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A simulation study, combining grid- and individual-based approaches, was conducted to analyse the shape of the 
relationship between catch per unit effort (cpue) and abundance in a tuna purse-seine fishery. To understand the 
effect of fleet dynamics on the interpretation of cpue, the decision-making process used by fishers while 
searching for the resource is modelled with artificial neural networks. The cpue of fishers operating 
independently (i.e. individuals) vs. fishers sharing information (i.e. a code-group) are compared, accounting for 
environmental variables. The results show that a power curve non-proportional relationship between cpue and 
abundance performs better than a linear relationship. As the shape parameter of the power curve for the code-
group fishers was lower in every scenario than that of individual fishers, we conclude that hyperstability, a 
phenomenon commonly observed in schooling fisheries, is mainly attributable to information exchange among 
vessels. Setting the individual-level state variables of the virtual system at a specific spatial and temporal scale 
may affect the results of the simulations.  
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Introduction 
 
Because fishers preferably operate where they believe there are fish, fishing effort is not randomly 
distributed, but rather concentrated on good fishing grounds. This pattern can be expected for 
schooling fisheries where searching is highly efficient, such as in a tuna purse-seine fishery. As a 
consequence, catch per unit effort (cpue) is not proportional to abundance (Gulland, 1964; Paloheimo 
and Dickie, 1964; Bannerot and Austin, 1983). Despite its shortcomings, cpue still remains a simple 
and attractive index of abundance commonly used for stock assessment diagnosis by international 
fishery agencies. With this consideration in mind, Hilborn and Walters (1992) highlighted the 
importance of analysing the non-proportional shape of the relationship between cpue and abundance.  

The aim of this paper is to compare a linear and a nonlinear relationship between cpue and 
abundance for a patchily distributed resource exploited by fishers, depicting their ability to locate 
high-density patches. Owing to changes in the behaviour of fishers at sea, and the increasing use of 
sophisticated fishing devices over time, the use of directly observed cpue as an index of abundance 
remains problematic in the tropical tuna purse-seine fishery (Fonteneau et al., 1999; Gaertner et al., 
1999). An alternative method, at least in theoretical studies, is to generate abundance and cpue series 
with a simulation model. The core of the simulation, specifically the decision-making behaviour of 
purse-seiners, is based on an artificial neural network (ANN). Previous studies (Dreyfus-Leon, 1999; 
Dreyfus-Leon and Gaertner, 2002) have shown the usefulness of ANNs in representing the decision-
making process used by fishers while searching for the resource. To demonstrate the usefulness of this 
type of simulation model, this study focuses on an analysis of the influence of environmental 
uncertainties and on the impact of information exchange among vessels on the shape of the 
relationship between cpue and abundance. 
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Material and methods 
 
Data 
 
The number of studies using neural networks in oceanography has increased since the mid-1990s. 
ANNs have been used for modelling nonlinear relationships between the density of fish and habitat 
characteristics (Lek et al., 1996), for analysing fish stock-recruitment relationships (Chen and Ware, 
1999), and for modelling movement behaviour of predatory pelagic fish in response to prey (Dagorn et 
al., 2000). In most of the studies, ANNs are presented as a type of nonparametric regression model, 
allowing the modelling of complex functional forms (Warner and Misra, 1996). Although ANNs seem 
to be a promising tool for mimicking the way fishers perform in their day-to-day behaviour at sea, the 
approach has not yet been used commonly in studies of fishing strategy. One exception, though, is the 
study of Dreyfus-Leon (1999), which was devoted to the analysis of fisher search behaviour. In the 
present paper, we used an ANN architecture based on the decision to move to a new fishing ground or 
to stay in the same area (Dreyfus-Leon and Gaertner, 2002). Providing a technical presentation of 
ANNs is beyond the scope of this paper, and interested readers are referred to other works on this 
topic (e.g. Abdi, 1994, Saila, 1996; Warner and Misra, 1996). Back-propagation neural networks 
typically consist of an input layer, a hidden layer, and an ouput layer. All the neurons (i.e. the nodes) 
in one layer have one-way connections to other neurons in the next layer. Each neuron sums all its 
inputs and adds a constant (the bias term) to form a total input, then applies an activation function to 
produce an input signal to the output layer. Thus, a neural network can be written as: 
 

{ ( ) }∑∑ +βΦ+βΦ=
i ijijhj kjk0k xwwy , 

 
where yk are the output signals, xi the input signals, wij the weights between input neuron i and hidden 
neuron j, wjk the weights between hidden neuron j and output neuron k, βj and βk the biases for the 
hidden and the output layers, and Φh and Φo are activation functions for the hidden and the output 
layers, respectively. The virtual tuna fishery system combines grid- and individual-based approaches. 
A virtual ocean is divided into 25 areas (fishing grounds) of 50 × 50 pixels each (Figure 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The virtual grid-based ocean. The density in tuna schools (i.e., high, medium and low) of 

each potential fishing areas varies each year according to the scenario considered (see text).   
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To account for the patchy distribution of the resource, areas of high, medium, and low fish density 
each receive 25, 16.6 and 8.33% of the total recruitment (5 000 schools year–1), respectively. With the 
aim of generating environmental variability, the annual recruitment is spread over 6 or 7 fishing 
grounds, depending on the scenario considered (Table 1). In scenario I, fish density only changes in 2 
of the 6 potential fishing grounds, with a certainty of transition to a new state the following year. 
Scenario II assumes that recruitment can disappear from one of the areas to appear in one of the 
surrounding ones. Scenario III, which is a mixture of the two other scenarios, is supposed to be the 
most variable. In order to simulate the clustered distribution of tuna schools, it is assumed that each 
tuna school (1 pixel) can move at random every 6 h within an area, without the possibility to move 
elsewhere. 

 
Table 1. Fishing grounds considered in the three scenarios. Areas of high (H), medium (M) and low 
(L) fish density receive each 25, 16.6, and 8.33% of the total recruitment (5 000 schools per year), 
respectively. The second column presents fish densities on the fishing grounds attributable to 
recruitment with an 0.8 probability of occurrence. The last three columns show conditions in the three 
scenarios respectively with a 0.2 probability of occurrence.  
_____________________________________________________________________ 
 Fishing 0.8 probability Scenario I  Scenario II  Scenario III 
 ground in all scenarios  0.2 probability  0.2 probability  0.2 probability 
_____________________________________________________________________ 
 Area 3  H  M  H  M 
 Area 6  L  L  L  L 
 Area 9  M  H  M  H 
 Area 17  M  M  M  M 
 Area 19  H  H  – – 
 Area 21  L  L  L  L 
 Area 25  – – H  H 
_____________________________________________________________________ 

 
The fishing fleet consists of two types of artificial fisher: 10 fishing vessels operating 

independently (thereafter termed individuals) and 10 vessels sharing information (i.e. a code-group). 
Although our purpose was not to incorporate all the characteristics of a tuna purse-seiner, care was 
taken to consider real fishing practices and to calibrate model parameters to reflect reality wherever 
possible. Each vessel stays in port a time assigned at random (10–20 days), and the maximum duration 
of a trip is fixed at 45 days. The virtual vessel starts its trip in a corner area and moves at random each 
hour during the searching phase (during daytime only). A simulation day runs for 12 h, i.e. the 
observed mean daily fishing duration. A tuna school is detected and caught when a searching vessel 
has the same position. To account for the fishing operation, we assume that the vessel stays in the 
same position for 3 h (an average observed setting time). The decision to stay in the same area or to 
move to a nearby, mid-distant, or far-off area is made at dusk only if the vessel has been searching in 
the area for at least 12 h. The movement decision is performed by an ANN that has been previously 
trained with standard back-propagation methodology and reinforcement learning (Rumelhart et al., 
1986). This process is based on the highest predicted benefit, and consequently accounts for costs 
proportional to distance traveled. Input variables (i.e. the input layer) affecting fisher choice (i.e. the 
output layer) encompass the presence of other vessels fishing in the same area, the time spent 
searching in the same area, a memory of recent decisions, knowledge of present fishing performance, 
and knowledge of area quality in the other areas (Figure 2). This last factor is the only one that differs 
at the input layer of the ANN between the two categories of artificial fisher. Consequently, the 
decision of individual fishers about the suitability of each area results only from their own experience 
in the fishery. In contrast, at the end of the fishing day, the vessels belonging to the group can 
exchange information and share knowledge on the richness of different fishing grounds. One can argue 
that, for fishers operating in a group, the fishing strategy is more societal than individual (even if each 
artificial skipper makes his/her decision independently). However, fishers coordinating their collective 
fishing activities (e.g. catching and searching) through a “decision-making club” framework have been 
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observed in numerous fisheries around the world (Gatewood, 1984; Wilson, 1990; Campbell et al., 
1993). 

 
Figure 2 Artificial neural network architecture used to simulate the decision making process used by 
fishermen while searching for the tuna schools, where y k are the output signals (i.e., when and where 
to move), x i are the input signals, w ij are the weights between input neuron i to hidden neuron j, w jk 
are the weights between hidden neuron j to output neuron k. 
 

The virtual ocean and the ANN were designed and programmed in C++ by one of the authors 
(MD). For convenience, the model-based daily catch and effort data were aggregated on a monthly 
basis (i.e. a series of 11 years × 12 months). 
 
Method  
 
The simplest way of relating the abundance of fish to cpue is to assume a proportional relationship: 
 

Ut = qAt 
 
where Ut is the cpue at time t, q the catchability coefficient, and At is the abundance at time t. 
However, as raised by many authors (Gulland, 1964; Paloheimo and Dickie, 1964; Laurec and Le 
Guen, 1977; Peterman and Steer, 1981; Bannerot and Austin, 1983), there are many reasons to believe 
that this linear relationship oversimplifies the link between cpue and abundance. There is evidence that 
fish schooling, fisher search behaviour, changes in fishing technology over time, etc., may have a 
significant effect on fishing success and, as a consequence, limit the use of a simple linear model. The 
simplest form of nonlinear model, which requires the estimation of only one additional parameter, is 
the power curve: 
 

Ut = qAt
β 
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where U t, q, and At are as defined above, and β represents the shape parameter of the power curve. 
Although more sophisticated models may describe more accurately the non-proportional 

relationship between cpue and abundance (Richards and Schnute, 1986), the power curve is widely 
used by fishery agencies and was considered suitable for a meta-analysis on abundance–cpue 
relationships by Harley et al. (2001). 

One of the advantages of simulated data is that abundance, catch, and effort are known exactly, so 
we did not consider observation errors in the model formulation. With the aim of modelling count data 
in the form of encounters per unit of time, we assumed that a Poisson likelihood function relates the 
observed (Ut) and predicted cpue (Û t), from either the linear or the power curve model) at time t as 
follows: 
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⎛  (Mangel and Clark, 1983; Hilborn and Mangel, 1997).  

Model parameters can then be estimated by minimizing: 
 

 ( )[ ]∑ −
t

ÛlogUÛ ttt
(Agresti, 1990). 

 
The likelihood ratio test (LRT) is the most commonly used null hypothesis approach for comparing 

pairs of nested models. However, because no form of LRT can be used to calculate relative support 
among competing models, we preferred a model-selection procedure that considered fit and model 
complexity, and that could be used to make inferences from more than one model. Starting from the 
most parameterized model (the power curve in the present case), we checked whether the linear model 
fitted reasonably well the relationship between cpue and abundance. Akaike’s information criterion 
(AIC) was used as an objective means of model selection from a set of candidate models (Lebreton et 
al., 1992). This criterion gives a good trade-off between the extremes of under-fitting and over-fitting, 
that is on one side biased by having too few parameters, and on the other side has high variance 
because of the number of parameters (Burnham and Anderson, 1992). The model with the smallest 
AIC (the parsimonious model) is considered appropriate for relating cpue with abundance. 

As Poisson was used as the basis for the likelihood function, we needed to consider over-dispersion 
(e.g. the cluster structure of tuna schools). In this context, quasi-likelihood theory justifies the usual 
maximum likelihood estimators as optimal point estimators of the parameters, even when there is 
excessive variation in the data (Burnham and Anderson, 1992). The simplest way to allow for over-
dispersion is to perform a quasi-likelihood estimate of the variance inflation factor (ĉ) from the 
goodness-of-fit chi-square statistic (χ2) of the most parameterized model and its degrees of freedom 
(d.f.), where ĉ is: 
 

ĉ = χ 2 / d.f. 
 

When calculating χ2, pooling may be required to avoid smaller-than-expected frequencies. Aside 
from its use during the model-selection process, the variance inflation factor can be used to correct the 
model-based variances and covariances (i.e. by multiplying it by ĉ).  

Using quasi-likelihood theory, and accounting for small-sample bias correction, the conventional 
AIC criterion is modified as (Anderson et al., 1994):  
 

( )[ ]{ } ( )
1Kn
1KK2K2ĉ/ˆLlog2QAICc

−−
+

++θ−=  

where n is the number of observations, K the number of parameters ( θ̂ ), and ( )θ̂L  is the maximum 
likelihood estimates of the model parameters. 

However, AIC (or QAICc) values are sometimes nearly equal, making the choice of one specific 
model problematic. Consequently, to account for model selection uncertainty, the normalized quasi-
likelihood Akaike weights (Wi ) are calculated for each candidate model i, as:  
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where QAICcQAICciQAICc i min−=Δ (Anderson et al., 2000).  

The model with the greatest Wi will have the highest probability of being the best model for the 
data, given the candidate set of models. In addition, the parameter estimates can be averaged over the 
competing models in a manner that accounts for model-selection uncertainty.  
 
Results 
 
For each scenario, simulations were carried out where the environmental conditions were the same for 
both types of vessels. Results of model-selection and parameter estimates of relating simulated 
abundance to cpue are given in Table 2.  
 
Table 2. Model selection and parameter estimates for relating simulated abundance to cpue, with (N. 
par.) number of parameters, (Nll) negative log-likelihood, (QAICc) quasi-likelihood Akaike 
Information Criterion, and (W) Akaike information criterion weight. 

_______________________________________________________________________ 
 Scenario Fisher  Parameters 

  Type Model  q β N. par. Nll QAICc W 
_______________________________________________________________________ 

  Individuals 1 0.0326 n/a 1 286.781 1317.800 0 
    2 0.1835 0.6852 2 275.772 1269.352 1 
  I 

  Group  1 0.0318 n/a 1 298.404 1199.138 0 
    2 0.3218 0.5774 2 278.403  1120.960 1 
 

  Individuals 1 0.0279 n/a 1 269.990 1504.155 0.008 
    2 0.0733 0.8266 2 267.871 1494.425 0.992 
  II 

  Group  1 0.0276 n/a 1 288.768 1079.879 0 
    2 0.2048 0.6391 2 279.345 1046.770 1 
 

  Individuals 1 0.0288 n/a 1 300.163 760.349 0 
    2 0.2108 0.6375 2 288.490 732.921 1 
  III 

  Group  1 0.0292 n/a 1 339.950 687.529 0 
    2 0.8664 0.3796 2 303.434 615.958 1 
_______________________________________________________________________ 
  n/a = not applicable 

 
For each fisher type, the fit of the power curve is better than that of the linear fit. As the shape 
parameter β was estimated to be <1, it is concluded that cpue declines slower than abundance. This 
situation is known as “hyperstability” (in contrast, when β >1, the situation is termed 
“hyperdepletion”). The shape parameter β for the group type is systematically lower than the β 
estimate for fishers operating individually (0.69 vs. 0.58 in scenario I, 0.83 vs. 0.64 in scenario II, and 
0.64 vs. 0.38 in scenario III). The departures from a simple proportional relationship between cpue and 
abundance are reflected in Figures 3–5.  
 

 
 



0 100 200 300 400

0
5

10
15

N
um

be
r c

ou
nt

ed
 (*

 1
0)

True abundance (/ 10)

 a) 

 
 

0 100 200 300 400

0
2

4
6

8
10

12
14

N
um

be
r c

ou
nt

ed
 (*

 1
0)

True abundance (/ 10)

 b) 

Figure 3 Linear and nonlinear relationship between CPUE and abundance for individuals (a) and code-
group (b) fishermen: scenario I (low environmental variability). 
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Figure 4 Linear and nonlinear relationship between CPUE and abundance for individuals (a) and code-
group (b) fishermen: scenario II (intermediate environmental variability). 
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Figure 5 Linear and nonlinear relationship between CPUE and abundance for individuals (a) and code-
group (b) fishermen: scenario III (high environmental variability) 

In addition, it appears that the value of β is related to the level of uncertainty in the environment. 
Scenario III, assumed to be the most variable and consequently the most uncertain in terms of fishers’ 
search decisions, had the lowest value for the shape parameter. This effect is specifically pronounced 
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for the fishers exchanging information for which β reaches a value close to 0.38. In contrast, the 
environmental variability simulated in scenario II (recruitment taking place in one of the surrounding 
cells only for one area) produces results relatively close to the proportional relationship. Even for a 
stable environment (scenario I; Figures 3a, b), cpue is not linearly related to abundance, likely because 
of the patchy distribution of the resource combined with the fishers’ fast learning about good fishing 
grounds.  
 
Discussion 
 
By using an aggregated form of the variables of interest (e.g. overall abundance, total catch, total 
effort), traditional stock assessment models give a simplified view of the fishery system. In contrast, 
individual-based models that treat individuals as discrete entities offer a way for accounting for 
individual variability, interaction among individuals, adaptive behaviour, and persistence in complex 
fishery-related problems (Grimm et al., 1999). Spatial allocation of fishing effort is an important 
component of a fleet’s dynamics, specifically to understand the cause of the non-proportional 
relationship between cpue and abundance. However, most fleet dynamics studies use an aggregated 
approach to simulate changes in fishing effort in response to local changes in abundance (e.g. Mangel 
and Clark, 1983; Allen and McGlade, 1986; Hilborn and Walters, 1987; Gillis and Peterman, 1998; 
Campbell and Hand, 1999; Holland and Sutinen, 1999), whereas few attempts have considered 
individual-based models with observed data (Dorn, 1998; Gaertner et al., 1999), or use of simulation 
techniques (Dreyfus-Leon, 1999; Millischer, 2000; Dorn, 2001; Dreyfus-Leon and Gaertner, 2002). 
From this study and previous ones, it appears that ANNs are well-suited to mimicking fisher decision-
making under uncertainty, even in situations where information is incomplete. There are, however, 
other methods for modelling fisher decision-making (Mangel and Clark, 1983; Dorn, 1998, 2001).  

A key issue in developing an individual-based model involves setting an appropriate spatial and 
temporal scale. Because the virtual resource was broken down into distinct patches, and a daily basis 
was used for the movement rules, the present model is realistic enough to be applicable to the analysis 
of the relationships between abundance and cpue in a tropical tuna fishery. It must be kept in mind, 
however, that setting the individual-level state variables (e.g. the output layer of the ANN, the density 
and the distribution of the resource) at a specific scale of resolution affects all aspects of the model. 
For all these reasons, results may depend partly on the model-specific structure (Grimm et al., 1999), 
and partly on the information used accurately to represent a purse-seine tuna fishery. Because it is 
implicit in modelling that perfect truth cannot be attained, the only thing that can be done is measuring 
the adequacy between model predictions and field observations (Oreskes et al., 1994). For instance, 
checking when predictions agree with observed patterns, or at least do not contradict reality, allows the 
modeller to assume that the model “adequately” relates cpue with abundance. In this respect, Dreyfus-
Leon and Gaertner (2002) showed that this simulated fishery model perfectly reproduced the changes 
over time of local cpue and local fishing effort as observed in real tuna purse-seine fisheries.  

Obviously, one of the aims of this study was not to show the existence of hyperstability (a situation 
evidenced in numerous commercial fisheries), but rather to provide an insight into the factors that 
contribute to this situation. Hilborn and Walters (1992) consider hyperstability to be one of the worst 
features for fishery managers. For example, failure to recognize changes in true abundance owing to 
the relative insensitivity of local cpue can lead to collapse of a stock (Rose and Kulka, 1999). In 
general, the operational characteristics of fishing will tend to cause hyperstability, whereas the 
distributional characteristics will tend to cause hyperdepletion. Among the components that contribute 
to hyperstability, Hilborn and Walters (1992) mentioned non-random search and information sharing. 
We showed through this study that hyperstability can be attributed mainly to information sharing (i.e. 
a code-group behaviour produces a decrease in β close to 16, 23, and 41% from scenarios I, II, and III, 
respectively). However, because of the simple spatial distribution of the clusters of tuna schools and 
the limited range of environmental variability used in the simulation runs, only relative, rather than 
absolute, values of the results should be considered. Furthermore, caution should be exercised in 
extrapolating these results to real fisheries, because it is not known how error in catch and effort might 
affect the conclusions. There are also limitations associated with the use of model-based data. Because 
the data points are not independent of each other, it may be argued that further research is needed to 
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select an appropriate statistical analysis for investigating patterns of covariance at different time scales 
(Pyper and Peterman, 1998). However, we did not perform any statistical test to check whether the 
shape parameter β was systematically lower than 1, and we found the same type of result when we 
carried out preliminary simulation runs with different random number seed.  

The effect of uncertainty related to the artificial environment on the shape parameter β is more 
complex to evaluate. The present results show that non-proportionality between cpue and abundance 
increases as environmental variability increases (e.g. scenario III). This result is not surprising, 
because information-sharing reduces the time spent finding good fishing areas. Therefore, the 
advantages of belonging to a sharing group would be greater under some degrees of uncertainty related 
to the spatial distribution of the resource. In contrast, even if the resource’s patchy distribution appears 
to be the minimum condition for generating departures from a linear cpue/abundance relationship, 
adding a moderate environmental variation (e.g. from scenario I to II) may partly re-establish a relative 
proportionality between the two entities. Unfortunately we were unable to quantify the relationship 
between β (a quantitative variable) and environmental variability (a semi-qualitative variable assumed 
to follow an ordinal scale from scenario I to III). Complementary investigations on the effect of local 
density (i.e. the concentration profiles) and on the spatial extent of the area covered by the resource are 
needed to understand better the dynamics of the relationship between abundance and cpue. 

  
Conclusion 
 
Incorporating fisher decision-making into a fleet’s dynamic process, specifically in an individual-
based approach, can provide an insight in the appropriate use of cpue in stock assessments. As 
interaction among fishers, such as information sharing, is one of the main factors responsible for 
departures from the basic linear relationship relating cpue to abundance, the results obtained in this 
paper reinforce the view that purse-seiner cpue cannot be used directly as an indicator of population 
trend. In some circumstances, the cpues of code-group fishers may not accurately reflect changes in 
the simulated abundance (Dreyfus-Leon and Gaertner, 2002). In real fishery situations, hyperstability 
(specifically when biomass is overestimated) may affect the way a fishery manager will perceive the 
risk of collapse of a stock. As a consequence, conservation measures may be postponed or be too weak 
to assure the long-term sustainability of the resource. Although a power curve is a suitable form for 
overcoming this type of uncertainty, it will also be important to determine the extent to which β and q 
can be modified over time. This is especially true for the catchability coefficient q, owing to the 
increase in fishing power of vessels. Such changes in fishing efficiency were not taken into account in 
our simulations, but have been observed in tropical tuna fisheries (Fonteneau et al., 1999). With the 
lack of detailed information on new fishing technology introduced on board purse-seiners over time, 
recourse to simulation studies is a promising area for modelling fishing efficiency. In addition, the 
virtual tuna fishery system, combining grid- and individual-based approaches, may be extended to 
other topics to provide answers to questions regularly raised by tuna fishery agencies, such as: how to 
eliminate the code-group effect in observed cpue series, and how to gauge fishing effort for sets 
related to fish aggregating devices.  
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