (3.3)
attain the same objective value. Furthermore, the latter admits a solution σ ∈ M(Ω;V d).

Proof. Let us introduce the functional F : C(Ω;V d) → R,

F(f) = − sup
ϕ∈C(Ω;V )

{∫
Ω
⟨ϕ, ν − µ⟩V , |∇ϕ− f |V d,∞ ≤ 1

}
.

Note that ∇ϕ − f is formally defined as a difference of distributions, and that it admits an
L∞ representative if and only if the distributional derivative ∇ϕ does, since f is continuous.
Following the same arguments of the proof of Proposition 3.1, for every f there exists a solution
ϕ to the maximization problem (the equi-continuity is provided in this case by observing that
|∇ϕ|V d,∞ ≤ 1 + |f |V d,∞) and for f = 0 we obtain the opposite of problem (3.2). We show
that F is convex and lower semi-continuous.

Regarding convexity, take f1, f2, the corresponding optimal potentials ϕ1, ϕ2, and an inter-
polation parameter t ∈ [0, 1]. The potential tϕ1+(1− t)ϕ2 is admissible for the maximization
problem with tf1 + (1− t)f2 since

|t∇ϕ1 + (1− t)∇ϕ2 − tf1 − (1− t)f2|V d ≤ t|∇ϕ1 − f1|+ (1− t)|∇ϕ2 − f2|V d ≤ 1

pointwise on Ω. Therefore we obtain:

F(tf1 + (1− t)f2) ≤ −
∫
Ω
⟨tϕ1 + (1− t)ϕ2, ν − µ⟩V = tF(f1) + (1− t)F(f2) .

Regarding lower semi-continuity, consider a sequence fn uniformly converging to f , and which
is therefore uniformly bounded. We extract a subsequence (without relabeling it) such that
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lim
n→∞

F(fn) = lim inf
n→∞

F(fn), still converging to f . If we take the corresponding sequence of

optimal potentials ϕn, then

|∇ϕn|V d ≤ |∇ϕn − fn|V d + |fn|V d ≤ C ,

pointwise on Ω, hence the sequence (ϕn)n∈N is uniformly equi-continuous. Up to adding a
normalizing constant we may assume that

∫
Ω ϕn = 0 for all n ∈ N, hence the sequence of

potentials is uniformly equi-bounded, and therefore converges uniformly (up to extracting a
subsequence) towards a potential ϕ, by the Arzelà-Ascoli theorem. This latter is an admissible
potential for f . Indeed, for any test function ψ ∈ C∞

c (int(Ω), V d) such that |ψ|V d,1 ≤ 1 we
have ∫

Ω
⟨ϕn, div(ψ)⟩V + ⟨fn, ψ⟩V d ≤ 1 ,

which passes to the limit by uniform convergence. This implies |∇ϕ− f |V d,∞ ≤ 1. In the end
we get:

F(f) ≤ −
∫
Ω
⟨ϕ, ν − µ⟩V = lim inf

n
F(fn) .

Let us compute the Legendre transform of F :

F∗(σ) = sup
f∈C(Ω;V d)

∫
Ω
⟨σ, f⟩V d −F(f)

= sup
f∈C(Ω;V d)
ϕ∈C(Ω;V )

{∫
Ω
⟨σ, f⟩V d +

∫
Ω
⟨ϕ, ν − µ⟩V , |∇ϕ− f |V d,∞ ≤ 1

}
,

= sup
f∈C∞(Ω;V d)
ϕ∈C∞(Ω;V )

{∫
Ω
⟨σ, f⟩V d +

∫
Ω
⟨ϕ, ν − µ⟩V , |∇ϕ− f |V d,∞ ≤ 1

}
.

The last equality is justified by the following density argument. Let f ∈ C(Ω;V d), ϕ ∈
C(Ω;V ). Choose a non-negative mollifier ρ ∈ C∞(Rd) supported in the unit ball and with
unit integral, and denote ρδ := δ−dρ(·/δ). The convolutions fδ := f ∗ρδ and ϕδ := ϕ∗ρδ, obey
|∇ϕδ − fδ|V d,∞ = |ρδ ∗ (∇ϕ − f)|V d,∞ ≤ 1 and are defined on Ωδ := {x ∈ Ω, d(x, ∂Ω) ≥ δ}.
We assume, up to translating the domain, that B(0, r) ⊂ Ω for some r > 0, and observe

that (1 − δ/r)Ω ⊂ Ωδ by convexity for all 0 < δ < r. Denoting f̃δ(x) := fδ((1 − δ/r)x) and

ϕ̃δ(x) := ϕδ((1−δ/r)x)/(1−δ/r) we have f̃δ ∈ C∞(Ω;V d), ϕ̃δ ∈ C∞(Ω;V ), |∇ϕ̃δ−f̃δ|V d,∞ ≤ 1,

and f̃δ → f and ϕ̃δ → ϕ uniformly on Ω as δ → 0, hence the equality.
Changing variables to f̂ := f −∇ϕ ∈ C∞(Ω;V d) we obtain, by density of smooth functions

in the set of continuous functions

F∗(σ) = sup
f̂∈C∞(Ω;V d)
ϕ∈C∞(Ω;V )

{∫
Ω
⟨σ, f̂⟩+

∫
Ω
⟨σ,∇ϕ⟩V d +

∫
Ω
⟨ϕ, ν − µ⟩V , |f̂ |V d,∞ ≤ 1

}

= sup
ϕ∈C∞(Ω;V )

{∫
Ω
|σ|V d +

∫
Ω
⟨σ,∇ϕ⟩V d +

∫
Ω
⟨ϕ, ν − µ⟩V

}

=

{∫
Ω |σ|V d if div(σ) = µ− ν

∞ else,

which corresponds to the objective functional of problem (3.3).
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As F is convex and lower semi-continuous, it holds

−F(0) = −F∗∗(0) = − sup
σ

{∫
Ω
⟨σ, 0⟩V d −F∗(σ)

}
= inf

σ
F∗(σ) ,

which provides the equivalence between problems (3.3) and (3.2). The existence of a solution
σ to the dual problem follows from the fact that F being convex and lower semi-continuous,

σ ∈ ∂F(0) ⇐⇒ 0 ∈ ∂F∗(σ) ⇐⇒ F(0) + F∗(σ) = 0 .

Since 0 is in the interior of the domain of definition of F , the subdifferential in this point is
not empty. □

We introduce the functional W V
1 : M(Ω;V )×M(Ω;V ) → R+,

(3.4) W V
1 (µ, ν) := sup

ϕ∈C(Ω;V )

{∫
Ω
⟨ϕ, ν − µ⟩V , |∇ϕ|V d,∞ ≤ 1

}
which associates to any two measures µ and ν the transport cost, if they have the same total
mass, else the value +∞. The following proposition is a simple consequence of the above
duality result.

Proposition 3.3. W V
1 (·, ·) is jointly convex and lower semi-continuous. Furthermore, it

provides a distance on any subset of M(Ω;V ) of measures with the same total mass.

3.2. Unbalanced case. Requiring the two vector valued measures µ and ν to have the same
mass may be in some cases too restrictive, as it requires the strong geometric constraint (3.1).
We introduce for this reason an unbalanced version of the problem. For µ, ν ∈ M(Ω;V ) we
define:

(3.5) T λ
1,1(µ, ν) := inf

δ∈M(Ω;V )
W V

1 (µ+ δ, ν) + λ

∫
Ω
|δ|V

for a constant λ > 0 (fixed in this section). The penalization of the total variation of δ deter-
mines the deformation price of the measures. Problem (3.5) aims at finding a balance between
transporting mass from µ to ν or deforming it and for λ → +∞ one recovers (formally) a
pure transport if this exists. Problem (3.5) is an extension to vector valued measures of the
Piccoli-Rossi unbalanced L1 distance [31]. From the equivalent formulations (3.2)-(3.3) one
deduces that W V

1 (µ, ν) only depends on the difference of the two measures. The choice of
W V

1 (µ+ δ, ν) in the definition of problem (3.5) is therefore not restrictive.

Theorem 3.4. For all µ,ν ∈ M(Ω;V ), there exists a solution δ ∈ M(Ω;V ) to problem (3.5).

Proof. The functional W V
1 (µ + δ, ν) is well-posed for any δ ∈ M(Ω;V ) such that µ + δ has

the same total mass as ν, according to (3.1). It is also lower semi-continuous for the weak-*
topology, as a supremum of lower semi-continuous functionals (3.4), and non-negative. Since
the total variation norm is lower semi-continuous as well, the existence of a solution follows
by the direct method of calculus of variations: consider a minimizing sequence (δn)n∈N, note
that

∫
Ω |δn|V is uniformly bounded since λ > 0 and W V

1 (µ + δn, ν) ≥ 0, hence there is a
weak-* converging subsequence by compactness of the closed balls of M(Ω, V ), whose limit
is a minimizer to (3.5) by lower semi-continuity. □

In the rest of this section we show that (3.5) admits analogous unbalanced versions of (3.2)
and (3.3). The latter is evident, it simply requires to use the Beckmann formulation of W V

1



10 GABRIELE TODESCHI, LUDOVIC MÉTIVIER, AND JEAN-MARIE MIREBEAU

to obtain:

(3.6) T λ
1,1(µ, ν) = min

σ∈M(Ω;V d)
δ∈M(Ω;V )

{∫
Ω
|σ|V d + λ

∫
Ω
|δ|V , div(σ) = µ− ν + δ

}
.

Due to (3.6), it can be immediately recognized that T λ
1,1(·, ·) is again a distance on M(Ω;V ).

Using instead (3.2) to rewrite the W V
1 distance, we obtain the saddle point problem

inf
δ∈M(Ω;V )

sup
ϕ∈C(Ω;V )

{∫
Ω
⟨ϕ, ν − µ− δ⟩V + λ

∫
Ω
|δ|V , |∇ϕ|V d,∞ ≤ 1

}
.

Exchanging inf and sup and minimizing in δ provides

(3.7) sup
ϕ∈C(Ω;V )

{∫
Ω
⟨ϕ, ν − µ⟩V , |∇ϕ|V d,∞ ≤ 1, |ϕ|V,∞ ≤ λ

}
,

by the same computation used in the previous section. The dual problem (3.7) is a vec-
tor extension of the Kantorovich-Rubenstein norm (1.6). The following theorem shows its
equivalence with problem (3.5).

Theorem 3.5. For all µ, ν ∈ M(Ω;V ), there exists a solution ϕ ∈ Fr-Lip(Ω;V ) to problem
(3.7) and it holds:

T λ
1,1(µ, ν) = max

ϕ∈C(Ω;V )

{∫
Ω
⟨ϕ, ν − µ⟩V , |∇ϕ|V d,∞ ≤ 1, |ϕ|V,∞ ≤ λ

}
.

Proof. The proof of existence of a solution is similar to that of problem (3.2) in Propo-
sition 3.1, the explicit uniform bound on the potential providing in this case directly the
equi-boundedness.

For ϕ ∈ C(Ω, V ), we introduce the functionals

F(ϕ) =

∫
Ω
⟨ϕ, µ− ν⟩V + i|∇ϕ|

V d,∞≤1 , G(ϕ) = i|ϕ|V,∞≤λ ,

where we denote by

(3.8) iA(ϕ) :=

{
0 if ϕ ∈ A,

∞ otherwise,

the indicator function of a set A ⊂ C(Ω, V ). If A is convex and closed (for the strong topology),
as it is the case in the two functionals above, then iA is convex and (weakly-*) lower semi-
continuous. Therefore, both F and G are convex and (weakly-*) lower semi-continuous.
Furthermore, for ϕ = 0 both F and G are bounded and G is also continuous in this point.
Then, from the Fenchel-Rockafellar duality theorem [5, Theorem 1.12],

max
ϕ∈C(Ω;V )

−F(ϕ)− G(ϕ) = min
δ∈M(Ω;V )

F∗(−δ) + G∗(δ) ,

where

F∗(−δ) = sup
ϕ∈C(Ω;V )

∫
Ω
⟨ϕ, ν − µ− δ⟩V − i|∇ϕ|

V d,∞≤1 =W V
1 (µ+ δ, ν) ,

by definition of W V
1 , and

G∗(δ) = sup
ϕ∈C(Ω;V )

∫
Ω
⟨ϕ, δ⟩V − i|ϕ|V,∞≤λ = λ

∫
Ω
|δ|V ,

showing the equivalence between problems (3.5) and (3.7). □
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The following example clarifies the role played by the penalization term and is helpful in
understanding how the parameter λ can be tuned in practice.

Example 3.6 (Exact solution for two delta measures). Let us consider the two measures
µ =M1δx1 , ν =M2δx2 for M1,M2 ∈ V and two distinct points x1, x2 ∈ Ω. The Kantorovich-
Rubinstein norm (3.7) can be written in this case as:

(3.9) |x1 − x2| max
A,B∈V

{⟨A,M1⟩V − ⟨B,M2⟩V , |A|V ≤ γ, |B|V ≤ γ, |A−B|V ≤ 1} ,

where γ = λ
|x1−x2| . Indeed, let ϕ be such that |∇ϕ|V d ≤ 1 pointwise on the convex domain

Ω, which implies |∇ϕ|L(Rd;V ) ≤ 1 since the Frobenius norm is larger than the operator norm.

Thus ϕ is 1-Lipschitz, and therefore A := ϕ(x1) and B := ϕ(x2) satisfy |A−B|V ≤ |x1 − x2|.
Conversely, assume that |A−B|V ≤ |x1 − x2|, and define for any z ∈ Ω

ϕ(z) =


(1− t)A+ tB if t ∈ [0, 1] ,

A if t ≤ 0 ,

B if t ≥ 1 ,

where t := (z − x1) · n ,

and n := (x2 − x1)/|x2 − x1|2. Then ϕ is piecewise linear hence Lipschitz, and when 0 <
t < 1 the gradient ∇ϕ(z) = (B − A) ⊗ n is a rank one matrix which satisfies |∇ϕ(z)|V d =
|∇ϕ(z)|L(Rd;V ) = |B−A|V |n| ≤ 1 as required, since the Frobenius and operator norms coincide
on rank one matrices.

We can rewrite (3.9) by means of an infsup formulation as

max
A,B

min
C1,C2,C3

⟨A,M1⟩V−⟨B,M2⟩V+|C1|V−
1

γ
⟨A,C1⟩V+|C2|V−

1

γ
⟨B,C2⟩V+|C3|V−⟨A−B,C3⟩V .

Swapping min and max by strong duality1 and optimizing in A and B we obtain

M1 −
1

γ
C1 − C3 = 0 , −M2 −

1

γ
C2 + C3 = 0 ,

and the problem reduces to

min
C∈V

γ|C −M1|V + γ|C −M2|V + |C|V .

This is the generalized Fermat-Torricelli problem: finding the point that minimizes the
weighted sum of the distances from the vertices of a triangle (which lies on the plane pass-
ing by the three points 0,M1,M2). The analytical solution is available for this problem for

1The Fenchel-Rockafellar duality theorem can be applied again for this purpose, as in Theorem 3.5, for
f(A,B,D) := γ⟨A,M1⟩V −γ⟨B,M2⟩V + iD=γ(A−B) and g(A,B,D) := i|A|≤1+ i|B|≤1+ i|D|≤1 (up to a rescaling

of A and B by γ), which are both finite for (0, 0, 0) and the latter is furthermore continuous at this point.
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example in [38]. The total cost is then:
(3.10)

λ(|M1|V + |M2|V ) if
⟨M1,M2⟩V
|M1|V |M2|V

≤ 1

2γ2
− 1

|x1 − x2||M1|V + λ|M1 −M2|V if
⟨M1,M2 −M1⟩V
|M1|V |M2 −M1|V

≥ 1

2γ2

|x1 − x2||M2|V + λ|M1 −M2|V if
⟨M2,M1 −M2⟩V
|M2|V |M1 −M2|V

≥ 1

2γ2

|x1 − x2|
(
(γ2 − 1

2
)|M1 −M2|2V +

1

2
(|M1|2V + |M2|2V )+

(4γ2 − 1)
1
2 (|M1|2V |M2|2V − ⟨M1,M2⟩2V )

1
2

) 1
2

else,

with the three degenerate cases
λ|M1|V if M2 = 0

λ|M2|V if M1 = 0

min(2λ, |x1 − x2|)|M |V if M1 =M2 =M.

It would be furthermore possible to explicitly write the solution C and recover the optimal
potential A,B.

In the scalar case n = 1, for µ = m1δx1 , ν = m2δx2 , with m1,m2 ∈ R, the cost reduces to
the already known (e.g. [13, Section 5.1]):

(3.11)


λ(|m1|+ |m2|) if γ ≤ 1

2
or sign(m1) ̸= sign(m2)

λ(|m2| − |m1|) + |x1 − x2||m1| if m2 ≥ m1 ≥ 0 or 0 ≥ m1 ≥ m2

λ(|m1| − |m2|) + |x1 − x2||m2| if m1 ≥ m2 ≥ 0 or 0 ≥ m2 ≥ m1.

The first condition in (3.10) discriminates between transporting or not the mass, depending
on the parameter λ. If it is satisfied, then the mass is not transported (and the cost corresponds
to its destruction at x1 and its reconstruction at x2). If the product ⟨M1,M2⟩V is non-negative,

then there is never transport for λ ≤ |x1−x2|
2 , whereas transport occurs for λ ≥ |x1−x2|√

2
, with

an intermediate regime in between depending on the angle. If on the contrary ⟨M1,M2⟩V is
negative, λ needs to increase further to ensure transport, depending on the angle between
M1 and M2, tending to +∞ in the limiting case they have opposite directions, in which case
transport never occurs. This latter phenomenon is the equivalent of the scalar case with a
positive dirac and a negative dirac (3.11). This motivates our choice of considering measures
valued in a cone C ⊆ C∗, in order to have a meaningful transport problem. Indeed, in this
case ⟨M1,M2⟩V ≥ 0 for any M1,M2 ∈ C.

The previous example shows that transport may not occur if the data are not signed. The
next example shows a more interesting case where this can lead to a somewhat pathological
behavior.

Example 3.7 (Insensitivity of KR to horizontal shifts for signed measures). Consider for
simplicity V = R, in which case (1.6) and (3.7) coincide, and two measures µ, ν ∈ M(Ω;V ).
Notice that (1.6) only depends on the difference of µ and ν and can be therefore formulated
between the two positive measures (µ− ν)+ and (µ− ν)−. In terms of optimal transport, this
means that positive mass can be transported on negative one and viceversa. Consider the
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xπ 2π

µ ν = µ(· − t)

(µ− ν)+

(µ− ν)−

Figure 1. Representation of the transport problem of Example 3.7. The L1

optimal transport between (µ − ν)+ and (µ − ν)− is independent of the shift
t ≥ 2π. The solution is the shift, of length π, of the leftmost blue bump of
mass to the right and of the rightmost blue bump of mass to the left. Notice
that, if µ has not zero mean, this is not possible and some leftover mass needs
to travel from the leftmost to the rightmost side (or viceversa).

two measures µ = sin2π(x) := sin(max{0,min{2π, x}}), and ν = µ(· − t) for t ∈ R+, t ≥ 2π
(see Figure 1). Since

∫
Ω µ =

∫
Ω ν = 0, from the previous example we can deduce that

KR(µ, ν) = KR((µ − ν)+, (µ − ν)−) = W1((µ − ν)+, (µ − ν)−) = 2π, for a sufficiently big
value of the parameter λ. The transport cost is independent of the parameter t, i.e. the cost
is independent of the shift between the two measures. We highlight that this is true since
µ has zero mean. If this is not the case, one recovers sensitivity to the time shift, since an
amount of mass needs to be transported between µ+ and ν+ (or between µ− and ν−).

3.3. Quadratic penalization. As we have seen in the previous section, when using a one-
homogeneous total variation norm penalization the parameter λ corresponds to half the trans-
port distance up to which mass can be transported. This behavior is independent of the mass
considered. In applications it may be more relevant instead to consider a penalization on the
transport distance depending also on the mass. This can be achieved by considering a two-
homogeneous penalization. Another advantage in the specific application of interest for this
work, namely seismic imaging, is that the quadratic penalization corresponds to the physical
energy of the signal (see Section 5). On the contrary, the total variation has no physical in-
terpretation and thus sometimes induces undesirable artifacts, in which some regions of very
low physical energy have an excessively strong influence on the transport problem.

We restrict in this section our attention to measures which are absolutely continuous w.r.t.
the Lebesgue measure and whose density lies in L2(Ω;V ). By a slight abuse of notation, we
identify in this case measures with their densities. Since the domain Ω is compact, M(Ω;V )∩
L2(Ω;V ) coincides with L2(Ω;V ) itself. We define the unbalanced L1 transport cost with
quadratic penalization as

(3.12) T λ
1,2(µ, ν) := inf

δ∈L2(Ω;V )
W V

1 (µ+ δ, ν) +
λ

2

∫
Ω
|δ|2V ,

for any µ, ν ∈ L2(Ω;V ). The following theorem provides the analogous of the unbalanced
formulations (3.7) and (3.6) in this case.
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Theorem 3.8. For all µ, ν ∈ L2(Ω;V ), problem (3.12) admits a minimizer δ ∈ L2(Ω;V ) and
it holds:

T λ
1,2(µ, ν) = max

ϕ∈C(Ω;V )

{∫
Ω
⟨ϕ, ν − µ⟩V − 1

2λ

∫
Ω
|ϕ|2V , |∇ϕ|V d,∞ ≤ 1

}
(3.13)

= min
σ∈M(Ω;V d)
δ∈L2(Ω;V )

{∫
Ω
|σ|V d +

λ

2

∫
Ω
|δ|2V , div(σ) = µ− ν + δ

}
.(3.14)

Furthermore, the optimal potential ϕ of (3.13) is unique.

Proof. Let δn be a minimizing sequence for (3.12). Since W V
1 (µ + δ, ν) ≥ 0, we can assume

that the sequence is bounded in L2(Ω;V ). The L2(Ω;V ) space is not closed with respect to
the weak-* topology. We can consider however in this case the weak L2 topology to extract a
converging subsequence. From definition (3.2), since C(Ω;V ) ⊂ L2(Ω;V ), Ω being compact,
the distance W V

1 is clearly lower semi-continuous with respect to this topology. We obtain
therefore existence of an optimal δ for (3.12). The equivalence with (3.14) is trivial.

Let us consider existence for problem (3.13). In order to derive the uniform boundedness
for a sequence of maximizers, we can use the uniform Lipschitz regularity. The problem is not
independent of the addition of a constant to the potential but we can determine a uniform
bound for it. Problem (3.13) can be rewritten as

sup
a∈Rd,ϕ̂∈C(Ω;V )∫

Ω ϕ̂=0

{∫
Ω
⟨ϕ̂, ν − µ⟩V + a

∫
Ω
(ν − µ)− 1

2λ

∫
Ω
|ϕ̂|2V − a2

2λ
|Ω| , |∇ϕ̂|V d,∞ ≤ 1

}
,

by making explicit the average a of the potential ϕ, and introducing the zero-mean difference
ϕ̂ := ϕ − a/|Ω|. Consider then a maximizing sequence (an, ϕ̂n). The average an clearly
converges to the optimal value λ

∫
Ω(ν−µ)/|Ω|. The sequence of zero mean uniformly Lipschitz

potential ϕ̂n is now also uniformly bounded, |ϕ̂n| ≤ diam(Ω) := max{|x − y|, x, y ∈ Ω}.
Indeed, ϕ̂n is Lipschitz because the Frobenius norm is larger than the operator norm. Second,
let v ∈ V with |v|V = 1 be such that |ϕ̂n|∞ = |⟨ϕ̂n, v⟩V |∞; then x 7→ ⟨ϕ̂n(x), v⟩V is 1-Lipschitz,
zero-mean and scalar valued, hence bounded by diam(Ω) as announced. Hence, we can apply

Ascoli-Arzelà as in the proof of Proposition (3.1) to deduce convergence to an optimal ϕ̂.

Finally, the optimal potential in (3.13) is ϕ = λ
∫
Ω(ν − µ)/|Ω| + ϕ̂. Uniqueness derives from

the strict convexity of the objective functional.
To conclude, the proof of the duality result is analogous to the proof of Theorem 3.5. We

introduce the two convex and lower semi-continuous functionals

F(ϕ) =

∫
Ω
⟨ϕ, µ− ν⟩V + i|∇ϕ|

V d,∞≤1 , G(ϕ) = 1

2λ

∫
Ω
|ϕ|2V ,

which satisfies the hypotheses of the Fenchel-Rockafellar duality theorem [5, Theorem 1.12]
(consider again ϕ = 0). It holds again

F∗(−δ) =W V
1 (µ+ δ, ν) ,

whereas for the second term

G∗(−δ) = sup
ϕ∈C(Ω;V )

−
∫
Ω
⟨ϕ, δ⟩V − 1

2λ

∫
Ω
|ϕ|2V =

{
λ
2

∫
Ω |δ|2V if δ ∈ L2(Ω;V ),

+∞ else,

since
∫
Ω⟨ϕ, δ⟩V is not a bounded functional on L2(Ω;V ) if δ /∈ L2(Ω;V ). The equivalence

between (3.12) and (3.13) follows. □



L1 OPTIMAL TRANSPORT FOR FWI 15

Remark 3.9. Differently from problems (3.12) and (3.14) which require µ, ν ∈ L2(Ω;V ), the
dual formulation (3.13) is well-defined for every µ, ν ∈ M(Ω;V ).

We can again shed light on the role played by the parameter λ, in this case with quadratic
penalization, by considering an exact solution.

Example 3.10 (Exact solution for two delta measures). Consider the case d = 1, n = 1 and
two measures of the form µ = m1δx1 , ν = m2δx2 for m1,m2 ∈ R+. Following Example 3.6, we
want to rewrite problem (3.13) in the variables a = ϕ(x1) and b = −ϕ(x2). Clearly, the L2

norm squared of ϕ is minimized, under the gradient constraint, by a piecewise linear function
which on its support has slope ±1 almost everywhere, and may only have a local maximum at
x1 and a local minimum at x2. Suppose that m1 > m2. We need to distinguish between the

cases λ ≥ |x1−x2|2
m1−m2

and λ ≤ |x1−x2|2
m1−m2

. In the first case the first mass dominates on the second
one and we can therefore write the problem as:

sup
a

{
am1 + bm2 −

1

3λ
a3 , a ≥ 0 , b = −a+ |x1 − x2|

}
,

where ϕ(x) = max{0, a− |x− x1|} is the hat function centered at x1, and thus 1
3a

3 = 1
2

∫
ϕ2.

In the second case instead the problem writes:

sup
a,b

{
am1 + bm2 −

1

3λ

(
a3 + b3

)
, a+ b ≤ |x1 − x2|, a ≥ 0, b ≥ 0

}
,

where now ϕ(x) = max{0, a−|x−x1|}−max{0, b−|x−x2|} is the difference of two hat functions
centered at x1 and x2 and whose supports have disjoint interiors, and thus 1

2

∫
ϕ2 = 1

3(a
3+b3).

Easy computations finally show that the solution has the following form:
(3.15)

a =
√
λ(m1 −m2), b = −a+ |x1 − x2| if λ ≥ |x1 − x2|2

m1 −m2
,

a =
|x1 − x2|

2
+
λ(m1 −m2)

2|x1 − x2|
, b =

|x1 − x2|
2

− λ(m1 −m2)

2|x1 − x2|
if λ ≤ |x1 − x2|2

m1 −m2
,

a =
√
λm1, b =

√
λm2 if λ ≤ |x1 − x2|2

(
√
m1 +

√
m2)2

.

As in Example 3.6, λ represents a threshold for transporting the mass. If the third condition
is satisfied in (3.15), mass is not transported. In this case however λ represents the distance
at which a unit of mass is transported. By adding a quadratic penalization term in (3.12),
particles are transported according to their mass, allowing smaller masses to have a lower
influence on the transport problem.

Remark 3.11 (TheH−1 norm). From (3.14) arises the natural idea of endowing also M(Ω;V d)
with the L2 structure and write

(3.16) inf
σ∈L2(Ω;V d)
δ∈L2(Ω;V )

{∫
Ω
|σ|2V d +

λ

2

∫
Ω
|δ|2V , div(σ) = µ− ν + δ

}
.

In this case the problem coincides with the H−1 norm of µ − ν. Indeed, the dual problem to
(3.16) is given by

(3.17) sup
ϕ

∫
Ω
⟨ϕ, ν − µ⟩V − 1

2λ

∫
Ω
|ϕ|2V − 1

2

∫
Ω
|∇ϕ|2V d
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which corresponds to the dual norm

sup
|ϕ|H1≤1

∫
Ω
⟨ϕ, ν − µ⟩V , |ϕ|2H1 :=

1

λ

∫
Ω
|ϕ|2V +

∫
Ω
|∇ϕ|2V d .

With this choice the optimal transport structure is lost. The solution ϕ is provided by the
following elliptic equation:

(3.18) ∆ϕ+
1

λ
ϕ = ν − µ .

By writing ϕ, ν and µ in the common basis of V , (3.18) is a set of n scalar equations that
can be solved separately and (3.16) is decoupled in the different components of µ, ν. Problem
(3.16) is not interesting for the purpose of this paper but it will be considered for comparison.
We denote T λ

2,2(µ, ν) the functional that associates the two measures µ, ν ∈ L2(Ω;V ) with the

optimal value in (3.17).

4. Discretization and numerical solution

We assume in this section a rectangular domain of the form Ω = Πdi=1[ai, bi]
d, where

ai, bi ∈ R and ai < bi for all 1 ≤ i ≤ d, and consider a forward finite difference discretization
of our vector valued unbalanced optimal transport problem. We restrict to this setting for sim-
plicity, but a straightforward extension to more general polyhedral domains and unstructured
partitioning may be obtained by relying on finite volume discretizations.

For simplicity, let d := 2 in the rest of this section (the extension to arbitrary dimension is
straightforward). The domain Ω = [ax, bx] × [ay, by] is discretized using a uniform Cartesian

grid G, with mesh sizes hx = bx−ax
Nx−1 and hy =

by−ay
Ny−1 , where Nx and Ny are the number of grid

points, respectively along the first and second direction. A point on the grid is denoted by
(xi, yj) = (ax+(i− 1)hx, ay+(j− 1)hy) ∈ G, for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny. The set of discrete

functions defined on G, with values respectively in V and V d, are denoted by X := F(G;V )
and X d := F(G;V d) (we will use the compact notation X and X d in subscripts for simplicity).
We use the convention ϕi,j ∈ V to denote the (i, j)-th component for every discrete function

ϕ ∈ F(G;V ) and similarly for functions ψ ∈ F(G;V d). These spaces are endowed with the
scalar products

⟨u, v⟩X = hxhy

Nx∑
i=1

Ny∑
j=1

⟨ui,j , vi,j⟩V , ∀u, v ∈ F(G;V ) ,

⟨w, z⟩X d = hxhy

Nx∑
i=1

Ny∑
j=1

⟨wi,j , zi,j⟩V d , ∀w, z ∈ F(G;V d) ,

and the respective norms | · |X , | · |X d .
We also introduce the discrete lp and l∞ norms on the discrete spaces F(G;V ) and F(G;V d)

as

|u|pX ,p = hxhy

Nx∑
i=1

Ny∑
j=1

|ui,j |pV , |w|pX d,p
= hxhy

Nx∑
i=1

Ny∑
j=1

|wi,j |pV d ,

|u|X ,∞ = max
i,j

|ui,j |V , |w|X d,∞ = max
i,j

|wi,j |V d ,

for u ∈ F(G;V ), w ∈ F(G;V d).
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The discrete gradient operator ∇X : F(G;V ) −→ F(G;V d) (we recall that d = 2) is defined
as

(∇X (u))i,j :=

(
ui+1,j − ui,j

hx
,
ui,j+1 − ui,j

hy

)
1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny ,

with the convention uNx+1,j = uNx,j and ui,Ny+1 = ui,Ny . The discrete divergence operator

divX : F(G;V d) −→ F(G;V ) is instead defined by duality as

⟨divX (w), u⟩X = −⟨w,∇X (u)⟩X d .

It automatically inherits the discrete Neumann boundary conditions.
The discrete setting allows us to uniformize the notation for the discrete transport problem.

Given two discrete measures µ, ν ∈ F(G;V ), and two natural numbers p, q ≥ 1, the discrete
(generalized) Beckmann’s minimal flow problem is

(4.1) (TX )λp,q(µ, ν) := inf
σ∈F(G;V d)
δ∈F(G;V )

{
1

p
|σ|pX d,p

+
λ

q
|δ|qX ,q , divX (σ) = µ− ν + δ

}
.

The following proposition justifies the existence of a solution and gives the equivalent discrete
dual formulation of (4.1).

Proposition 4.1. For all µ, ν ∈ F(G;V ), the following duality formulas hold:

(TX )λ1,1(µ, ν) = max
ϕ∈F(G;V )

{
⟨ϕ, ν − µ⟩X , |∇X (ϕ)|X d,∞ ≤ 1, |ϕ|X ,∞ ≤ λ

}
,(4.2)

(TX )λ1,2(µ, ν) = max
ϕ∈F(G;V )

{
⟨ϕ, ν − µ⟩X − 1

2λ
|ϕ|2X ,2 , |∇X (ϕ)|X d,∞ ≤ 1

}
,(4.3)

(TX )λ2,2(µ, ν) = max
ϕ∈F(G;V )

{
⟨ϕ, ν − µ⟩X − 1

2λ
|ϕ|2X ,2 −

1

2
|∇X (ϕ)|2X d,2

}
.(4.4)

Furthermore, the primal problem (4.1) admits a solution as well.

Proof. The proof of duality can be achieved as a straightforward adaptation of the proof
strategies of Section 3 to the discrete setting, providing at the same time existence for (4.1).
Existence for problems (4.2)-(4.3)-(4.4) follows from discrete compactness arguments. □

Remark 4.2. The discretization of the KR norm proposed in the original works [1, 23], on its
application to seismic imaging, corresponds to a staggered grid finite difference scheme. As a
result, the horizontal and vertical components of the gradient are stored in different locations
of the grid, which leads these authors to use an axis-biased discretization of the gradient norm,
and thus to implement a Lipschitz regularity constraint w.r.t. the Manhattan distance. Our
discretization corresponds instead to a forward finite difference scheme: although being in
general less accurate, this is consistent with the correct isotropic gradient norm | · |V d, helping
to eliminate substantial artifacts in the optimal transport solution.

We present now an optimization strategy for solving problem (4.1). We focus here on the
two cases (p, q) = (1, 1) and (p, q) = (1, 2) since the case (p, q) = (2, 2) can be tackled in an
easier way. Indeed, the latter can be addressed by solving directly the system of optimality
conditions, namely the discrete version of the Poisson equation (3.18):

(4.5) ∆X (ϕ) +
1

λ
ϕ = ν − µ , where ∆Xϕ := divX (∇Xϕ).
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Problems (4.2) and (4.3) can be written as minimization problems of the following form

(4.6) min
ϕ

N∑
i

fi (Liϕ) ,

for (fi)
N
1 convex functions and (Li)

N
1 full rank operators. The SDMM algorithm [16] is

designed to solve problems in this form. The algorithm is given in 1. One of the main

Algorithm 1: SDMM

Starting from y0, z0 and τ > 0 ;

for n = 0, 1, . . . do

ϕn =
(∑N

i L
T
i Li

)−1 (∑N
i L

T
i (y

n
i − zni )

)
;

for i = 1, .., N do
yn+1
i = proxτfi(Liϕ

n + zni ) ;

zn+1
i = zni + Liϕ

n − yn+1
i ;

end

end

building blocks is the computation of the proximal operators of (fi)
N
1 . For a real valued

convex function f and a real parameter τ > 0, the proximal operator (with respect to the
rescaled Euclidean norm | · |X ,2) is defined as

x∗ = proxτf (y) = argmin
x

1

2τ
|x− y|2X ,2 + f(x) .

The approach can be particularly effective as long as the computation of the proximal oper-
ators and the inversion of the operator

∑N
i L

T
i Li can be done efficiently.

For problem (4.2), the operators Li and the functions fi are

L1 = IdX , L2 = ∇X , L3 =
1

λ
IdX ,

f1(u) = −⟨u, ν − µ⟩X , f2(w) = iBXd
(w) , f3(u) = iBX (u) ,

for u ∈ F(G;V ), w ∈ F(G;V d), where IdX denotes the identity operator on F(G;V ) and iBX
(respectively iBXd

) is the convex indicator function (3.8) of the set

BX = {u ∈ F(G;V ) , |u|X ,∞ ≤ 1}
(
respectively BX d = {w ∈ F(G;V d) , |w|X d,∞ ≤ 1}

)
.

For problem (4.3) instead

L1 = IdX , L2 = ∇X ,

f1(u) = −⟨u, ν − µ⟩X +
1

2λ
|u|2X d,2, f2(w) = iBXd

(w) .

The three proximal steps are inexpensive operations as they can be solved component-wise
in closed form. For q = 1, the first one amounts to solve the problem

v̄ = proxτf1(u) = argmin
v

1

2τ
|v − u|2X ,2 − ⟨v, ν − µ⟩X

=
(
argmin
vi,j

1

2τ
|vi,j − ui,j |2V − ⟨vi,j , νi,j − µi,j⟩V

)
i,j
,
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whose solution is simply
v̄i,j = ui,j + τ(νi,j − µi,j) , ∀(i, j).

For the case q = 2 the proximal operator is analogous, with an additional quadratic term,
and the solution becomes

v̄i,j =
1

1 + τ/λ
(ui,j + τ(νi,j − µi,j)) , ∀(i, j).

The proximal operator of iBX and iBXd
are component-wise block soft-thresholding [28] with

respect to the norms | · |V and | · |V d ,

v̄i,j =
(
proxτiBX

(u)
)
i,j

=
(
argmin
v∈iBX

|vi,j − ui,j |2V
)
i,j
,

whose solution is

(4.7) v̄i,j =

{
ui,j if |ui,j |V ≤ 1
ui,j

|ui,j |V else
∀(i, j),

and analogously for iBXd
. Finally, the operator

∑N
i L

T
i Li is

N∑
i=1

LTi Li = ∆X +
(
1 + 1/λ2

)
IdX , for q = 1,

N∑
i=1

LTi Li = ∆X + IdX , for q = 2.

Remark 4.3. As already pointed out in Section 2, by expanding the discrete functions of
F(G;V ) in a basis of V , the operators divX and ∇X act component-wise on the coefficients of
the basis and so does their composition ∆X , meaning that they can be represented as block-
diagonal matrices. The corresponding linear systems can be therefore solved separately in each
component, which implies solving scalar Poisson equations. This latter is the most expensive
operation and can be done very efficiently, either via Fast Fourier Transform [37] or multigrid
solvers [3]. The computational complexity for solving problems (4.2) and (4.3) increases there-
fore only linearly with the dimension of the space V . We stress also that, as in the scalar case,
requiring µ, ν ∈ F(G;C) does not reflect on the computational complexity of the algorithm, an
advantage of the L1 optimal transport problem compared to other formulations.

Algorithm 1 is provably convergent. Since fi are all lower semi-continuous, proper and
convex, for n→ +∞ it holds [2]

zni −→ zi , yni − Liϕ
n −→ 0 ,

N∑
i

fi (Liϕ
n) −→ min

ϕ

N∑
i

fi (Liϕ) .

Relying on the fact that f1 is differentiable with Lipschitz gradient (in both cases), we further
obtain ϕn → ϕ solution to problem (4.6) and yi = Liϕ [18]. The following proposition relates
the fixed point of the algorithm to the solution of the Beckmann problem (4.1).

Proposition 4.4. Let (ϕ, y, z) be a fixed point of the algorithm (1) for either problem (4.2)
(q=1) or (4.3) (q=2). Then:

(i) z1 = τ(µ− ν), z2 = τσ, z3 = τλδ (q = 1),
(ii) z1 = τ(µ− ν + δ), z2 = τσ (q = 2),

where (σ, δ) is a solution to (4.1).
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Proof. We consider first the case q = 1. The identity y1 = proxτf1(ϕ+ z1) implies

(4.8)
1

τ
(y1 − ϕ− z1)− (ν − µ) = 0 ,

which means z1 = τ(µ − ν) as y1 = ϕ. The identity y2 = proxτiBXd
(∇X (ϕ) + z2) implies

instead

−1

τ
(y2 −∇X (ϕ)− z2) =

1

τ
z2 ∈ ∂iBXd

(∇X (ϕ)) .

Using the definition of the subdifferential and recalling that by optimality of ϕ it holds
|∇X (ϕ)|X d,∞ ≤ 1, i.e. iBXd

(∇X (ϕ)) = 0, we obtain

⟨z2/τ, w −∇X (ϕ)⟩X d ≤ iBXd
(w), ∀w ∈ F(G;V d) .

If we take then w = z2
|z2| this implies

0 ≤ 1

τ
|z2|X d,1 − ⟨1

τ
z2,∇X (ϕ)⟩X d ≤ 0 ,

where the first inequality is Cauchy-Schwarz. Repeating the same computation for the third
proximal operator we obtain 1

τ |z3|X ,1 − ⟨ 1τ z3, ϕ/λ⟩X d = 0. Finally, the Poisson equation
reduces to

∆X (ϕ) +
(
1 + 1/λ2

)
ϕ = (y1 − z1)− divX (y2 − z2) + (y3 − z3)/λ

= ϕ+ τ(ν − µ)− divX (∇X (ϕ)− z2) + (ϕ/λ− z3)/λ ,

which, simplifying the potential, leads to

divX (z2) = τ(µ− ν) + z3/λ .

In the end we obtain: 
|z2|X d,1 − ⟨z2,∇X (ϕ)⟩X d = 0 ,

|z3|X ,1 − ⟨z3, ϕ/λ⟩X d = 0 ,

divX (z2/τ) = µ− ν + z3/(λτ) .

These three conditions, together with |∇Xϕ|X ,∞ ≤ 1, |ϕ|X ,∞ ≤ λ, imply that (ϕ, σ = z2/τ, δ =
z3/τλ) is a saddle point for problems (4.2)-(4.1). Indeed:

|σ|X d,1 + λ|δ|X ,1 = |σ|X d,1 + λ|δ|X ,1 + ⟨ϕ, divX (σ) + ν − µ− δ⟩X
= |σ|X d,1 − ⟨∇X (ϕ), σ⟩X d + λ|δ|X ,1 − ⟨ϕ, δ⟩X + ⟨ϕ, ν − µ⟩X
= ⟨ϕ, ν − µ⟩X .

Therefore (σ, δ) defined in this way is optimal for the primal problem (4.1).
Consider now the case q = 2. Repeating the previous reasoning we obtain z1 = τ(µ−ν)+ τ

λϕ,{
|z2|X d,1 − ⟨z2,∇X (ϕ)⟩X d = 0 ,

divX (z2/τ) = (µ− ν) + ϕ/λ ,

with the further condition |∇X (ϕ)|X d,∞ ≤ 1. Therefore, in the same way as before, we deduce
that (σ = z2/τ, δ = ϕ/λ) is a solution to (4.1). □

Remark 4.5 (Stopping criterion). Thanks to Proposition 4.4, we can consider

(σn, δn) = (zn2 /τ,divX (z
n
2 )/τ + ν − µ)
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as a candidate solution to (4.1) in order to estimate the duality gap. The SDMM algorithm
solves the problem in the form

min
ϕ,y

{
N∑
i

fi (yi) , Liϕ = yi, 1 ≤ i ≤ N

}
,

and
∑N

i fi (y
n
i ) = f1(y

n
1 ) by definition of the algorithm. We can therefore control the (relative)

duality gap by

∆n =
1

|f1(yn1 )|

∣∣∣∣|σn|X d,1 +
λ

q
|δn|qX ,q + f1(y

n
1 )

∣∣∣∣ .
Of course, without a control on the constraints Liϕ = yi this information is meaningless. We
can evaluate the (relative) error on the constraints as

rn =

∑N
i |Liϕn − yni |X ,2

max
(∑N

i |Liϕn|X ,2 ,
∑N

i |yni |X ,2
) .

Then, for ε ∈ R+, we can set for simplicity as stopping criterion max(∆n, rn) ≤ ε.

Remark 4.6. In order to solve problem (4.1) for (p, q) = (1, 2) we may try to adopt proximal-
splitting techniques that take advantage of the higher regularity of the objective functional, such
as the accelerated forward-backward algorithm [16] or the Chambolle-Pock algorithm [8]. Nev-
ertheless, we have not experienced a sensible speed-up by using these algorithms with respect
to the SDMM, at least for the regimes of λ of interest. Some of these methods can avoid
the inversion of the Laplacian, which makes individual iterations faster. However, the num-
ber of iterations required to reach convergence increases so much that it is not cost effective
eventually.

Remark 4.7 (Operator norm). Throughout this paper, we chose to formulate vector-valued
L1 optimal transport problem (3.2) using the gradient norm |∇ϕ|V d, which corresponds to the
Frobenius norm in the identification V d = L(Rd;V ); the flow norm |σ|V d also appears in the
dual formulation (3.3). Alternatively, we may have used the operator norm |∇ϕ|L(Rd;V ) for

the gradient, and thus the dual norm for |σ|L(Rd;V )∗ = Tr(
√
σ⊤σ) for the flow. The operator

norm has the advantage of preserving the connection (2.3) with Lipschitz regularity, which only
holds up to a multiplicative constant in the case of the Frobenius norm (2.1). The adaptation
of the theoretical results and algorithms presented in the paper is straightforward, except for
the proximal operator of iBXd

, which is obtained by pointwise orthogonal projection (4.7) at

each site (i, j) of the grid onto the unit ball of V d = L(Rd;V ) w.r.t. the chosen norm. In this
specific step, the normalisation procedure (4.7) which is adequate for | · |V d, should be replaced
with the orthogonal projection

(4.9) argmin{|A−B|V d , |B|L(Rd;V ) ≤ 1}.
Assuming that V = Rn, up to choosing an orthonormal basis, the solution to (4.9) is obtained
[6, Theorem 2.1] as Bopt = U diag(min(λ1, 1), · · · ,min(λd, 1))V , where A = U diag(λ1, · · · , λd)V
is the singular value decomposition (with U ∈ Rd×d and V ∈ Rd×n obeying UU⊤ = V V ⊤ =
Idd, and λ1, · · · , λd ≥ 0). From the numerical standpoint the added numerical cost is linear
in the problem size, since d and n are small and independent of the grid dimensions.

5. Numerical results and application to FWI

In this section we consider the application of the L1 transport for vector valued measures
to a specific inverse problem: the full waveform inversion (FWI) problem.
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5.1. The acoustic wave equation and the FWI inverse problem. The acoustic wave
equation with constant density ρ can be written as (where here ∇ and div are the classical
gradient and divergence operator, corresponding to the case V = R in Section 2)

(5.1)

{
∂tv − 1

ρ∇p = 0

∂tp− ρc2 div(v) = f

where p : D ⊂ Rm → R is the scalar pressure field, v : D → Rm is the vector field of particles’
velocity and f is a given source term. The objective of FWI, in the simpler acoustic setting,
is to reconstruct the velocity of the medium c : D → R+ from observed data vobs, pobs, which
are signed oscillatory functions.

We restrict here to the two dimensional case for simplicity, m = 2, and we consider two-
dimensional vector valued data vobs = (vobsx , vobsz ). In this setting, we can introduce the space
of symmetric matrices V = S2 and lift vobs in the self-dual cone of symmetric positive semi-
definite matrices C = S2+ (thus the lifted data dimension is n = dim(S2) = 3). We consider
for this purpose Pauli’s transformation (in dimension 2) as a lift operator L:

(5.2) v = (vx, vz) 7−→ L(vx, vz) =

[
α− vx vz
vz α+ vx

]
, with α =

√
v2x + v2z .

The advantage of (5.2) is that it is bijective from R2 to its domain, i.e. no information is lost
in the transformation. Another possibility could be to consider the tensor product

v = (vx, vz) 7−→ vT v =

[
v2x vxvz
vxvz v2z

]
,

however this lift is invariant with respect to sign changes of v which limits its effectiveness.
This sign invariance amounts to doubling the frequency of oscillating signals, and thus to a
greater risk of cycle skipping in the application of interest (see Section 5.3 below).

We write the FWI problem as

(5.3) min
c

Ns∑
s=1

T λ
p,q(ds[c], d

obs
s ), such that (5.1) holds,

where ds[c] = L(Rvx,s, Rvz,s) and vx,s, vz,s are the computed particles’ velocities given the

model c (for simplicity omitting the dependencies), dobss = L(Rvobsx,s , Rv
obs
z,s ). The operator R

evaluates the velocity at specific points in the domain, the receivers locations, for a certain
time span. The peculiarity of FWI is that the whole recording, i.e. the whole form of the wave,
is used in the inversion problem. The index s runs instead over all the possible sources fs:
the FWI problem is usually performed by running several simulations in parallel for different
sources. Finally, L is the lift function defined in (5.2).

Remark 5.1. The space of symmetric matrices Sn
′
, endowed with the Frobenius scalar prod-

uct, is a finite dimensional Euclidean space and is thus isometric to Rn′(n′+1)/2 endowed with

the usual scalar product. When n′ = 2, such an isometry is

(
a b
b c

)
7→ 2−

1
2 (a−c2 , b, a+c2 ),

and it maps the cone S2+ of symmetric positive semi-definite matrices onto the Lorentz cone

{(x, z, t) ∈ R3,
√
x2 + z2 ≤ t}. This isometry eases the numerical implementation. In these

coordinates, Pauli’s lift above reads as (vx, vz) 7→ (vx, vz, α), up to a multiplicative constant.
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5.2. Calibration of λ. The parameter λ controls mass transport by tuning the penalization
on the divergence constraint. On the one hand, if it is too small, mass can be deformed without
being transported and the model is intuitively close to an Lq distance on the difference of the
two measures: T λ

p,q ∼ λ
q

∫
Ω |µ − ν|qV as λ → 0. On the other hand, it is important to notice

that in the seismic imaging application the two measures can have different total mass. This
mass is in fact related to the energy of the signals if one uses Pauli’s lift above and considers
q = 2 (which is our original motivation for considering q = 2), or the tensor product lift with
q = 1. Observe nevertheless that the total energy of the signals can be quite different, since
these are recorded only partially in the domain. In the other cases, such as Pauli’s lift with
q = 1, the total mass is a non-physical quantity, which has no reason to be the same. One can
check that T λ

p,q ∼ λ
q |
∫
Ω µ−

∫
Ω ν|

q
V as λ→ ∞. The misfit function thus becomes proportional

to the q-th power of the difference between the masses of µ and ν, for large λ, which is not
a very relevant objective for the problem of interest. The Lq and the difference of masses
behaviors lead to poor results in the inversion problem, and the parameter λ thus has to be
carefully selected in order to avoid these.

Assume that the physical dimension of the measures is an amplitude, which is denoted
[µ] = [ν] = A. Consequently the physical dimension of the flux is an amplitude times a
length, [σ] = Al, and the physical dimension of λ is [λ] = lp

Aq−p . For (p, q) = (1, 1), the
parameter λ thus represents a length, whereas for (p, q) = (1, 2) it represents a length over
the amplitude. Examples 3.6 and 3.10 help having a better understanding. For (p, q) = (1, 1),
λ provides half the maximum distance up to which mass can be transported, regardless of
the mass involved. By knowing the maximum displacement we want to allow in the transport
problem, it can be tuned accordingly. For (p, q) = (1, 2), λ specifies the maximum distance
up to which a unit of mass can be transported. This means that large amounts of mass can
be transported at large scales, whereas small amounts only at small scales, proportionally
to their mass. These considerations can be of help for the calibration of this parameter in
practice. The maximum transport distance can be set by comparing the initial and final
measures in order to allow the transport of the main structures (see for example Figure 3).
In general, in the specific case of transporting signals, we may want to allow displacements of
the order of the wavelengths involved. Smaller values are not relevant whereas bigger values
may be dangerous due to the mass imbalance. The wavelength can be estimated from the
frequency of the injected signal. The case (p, q) = (1, 2) is more delicate and the parameter λ
can be estimated taking into account the minimum value of mass allowed to be transported
at a certain distance.

We conclude this section by highlighting that the calibration of λ, following the consider-
ations just made, depends on the scaling of the domain and, in the case q = 2, also of the
measures. A simple computation shows that if Ω is rescaled by a factor L then λ has to be
scaled by the same factor, in both cases. If the measures are scaled by a factor M instead,
in the case q = 2, then λ has to be rescaled by the same factor again. This scaling behavior,
which is consistent with the above physical dimension considerations, has to be taken into
account when solving practical instances (see Section 5.4).

5.3. Sensitivity to shifts of T λ
p,q. Optimal transport is generally used in inverse problems

in order to acquire sensitivity to (time) shifts in the data, a feature which is not encoded using
Lp distances. In seismic imaging, this is referred to as cycle-skipping. Due to signed data,
optimal transport based misfit functions may fail to provide this sensitivity (see Examples
3.6 and 3.7). By lifting the data to the space M(Ω;C) we aim at solving this issue. Here we
test for this reason the different behavior of the misfit functions T λ

p,q, for the different values
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of the parameters p, q and λ. We consider the following signal

v(t) = (vx(t), vz(t)) =
( d
dt
f(t),

d2

dt2
f(t)

)
,

where f(t) = 1√
2πα

exp−t
2/α2

with α = 4
3 , and we evaluate the misfit between the signal itself

and v(t − t0) for different values of t0. The results are shown in Figure 2 and are compared
with the L2 and the KR norms.

The L2 norm presents more local minima, explaining the drawback of using it in the FWI
problem. The KR norm (1.6) presents several minima as well for small values of the parameter
λ. For a sufficiently big value, there is a single well-defined minimum, but the misfit saturates
to a constant value. The time average of vx(t) and vz(t) is in fact zero and the KR norm is
therefore not sensitive to big shifts (see Example 3.7). For signals with non-zero mean the KR
norm recovers sensitivity. However, typically signals in seismic imaging do have zero mean,
which is a major issue for its application in this setting. The misfits T λ

p,q are not convex with
respect to the shift either, but for a sufficiently big value of λ they have a unique minimum,
that is as long as λ is sufficiently big to allow sufficient transport of mass. We can also
notice, empirically in this example, that T λ

1,1 is always increasing with respect to the shift, an

advantage of our construction with respect to the KR norm (1.6) applied to signed measures.
Finally, for p = 1 the misfit function is more selective around the minimum contrary to the
case p = 2, where it is more flat, suggesting why the H−1 norm may not be a good choice.

5.4. Transport between seismograms. We perform now a test case computing the un-
balanced L1 optimal transport problem between two-dimensional vector valued seismograms,
in order to further inspect the influence of the parameter λ and to compare the two cases
(p, q) = (1, 1) and (p, q) = (1, 2). The setting for the test is as follows. We consider a
two-dimensional physical domain D = [a, b] × [c, d] ⊂ R2. In D, Nr receivers are positioned
uniformly along the x axis at a certain constant depth z. The data domain, corresponding to
the registration time of each receiver, is given by Ω = [0, T ]×{1, .., Nr} and can be considered
as a semi-discrete bidimensional domain. This allows to interpret the measurements as semi-
discrete bidimensional seismograms. By considering a regular time sampling for (vx, vz), this
provides a regular Cartesian grid G. The components of the lift (5.2) are presented in Figure
3 for two examples. They correspond to the lifted particles’ velocities generated through the
acoustic wave equation (5.1) with two different velocity models c. In these examples, the
traces are registered by Nr = 169 receivers and regularly sampled 3000 times. The single
point source f is placed in the same location as the 84-th receiver and injects a Ricker signal.

We solve the problem between the two vector valued measures µ and ν represented in
Figure 3. In order to avoid anisotropic effects due to the different dimensions of Ω, and to
have a meaningful transport problem, we rescale one of the two directions. Indeed, on the x
direction the physical dimension is a length whereas on the z direction it is time. For example,
we can rescale the time by the average velocity of the model, c ≈ 2000m/s. Considering the
recording time of ≈ 7 seconds and the horizontal size of the domain D of 16.9 kilometers, this
provides approximately a square domain. We consider therefore Ω = [0, ℓ]2, with ℓ = Nr − 1.
We stress that this scaling has an influence on the choice of the parameter λ, as highlighted in
Section 5.2. In Figures 4, 5 and 6, we show the three components of the computed optimal δ
measures for different values of λ, in the two cases q = 1 and q = 2. The value of δ determines
how much mass is injected in the problem and therefore gives a measure of what is or is
not transported. It can be compared with the difference of the two measures, i.e. the zero
transport case (Figure 3).
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Figure 2. Sensitivity to cycle-skipping of T λ
p,q (d-f), for different values of λ,

and comparison with the L2 distance (b) and the KR norm (1.6). In each
graph (b-f) it is represented the evaluation of the misfit function between
the multicomponent signals (vx(t), vz(t)) and (vx(t − t0), vz(t − t0)) (a), with
respect to the time shift t0. For the L

2 and KR norms, the distance is evaluated
component-wise and summed.

First of all notice that, in both case q = 1 and q = 2, the order of magnitude of the
first two components of δ (Figures 4 and 5) decreases for increasing values of λ. Mass is
effectively transported on these components for increasing values of λ. On the contrary, the
third component (Figure 6) does not change noticeably and for big values of λ it dominates
on the first two by several orders of magnitude. The difference of mass between µ and ν
concentrates in fact in the third component, since the velocities vx and vz have nearly zero
average. If λ is too big, this component is therefore predominant in the transport problem
and the misfit T λ

p,q will have an undesired behavior, as mentioned in Section 5.2.
For q = 1, we can notice as expected that the mass can be transported only at a maximum

distance, depending on the value of λ. For small values (λ = 10−3ℓ or λ = 10−2ℓ), mass can
be transported at very short distance and δ resembles the norm of the difference of the two
measures, meaning that the model is close to an Lq distance. The main structures are well
transported instead for a sufficiently big value (λ = 10−1ℓ). For λ = ℓ the mass is allowed to
be transported everywhere in the domain (recall Ω = [0, ℓ]2), however, due to the difference
in total mass, δ is non zero. In this case, differently from the previous smaller values of λ, the
third component of δ is signed and represents the unavoidable addition of mass. Increasing λ
does not change at this point the solution but only makes this latter term more predominant
in the overall cost.
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µ

ν

µ−ν

vx vz
√
v2x + v2z

Figure 3. Example of two-dimensional seismograms of particles’ velocities
generated with two different velocity models c, respectively the true model and
the initial model 3 represented in Figure 8, lifted via (5.2) (see also Remark
5.1). Recording of 3000 regular time samples (y axis) from 169 evenly spaced
receivers (x axis). For the sake of the representation, data are clipped to 10%
of their maximum value and the color scale varies in each column.
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On the other hand, the situation changes completely in the case q = 2. No matter the value
of λ, sufficiently big values of mass can always be transported at every distance, resulting in
a rather diffused solution. On the contrary, sufficiently small values of mass will not be
transported, which is the reason why the third component of δ is not signed even for λ = ℓ,
differently from the case q = 1. Transport of the whole amount of available mass can be
recovered only in the limit λ→ ∞. For the small values of λ, δ resembles again the difference
of the two measures, although more diffused than the case q = 1 since the bigger values of
mass have already started to match. For the bigger value λ = 10−1ℓ we can notice that more
or less all the structures of the signals are matched. The biggest value λ = ℓ provides an
extremely diffused solution corresponding to the residual mass (in the third component of δ).

In figure 7 we show the convergence profiles of Algorithm 1 for the different test cases
here considered. In general, for the regimes of λ of interest, few hundreds iterations are
sufficient to reach convergence up to a tolerance ε of 10−4, 10−5. As one could expect, the case
(p, q) = (1, 2) converges faster than the case (p, q) = (1, 1) thanks to the uniform convexity of
the objective function, with better performance the smaller the parameter λ. For (p, q) = (1, 1)
and excessively big values of λ, the convergence profiles are extremely oscillatory and rather
slow. This probably depends on the fact that T λ

1,1 is closer to a total variation norm for
this values of λ, whose minimization is more involved. The convergence could probably be
improved via a careful tuning of the parameter τ in Algorithm 1. In these tests we considered
τ = 0.9. However, we did not try to tune it since for the values of λ of interest the algorithm
already performs quite well.

5.5. Application to a realistic data set. To validate our approach, we considered a real-
istic two-dimensional inversion test: the Marmousi case study [19]. The setting is the same
one as in Section 5.4. We consider in this case Ns = 124 point sources, uniformly distributed
along the x axis at the same depth as the receivers, all producing the same Ricker signal. The
true velocity model c : D → R+ we aim at reconstructing is shown in Figure 8.

The tests have been performed using the code TOYxDAC time [40] of the SEISCOPE
project2 where the new misfit functions proposed in this article have been integrated. The
acoustic wave equation is discretized using a finite difference approach. The optimization
problem (5.3) is solved with a gradient based l-BFGS approach [27]. The computation of the
gradient is obtained via the adjoint state method [33]. We considered a tolerance ε = 10−2 in
Algorithm 1, according to the stopping criterion presented in Remark 4.5. This relatively big
value allows us to solve each optimization problem in a small number of iterations and limit in
this way the computational cost for evaluating the misfit function. We have not experienced
a sensitivity of the results of the test to considering smaller values of ε.

5.5.1. Objective gradient via adjoint state method. We present the method restricting to one
source only for simplicity, f . We rewrite for the sake of notation the total cost as

(5.4) T λ
p,q(L(Rvx[c], Rvz[c]), L(v

obs
x , vobsz )) = g(vx[c], vz[c]) .

The relation between c and vx, vz is given as a forward linear equation and can be seen as the
constraint F (c, vx, vz, p) = 0, where

(5.5)


Fvx(c, vx, vz, p) = ∂tvx − 1

ρ∂xp = 0 ,

Fvz(c, vx, vz, p) = ∂tvz − 1
ρ∂zp = 0 ,

Fp(c, vx, vz, p) = ∂tp− ρc2 div(v)− f = 0 .

2https://seiscope2.osug.fr/



28 GABRIELE TODESCHI, LUDOVIC MÉTIVIER, AND JEAN-MARIE MIREBEAU

T λ
1,1

T λ
1,2

λ = 10−3ℓ λ = 10−2ℓ λ = 10−1ℓ λ = ℓ

Figure 4. Plot of the first component of δ solution to the unbalanced L1

optimal transport problem between µ and ν from Figure 3, for different values
of the parameter λ (from first to fourth column), for (p, q) = (1, 1) (top row)
and (p, q) = (1, 2) (bottom row). For the sake of the representation, data
are clipped to 10% of their maximum value and the color scale varies in each
column.

Considering then the velocities vx, vz and the pressure p as variables in the optimization
problem, we can introduce the Lagrangian functional

(5.6) L(c, vx, vz, p, λ) = g(vx[c], vz[c]) + ⟨F (c, vx, vz, p), λ⟩D ,

where λ = (λvx , λvz , λp) is the Lagrangian multiplier associated with the constraints and ⟨·, ·⟩D
is an appropriate scalar product in the model space. If we denote vx[c], vz[c], p[c] the solution
to the equation F (c, vx, vz, p) = 0 for a given velocity model c, then

L(c, vx[c], vz[c], p[c], λ) = g(vx[c], vz[c])

and therefore

dg(vx[c], vz[c])

dc
=∂cL(c, vx[c], vz[c], p[c], λ) + ∂vxL(c, vx[c], vz[c], p[c], λ)

dvx[c]

dc

+ ∂vzL(c, vx[c], vz[c], p[c], λ)
dvz[c]

dc
+ ∂pL(c, vx[c], vz[c], p[c], λ)

dp[c]

dc
.

The adjoint state method consists in computing a specific multiplier λ̄[c] such that the partial
derivatives with respect to vx, vz and p of the Lagrangian function vanish. In this way one
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Figure 5. Plot of the second component of δ solution to the unbalanced L1

optimal transport problem between µ and ν from Figure 3, for different values
of the parameter λ (from first to fourth column), for (p, q) = (1, 1) (top row)
and (p, q) = (1, 2) (bottom row). For the sake of the representation, data
are clipped to 10% of their maximum value and the color scale varies in each
column.

obtains the derivative of the objective function simply as

dg(vx[c], vz[c])

dc
= ∂cL(c, vx[c], vz[c], p[c], λ̄) = ∂c⟨F (c, vx, vz, p), λ̄⟩D ,

avoiding the expensive computation of the terms dvx[c]
dc

, dvz [c]dc
and dp[c]

dc
. From the definition

of the Lagrangian function (5.6) and by the definition of the operator F (c, vx, vz, p), λ̄ can be
computed as solution to:

(5.7)



∂vx⟨F T (c, vx, vz, p), λ̄⟩D = −∂tλ̄vx + c2ρ∂xλ̄p = −∂g(vx[c], vz[c])
∂vx

∂vz⟨F T (c, vx, vz, p), λ̄⟩D = −∂tλ̄vz + c2ρ∂zλ̄p = −∂g(vx[c], vz[c])
∂vz

∂p⟨F T (c, vx, vz, p), λ̄⟩D = −∂tλ̄p +
1

ρ
(∂xλ̄vx + ∂zλ̄vz) = 0 .

System (5.7) is the system of adjoint equations with respect to (5.5) and correspond to a
backward acoustic wave equation.

From (5.4) and our definition of the cost function, taking advantage of the dual formulation
((3.7), (3.13) and (3.17) for the three different cases considered) which implies that T λ

p,q
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Figure 6. Plot of the third component of δ solution to the unbalanced L1

optimal transport problem between µ and ν from Figure 3, for different values
of the parameter λ (from first to fourth column), for (p, q) = (1, 1) (top row)
and (p, q) = (1, 2) (bottom row). For the sake of the representation, data
are clipped to 10% of their maximum value and the color scale varies in each
column.
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Figure 7. Convergence profiles of algorithm 1 for the error ∆n+rn in Remark
4.5, for the different test cases of Section 5.4.
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True model Initial model 1

Initial model 2 Initial model 3

Figure 8. True velocity model of the Marmousi test case and several initial
conditions for the inversion problem.

is a supremum of linear functionals in the measures, hence convex and almost everywhere
differentiable, we can write

(5.8)

∂T λ
p,q(L(Rvx[c], Rvz[c]), L(v

obs
x , vobsz ))

∂vx
= RT ⟨∂vxL(Rvx[c], Rvz[c])), ϕ̄⟩V ,

∂T λ
p,q(L(Rvx[c], Rvz[c]), L(v

obs
x , vobsz ))

∂vz
= RT ⟨∂vzL(Rvx[c], Rvz[c]))T , ϕ̄⟩V ,

where ϕ̄ is an (the) optimal potential for the dual formulation.
The computation of the gradient of the objective function in (5.3) requires solving each

time the backward acoustic wave equation (5.7) with sources (5.8). The forward solution and
the optimal potential are already provided by the evaluation of the objective function.

5.5.2. Results. We solve the problem for different values of the parameter (p, q) in the misfit
T λ
p,q and also compare with other misfit functions. We solve the inverse problem testing

several initial models (Figure 8) of increasing difficulty, that is further and further away from
the optimum we want to reconstruct. The objective is to measure the robustness of the inverse
problem, that is the possibility to retrieve the minimum with less and less initial information.
This is related to the convexity of the misfit function around the minimum. We do not consider
in the comparison the computational cost related to the different misfit. The parameter λ is
tuned manually to obtain the best performance, taking into account the considerations above.

In Figure 9 we show the results obtained for the three sets of parameters (p, q) = (1, 1), (1, 2)
and (2, 2) for T λ

p,q. These results can be compared further with two other misfit functions: the

classical L2 distance and the KR norm (1.6). These latter are applied componentwise on the
vx and vz signals. Figure 9 shows the final reconstructed velocity model c obtain from the
(local) minimization of the misfit function, starting from several initial conditions (Figure 8,
initial models from one to three) obtained as smoothed versions of the true velocity model we
aim at recovering (Figure 8, true model).
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Figure 9. Comparison of the reconstruction of the Marmousi velocity model
using the L2 distance (first row), the KR norm (1.6) (second row) and T λ

p,q

(from third to fifth row), using several initial conditions for the inverse problem
(Figure 8). For the misfit T λ

p,q, λ has been tuned manually to provide the better

performance: we used λ ≈ 10−2ℓ for (p, q) = (1, 1), λ ≈ 0.05ℓ for (p, q) = (1, 2)
and λ ≈ 10−3ℓ for (p, q) = (2, 2), with ℓ size of the squared domain (see Section
5.4).

The L2 distance does not present a big convexity region around the minimizer, as high-
lighted in Figure 2, which is the main drawback of using this simple misfit function. Con-
sequently, the true velocity model can be retrieved only starting from a sufficiently close
initial condition, else the l-BFGS algorithm would fall in a meaningless local minimum. Us-
ing optimal transport based distances may sensibly increase the convexity region, as recently
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demonstrated, thanks to their horizontal sensitivity. Using the KR norm as misfit function
allows indeed to solve the problem starting from further initial conditions. Notice that since
the KR norm is applied separately to zero-mean scalar signals, therefore with no mass im-
balance, it does not suffer from a higher bound on λ and the inverse problem is robust with
respect to the choice of this parameter (as long as it is sufficiently high to allow proper dis-
placement of mass, see Section 5.2). In this example we have chosen λ = ℓ (ℓ size of the
squared domain, see Section 5.4). The horizontal sensitivity is however limited by the fact
that the data are signed (see Examples 3.6 and 3.7). By lifting signed signals into the space
of measures with symmetric positive semi-definite values, the misfit T λ

p,q allows to go further.
Among the three configurations, only the case (p, q) = (1, 2) provides considerably better
results. The case (p, q) = (1, 1), the vectorial extension of the KR norm, suffers too much
from the mass imbalance to allow a meaningful calibration of λ. The case (p, q) = (2, 2), as
shown in Section 5.3, has a limited horizontal sensitivity and does not provide any advantage
in terms of robustness with respect to the KR norm. On the other hand, it can be solved
more efficiently with respect to the other two cases and the KR norm.

6. Conclusions

In this work we provided a misfit function for applications to inverse problems as a gener-
alization of the L1 optimal transport problem. By lifting general signed data to non-negative
measures defined on a higher dimensional vector space, we recover a meaningful notion of
transport leading to a more robust inversion problem. By choosing an appropriate lift func-
tion no information is lost on the data, differently from other previously proposed approaches.
We considered the lift (5.2), that is using Pauli matrices to transform a vector with signed
coordinates into a positive semi-definite matrix, but other ideas can be followed, our extension
providing a general framework. The advantage of extending the L1 transport, with respect
to other optimal transport problems, is that it can be computed efficiently without a fur-
ther increase in the computational complexity given by the vector extension. In particular,
the quadratic penalization case may offer better optimization strategies with respect to the
one considered here. On the other hand, the vector extension requires to deal with possible
imbalances of mass which make the calibration of the model difficult. Our analysis of the
role played by the parameter λ gives some insights on its calibration, but the model is quite
sensitive to it. This in particular depends on the lift function considered and alternatives may
be found to soften the problem. Moreover, the lift function may be tailored to the specific
problem at hands taking into account also physical considerations in its design.
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[14] Krzysztof J Ciosmak. Matrix hölder’s inequality and divergence formulation of optimal transport of vector
measures. SIAM Journal on Mathematical Analysis, 53(6):6932–6958, 2021.

[15] Krzysztof J Ciosmak. Optimal transport of vector measures. Calculus of Variations and Partial Differential
Equations, 60(6):230, 2021.

[16] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal processing. In
Fixed-point algorithms for inverse problems in science and engineering, pages 185–212. Springer, 2011.

[17] Björn Engquist and Brittany D Froese. Application of the wasserstein metric to seismic signals. Commu-
nications in Mathematical Sciences, 12(5):979–988, 2014.

[18] Nikos Komodakis and Jean-Christophe Pesquet. Playing with duality: An overview of recent primal? dual
approaches for solving large-scale optimization problems. IEEE Signal Processing Magazine, 32(6):31–54,
2015.

[19] Gary S Martin, Robert Wiley, and Kurt J Marfurt. Marmousi2: An elastic upgrade for marmousi. The
leading edge, 25(2):156–166, 2006.

[20] Quentin Merigot and Boris Thibert. Optimal transport: discretization and algorithms. In Handbook of
Numerical Analysis, volume 22, pages 133–212. Elsevier, 2021.

[21] Ludovic Métivier, Aude Allain, Romain Brossier, Quentin Mérigot, Edouard Oudet, and Jean Virieux.
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[29] Gabriel Peyré, Lenäıc Chizat, François-Xavier Vialard, and Justin Solomon. Quantum optimal transport
for tensor field processing. arXiv preprint arXiv:1612.08731, 2016.
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