Dissolved organic matter fluorescence as a water-flow tracer in the tropical wetland of Pantanal of Nhecolandia, Brazil

M. Mariot, Y. Dudal, S. Furian, A. Sakamoto, V. Valles, Monique Fort, Laurent Barbiero

To cite this version:

HAL Id: ird-00363984
http://hal.ird.fr/ird-00363984

Submitted on 25 Feb 2009
Tracing dissolved organic matter in a contrasted alkaline tropical wetland using fluorescence spectroscopy, Pantanal of Nhecolândia, Brazil

Mélody Mariot, Yves Dudal, Sônia Furian, Arnaldo Sakamoto, Vincent Vallès, Monique Fort, Laurent Barbiero

1 Laboratoire d’Hydrogéologie Appliquée, Université d’Avignon et des Pays de Vaucluse, 33 rue Pasteur, 84000 Avignon, France
2 INRA, UMR Climat, Sol et Environnement, Domaine St Paul, Site Agroparc, 84914 Avignon cedex 9, France
3 Dep. Geografia, Universidade de São Paulo, Avenida Prof. Lineu Prestes 338, Cep 05508-000, São Paulo-SP, Brasil.
4 Dep. Geografia, Universidade Federal do Mato Grosso do Sul, Av. Ranulfo Marques Leal 3484, Cep 79600-000, Três Lagoas-MS, Brasil
5 UMR 8586, Université Denis-Diderot (Paris 7), Case 70012 Place Jussieu, 75251 Paris Cedex 05, France.
6 LMTG, Université de Toulouse, CNRS, IRD, OMP, 14 Av. E. Belin, F-31400 Toulouse France

Corresponding author: barbiero@lmtg.obs-mip.fr

Abstract

The Nhecolândia is a sub-region of the Brazilian Pantanal wetland, where saline and freshwater lakes coexist in close proximity. Measurements of dissolved organic carbon (DOC) content and analysis of fluorescence excitation-emission matrices (EEM) were conducted in an effort to characterize spatial variability in concentration and source of dissolved organic matter (DOM). Increasing pH under the influence of evaporation resulted in an increasing DOC solubility ranging from 50 to over 300 mgC L⁻¹ in surface water. Spectrofluorescence characterisation indicates several families of dissolved organic matter, relatively stable in a given environment, but with contrasted signatures, which are related to the type of lake and its hydro-bio-geochemical functioning. Moreover, the fluorescence
signature from water and from the extracts of the surrounding soil samples shows strong similarities although disappearance of some labile proteinaceous compounds during humification. These results on the organic matter fluorescence EEM (stability, contrasted signatures and similarities between soil and related water samples) suggest that spectrofluorescence is a reliable technique for the tracing of water flows, but also for the marking of the origin of organic horizons in this environment.

1. Introduction

In most hydrochemical functioning studies, inorganic chemical tracers are used to decipher the water pathways at the landscape scale. The recent technical development for chemical and isotopic tracing have ensured significant advances in surface hydrology and hydrogeology. However, although the number of chemical elements available for the tracing is large, the number of available tracers is limited, in practice, by their interaction with the solid phases and the biological activity, which can significantly affect the information carried by the chemical elements. Moreover, many of these elements behave similarly in a given environment and their use leads to redundant information.

Although the organic compounds are quickly degraded by biological activity, their wide range and diversity offer the possibility to consider their use as tracers or markers in some particular and favourable ecosystems. However, the difficulties in the characterisation of the organic compounds constitute a major challenge for their use in hydrochemical studies.

Spectroscopic techniques are widely used to acquire a first qualitative description of complex mixtures of organic compounds. Among these techniques, molecular fluorescence has gained a strong interest in the last decades (Powe et al., 2004). When UV-Visible spectrometry informs about the light absorption pattern of a sample, fluorescence introduces a second
descriptive pattern corresponding to the energy emitted in response to the excitation. This two-dimensional information enables the separate description (two different emission wavelengths) of compounds absorbing light similarly (identical excitation wavelengths). Emission scans recorded for a whole range of incrementing excitation wavelengths are used to create three-dimensional data sets called excitation-emission matrices (EEMs), representative of the total luminescence spectra. They are presented as contour maps of the fluorescence landscape with iso-intensity levels delineating various peaks. They can therefore be of great help to differentiate complex mixtures of fluorophores, based on their specific peaks. This technique has gained a lot of interest in the environmental field since Coble et al. (1990) first introduced its use for the study of dissolved organic matter (DOM) from sea waters. EEMs have since been recorded for numerous types of samples including humic acid in coral reefs (Matthews et al., 1996), saline soils (Cilenti et al., 2005), coastal and deep-sea sediments (Sierra et al., 2001), landfill leachates (Baker and Curry, 2004), farm wastes (Baker, 2002), natural waters (Marhaba et al., 2000; Parlanti et al., 2002) soil extracts (Cannavo et al., 2004) and tropical wetlands (Mladenov et al., 2005). As EEMs provide a detailed overview of the environmental samples, it is also used to trace the origin of individual DOM peaks (Katsuyama and Ohte, 2002; Stedmon et al., 2003; Alberts and Takacs, 2004; Baker, 2005; Sierra et al., 2005), to monitor organic contamination (Jiji et al., 1999) or the interaction between dissolved organic matter and metals (Dudal et al., 2006).

The objective of the present work is to assess if a comprehensive characterisation of dissolved organic matter could be used as tracer or marker of water flows and origins at the landscape scale. The Pantanal of Nhecolândia, Brazil, was selected for this study. This tropical wetland consists of thousands of lakes with very contrasted range of salinity and pH but coexisting in close proximity. The contrasted environmental conditions of the Nhecolândia, which has been recently the support for various studies in hydro-bio-geochemical sciences, are particularly
2. Study site

The Pantanal wetland is a huge and still active alluvial plain situated between 16° and 20° S and 58° and 55° W, with a total area of about 200,000 km² of which 140,000 km² is located in Brazil. The vast tectonic depression of the Pantanal provides a gigantic natural flood control device for the storm waters resulting from torrential rainfall occurring during the wet period at the boundary between the Paraguay and Amazon basin. The plain, characterized by extremely low slopes (0.03 to 0.50 m/km) and altitudes between 100 and 200 m (Scott, 1991; Silva, 1986) is partially reached by summer flood (November to March). During the dry season, the floodwaters recede, resulting in a complex mosaic of grasslands and forests dotted with countless lakes and marshes.

Quaternary sediments carried from surrounding highlands cover the plain along alluvial fans, built by the Paraguay river and tributaries (Del’Arco et al., 1982; Por, 1995). The Nhecolândia is one of the main sub-region (27 000 km²) of the Pantanal depression, located on the southern half of the Taquarí alluvial fan. The sediments are mainly sandy (95%, Cunha, 1980) and the dominant soil orders are Spodosols and Entisols, both with less than 15% of clay in superficial and sub-superficial horizons. These soils are locally associated with alkali soils (solonetz) with Na equivalent fractions higher than 15%.

The Nhecolândia includes about 12 000 round shaped lakes, among which Morisson et al. (2000) identified about 500 saline lakes, making up about 1 % of the total surface area of the region (Fig. 1). The co-existence of freshwater and saline lakes occurs mainly in the south western, lowland portion of Nhecolândia. The landscape is constituted by special features which will be referred throughout the article: 1- The freshwater lakes are temporary lakes of
the most variable forms and dimensions. They can reach approximately 2-m depths; 2- The temporary channels are formed by the coalescence of freshwater lakes during the flooding periods. They can be several kilometres long and 10 to 30 m wide; 3- The saline lakes are permanent rounded salt lakes that have generally 500 to 1000 m in diameter and are 2 to 3 m deep. Most commonly, they are isolated depressions inside sand hills, and they occupy the lowest topographical position of the landscape. 4- The sand hills are narrow (200-300 m wide), elongated, 2 to 3 m higher than the surrounding and covered by dense Savannah vegetation. These higher stripes of dry land are not submerged by superficial waters during flooding.

The ground water flows connecting the different lakes have been described by Barbiero et al. (2007). The saline lakes are encircled by a sandy clay horizon, with low permeability, high Na equivalent fraction and frequently indurate by amorphous silica. This horizon is rising up into the sand hill and behaves as a “threshold”, provoking a flow of water usually directed towards the saline lake. During the wet season, the water table rises and moves from the freshwater lakes and upland, into the sand and over the sandy clay horizon towards the depression of the saline lakes. On the contrary, during the dry season, the water table is lower and the sandy clay horizon acts as a barrier against the back flow of saline water towards the fresh sandy aquifer. The water flows towards the saline lakes and evaporates, and the ion contents increases in the saline lakes and the shore. The specific hydrological regime explains how saline and freshwater lakes having such different dissolved ion concentration, and subjected to the same amount of evaporation and rainfall, coexist in close proximity. The authors concluded that saline water results from present day evaporation and it is not necessary to resort to inheritance from arid period during the Pleistocene (Ab’Saber, 1988) to explain the presence of saline waters in some lakes of the Nhecolândia.
Drastic changes in the chemical profile of the water are observed at short distance, resulting from the above described local flows and evaporation. The less mineralised waters (freshwater lakes and temporary channels) can reach pH near to 5.5, and electrical conductivity about 0.02 mS.cm$^{-1}$. They have a carbonate-chloride and sodic-potassic chemical profile. On the other hand the most mineralised waters (saline lakes and surrounding watertable) have pH values ranging from 9 to 10.5, an electrical conductivity from 4 to 20 mS.cm$^{-1}$ and a carbonate and sodic chemical profile. In addition, it was verified a significant decreasing of Ca$^{2+}$ and Mg$^{2+}$ activities in the most mineralised waters (Barbiero et al., 2002, 2007). Two independent processes have been identified as responsible for the geochemical control of Ca and Mg contents as the solution become more saline. One is the formation of Mg-calcite, and the other one is the precipitation of Mg-silicates, namely stevensite and saponite.

The tropical climate is of Aw type according to Koeppen’s classification, with a mean annual temperature about 22°C and mean annual precipitation about 1000 mm mostly concentrated in summer (December to March). The mean annual evapotranspiration is around 1400 mm (Por, 1995; Alvarenga et al., 1984) resulting in an annual hydrological deficit of about 400 mm. At the local scale, the strong spatial variability of temperature and humidity according to land cover type (saline water, sand, savannah vegetation and grassland) induce a breeze system with diurnal and nocturnal alternation between the saline lake and the sand hills, increasing significantly the evapotranspiration (Quéno et al., 2005).

3. Material and methods

3.1. Fieldwork and Sampling

The study was carried out at the Nhumirim experimental farm, which is known to be representative of the Nhecolândia’s ecosystem. The wetlands selected for this study are
located between 18° 57' and 18° 59' S and 56° 37' and 56° 40' W. Samples have been collected in 6 waterbodies: 3 saline lakes, called Salina do Meio (SM), Salina do Oito (SO) and Salina da Ponta (SP), 1 lake with intermediate electrical conductivity called Salitrada (SL) and 2 freshwater lakes called Baia da Sede (BS) and Banhado (B). These lakes were selected so as to cover a large range of pH and conductivity. The distribution, shape and size of the lakes is presented on Fig. 1. Each lake exhibits special feature which will be used in the discussion. SM is a permanent saline lake with regular round shape and about 600 m in diameter. The electrical conductivity is regularly recorded since 1998 and ranged from 2.5 mS.cm\(^{-1}\) during the rainy season to 15 mS.cm\(^{-1}\) at the end of the dry season. SP is a permanent saline lake, which usually presents an electrical conductivity around 1/3 of that of SM. SO has a shape of “8” delimiting two units. The eastern part is permanent with EC values showing a large range from 2 mS.cm\(^{-1}\) during the rainy season and up to exceptional values of 75 mS.cm\(^{-1}\) during the driest period. The western part of the lake is occasionally drying during the dry season. A detailed geophysical study have revealed a seasonal subsurface entrance of freshwater into the western part of SO during the flooding period. The saline lakes are delimited by a white sandy beach induced by the high conductivity and the alkaline pH (above 9) of the water preventing from the development of vegetation. However, in the western part of SO, a grass vegetation is temporary developing down to the lake, when the freshwater is flowing in subsurface towards the saline lake. Microalgae are permanently (SM and SP) or periodically (SO) developing in the saline lakes (Souza Santos et al., 2004; Medina-Júnior and Rietzeler, 2005). Low redox conditions have been recorded ranging from −180 mV to +150 mV in the water, and from −370 mV to −200 mV in the sediment of these saline lakes (Barbiero et al., 2007).

Among the non permanent freshwater lakes, B is located along a temporary channel whereas BS is surrounded by “sand hills” with dense savannah. SL is supposed to be a former saline
lake, which has recently desalinised. Its electrical conductivity is monitored every year since 1998 and shows a decreasing trend from about 1.5 to 0.5 mS cm$^{-1}$. Redox conditions are ranging from +150 mV to +380 mV in the water and about +200 mV in the sediments of the freshwater lakes. The depressions of B, BS and SL are covered by a grass vegetation and the lakes are temporarily occupied by floating and rooted emergent aquatic vegetation during flooding (Costa and Telmer, 2006).

Samples were taken in June 2006, i.e. at the beginning of the dry season, in each lake in order to estimate the internal variability of each system (saline: 23 samples; intermediate: 7 samples; freshwater lakes: 4 samples). Temperature (T), electrical conductivity (EC), redox (Eh) and pH were determined in the field before samples were filtered, collected in pre-washed polyethylene bottles and poisoned with HgCl.

Soil samples were taken in excavated pits around SM and SL in order to compare the soil organic matter with the DOM, to check for similar origins, and to estimate to which extent the organic matter is affected during the humification process. Both soil and water samples were kept frozen and stored in the dark until analyses within 30 days.

3.2. Laboratory work

Soil-water extracts: For soil samples, a solution was extracted from a paste made of soil-water in a 1:5 weight ratio, after agitation (1 hour). The extracted solution was filtered through pre-combusted Whatman 2V glass fibre filters. The filtrate was subsequently passed through 0.45 µm nylon filters.

DOM analysis: Samples (5ml) were initially bubbled in acidic conditions in order to remove inorganic carbon. Dissolved Organic Carbon was quantified by combustion at 550°C using a Shimadzu TOC-meter (5050A fitted with laser CO$_2$ detector).
Fluorescence emission analysis: fluorescence data acquisition was performed using a Perkin-Elmer LS-55 Luminescence Spectrometer equipped with the FL Winlab Software. Excitation-Emission Matrices were collected every 10 nm over an excitation wavelength range of 200 - 600 nm, and a scan speed set at 1200 nm per min.

4. Results

4.1. Dissolved organic matter contents

The surface water DOC concentrations are high with a mean value reaching 192 mg.L\(^{-1}\), and a standard deviation of 118 mg.L\(^{-1}\), i.e. a coefficient of variation of about 61%. Large variations are observed depending upon the sampling location. Mean DOC values and standard deviation for each lake are plotted on Fig. 2. Three groups are easily discriminated. The first one consists of freshwater lakes (SL, B and BS) with low DOC contents. The pH values are ranging from 6.6 to 7.6 and conductivity from 0.15 to 0.5 mS.cm\(^{-1}\) (Fig. 3). The second group consists of SO and SP, with higher electrical conductivity (1.5 to 2 mS.cm\(^{-1}\)) and pH (8.6 to 9). The third one is SM, which has the highest pH values (9.6 to 9.8) and conductivity (3.5 to 4 mS.cm\(^{-1}\)).

Examples of 3D-EEMs for the studied surface waters can be seen on Fig. 4 to 7. The results presented in Table 1 show that the type of EEM is contrasted between the different environments although the fluorescence peak positions were identical in one given waterbody, indicating low variability in the type of dissolved organic matter. In lake B, although low DOC have been recorded, high fluorescence intensity is observed (Fig. 5), suggesting the presence of humified organic matter, i.e. humic acids with high molecular weight and hardly degradable by biological activity. The peak positions (\(\lambda_{ex} / \lambda_{em}\)) were estimated as 220 / 430 nm and 335 / 430 nm.
The fluorescence emissivity (F/[DOC]) is much lower in SL (Fig. 4), where also low amounts of dissolved organic matter were detected (Table 1). It suggests that the organic matter consists likely of small stable fulvic acids.

The type of EEM observed in SM (Fig. 6) is clearly different from the previous ones, and in particular with two peaks observed at 230 / 340 nm and 290 / 350 nm, i.e. with emission domain typical of protein-like substances emphasising intense microbial activity. The same type of EEM was observed at SO and SP lakes, which appears therefore representative of the saline lakes.

Two different EEM signatures have been obtained in SO, opposing samples from the eastern part of the lake with EEMs similar to that of other saline lakes, and samples from the western part where the proteinaceous peaks are not detected, leading to an EEM similar to that observed with SL samples (Fig. 7).

4.2. Particulate organic matter contents.

The results of soil-water extracts from samples taken around SM and SL are presented on Fig. 8. A significant difference in the DOC extracted from SM and SL is obtained and the proportion of DOC found from the water of the corresponding lakes (SM and SL) are respected (Fig. 2 and 8). EEMs show similarities between DOC from water and from SM soil extracts (Fig. 6 and 9), with two peaks at about 270 / 460 nm and 380 / 450 nm, whereas the peaks previously identified at 230 / 340 nm and 290 / 350 nm have disappeared. Both DOC and fluorescence are high.

EEMs obtained after soil-water extraction from sediments around SL are very similar to EEMs obtained directly from collected water samples (Fig. 4 and 10) showing excitation-emission with the same wavelengths.
5. Discussion

The results obtained on the sampled lakes emphasized the interaction between inorganic and organic chemistry. A previous study carried out at the regional scale have shown a unique geochemical family of water evolving currently in an alkaline manner under the influence of evaporation (Barbiero et al., 2002). The geochemical composition changes from the weakly mineralised waters that flood the region during the rainy season, to the strongly mineralised and alkaline one in the saline lakes. The increase in the pH value favours the dissolution of organic matter and consequently high DOC contents are found there (average DOC values in saline lakes of $262 \pm 118 \text{ mg.L}^{-1}$). Basic pH are known and used to dissolve natural organic matter and such high concentrations are therefore not surprising. Because the increases in the pH value is due to the evaporation process, these high DOC contents are also directly related to high electrical conductivities (Fig. 3). Moreover, the dissolved organic matter mainly consists in ionisable compounds due to the presence of a wide variety of oxygen containing functional groups. Usual pKa values for natural organic matter are determined by the two most abundant functional groups and are 4.7 (carboxyl group) and 10 (phenol group). Consequently, at the observed pH values the dissolved organic compounds are mostly anionic and are also partly contributing for the high electrical conductivity.

Along the concentration process of the water, three systems have been differentiated (fresh, intermediate and saline) and each shows a specific and contrasted type of dissolved organic matter, which is the result of physical-chemical and biological processes. In the saline-alkaline systems, that have not recently been fed by freshwaters (sampling was performed after a cumulative rainfall of 4 mm over three months and temperature averaging 30°C), the biological activity is strongly dominated by micro-algal vegetation as emphasized by a green colour clearly noticed during sampling in these stagnant waters. This is in line with the strong
presence of protein-like material observed from the fluorescence excitation-emission matrices of the saline lake waters (see Figure 6 and Table 1). Peaks at $\lambda_{\text{ex}} 230 - \lambda_{\text{em}} 350$ and $\lambda_{\text{ex}} 280 - \lambda_{\text{em}} 350$ nm have been related to the presence of the tryptophan and tyrosine (the two aromatic amino-acids) in proteins (Baker, 2002). Two aspects of the saline ecosystem contribute to the presence of labile proteinaceous material. On the one hand, the high algal activity permanently supplies such proteinaceous material, which is maintained by the fast turn-over in the biological cycle. On the other hand, the organic matter arising from micro-algae, consisting mainly of Cyanophytes, Chlorophytes, Chrysophytes and Euglenophytes (Souza Santos et al., 2004), has a low polymerisation rate with low molecular weight and therefore is easily degradable by the biological activity. The high velocity of organic matter degradation induces very reducing conditions, and the absence of oxygen could also explain the persistence of labile proteinaceous material. The strong microbial activity seems to be a peculiarity of the saline lakes.

The input of freshwater in this system has interesting implications regarding its biogeochemical functioning. These implications are revealed in SO, where such an entrance has been detected at the west end of the lake (Fig. 1). The freshwater has a pH value around 6.8 and an electrical conductivity of about 60 to 80 μS.cm$^{-1}$. Samples from the lake taken in this area allow us to observe the evolution: decrease in pH (7 instead of 8.8 in average for the rest of the lake), decrease in DOC content (120 mg L$^{-1}$ instead of about 250 mg L$^{-1}$ in average for the rest of the lake) and total disappearance of the proteinaceous fluorescence peaks (Fig. 7). Only the longer wavelengths peaks ($\lambda_{\text{ex}} 220 - \lambda_{\text{em}} 425$ and $\lambda_{\text{ex}} 330 - \lambda_{\text{em}} 440$ nm) are still present, showing a more stable type of organic matter (Baker & Curry, 2004). This behaviour is comparable to the one observed in SL (Fig. 4 and Table 1), which is intermediate to the freshwater lake type. The similarity in the EEMs between SL and the west end of SO is in
agreement with the 8-year salinity monitoring carried out in SL that suggests a former saline lake currently following a dynamic of de-salinisation.

The freshwater lake B is characterised by neutral pH freshwater, with high fluorescence in the longer wavelengths (Fig. 5) corresponding to highly stable “humic-type” aromatic material (Parlanti et al., 2002). In this system, no algal development is observed, and vegetation is found all around, which contributes to the lignin-type compounds found in the fluorescence excitation-emission matrices (Sierra et al., 2005). The higher redox values and the slow humification of the polymerised organic matter favour a fluorescence with peaks on a wider wavelengths range.

The stability of the DOM signature in each system is emphasized by the data from the 34 samples presented in table I. The stability suggests that the use of the spectrofluorescence technique is relevant to trace the origin of the organic matter in this apparently complex ecosystem.

Particulate versus dissolved organic matter

Several modes of organic matter accumulation are possible in the Pantanal environment, namely simple sedimentation in lakes with various pH-EC conditions, burying of former topsoil horizon with organic matter of various origin, migration of dissolved organic matter under alkaline conditions and accumulation due to a pH-barrier or because of intense evaporation. Although the spatial variations in the pH values seems to have a major influence in the control of DOC content, the nature of the organic matter could be different according to its origin.

From a quantitative point of view, the dissolved organic matter in the soil water extracts confirms the results described in the water samples, i.e., higher values are observed in extracts from alkaline systems than from freshwater systems. It suggests that part of the organic matter
from the sediments (organic acids with low molecular weight) can be easily remobilised by the water during the flood period.

Moreover, and from a qualitative point of view, strong similarities are detected in the fluorescence signature of the organic matter between samples from soil extracts and water. In both water and soil-water extracts from SL, the organic matter consists of small stable acids, probably fulvic acids or association of phenolic acids, in low quantity and with low fluorescence emissivity. In SM, the similarity between water and soil water extracts is still observed, except for the most labile proteinaceous material. It seems that when the lake is drying, the oxygenation of the sediment affects only a part of the fluorescence signature consisting of the labile compounds but preserve the non proteinaceous material. The organic matter collected around the lakes maintained the signature of its origin. As a consequence, a certain persistence of the organic matter signature is occurring and it emphasises the relevance of the spectrofluorescence technique to trace the origin of the organic matter.

6. Conclusion

The shallow groundwaters of the Nhecolândia are relatively depleted in calcium with respect to alkalinity and evolve into high alkalinity and high pH as solutions become more saline under the influence of evaporation. The increasing pH results in an increasing solubility of the organic matter, and consequently to a strongly structured distribution of the organic matter in the landscape. The freshwater lakes surrounding by herbaceous vegetation have low dissolved organic matter contents, whereas the alkaline lakes surrounded by a sandy beach sterilised by high pH and conductivity have much higher dissolved organic matter contents. The spectrofluorimetric characterisation shows several families of organic matter, which are relatively stable in space. The freshwater environments exhibit humic acids with strong
fluorescence, whereas the saline alkaline environments have very different functional groups and proteinaceous material. The organic matter contents and its characteristics are closely related to the biological functioning of the waterbodies. It is also noticeable that the organic matter sampled around and in the lakes showed similar fluorescence characteristics, highlighting a certain stability of the criteria for organic matter characterisation. Only some labile functional groups, such as proteins, disappear during the maturation in the soil. Because of the stability of the parameters used for the discrimination, spectrofluorescence is a reliable technique for the tracing of water flows, but also for the marking of the origin of organic horizons.

The study reveals the influence of the herbaceous vegetation around and in freshwater lakes and algal vegetation in saline lakes, but the influence of the forest in the sand hill has not been detected. Further study should focus on this point in order to better understand the migration of carbon in this environment.

Previous study in this area have shown a strong spatial heterogeneity in the inorganic chemistry attributed to physico-chemical processes. The results of the present study also show the heterogeneity in the distribution of the organic matter, but attributed to the interactions between physico-chemical conditions and the biogeochemical functioning of the landscape units.

Acknowledgement

This work was supported by a Capes-Cofecub cooperation n°412-03 between France (University of Paris 7) and Brazil (Federal University of South Mato Grosso and University of Sao Paulo). We are very grateful to the Embrapa-Pantanal (Brazilian Institute for Agricultural...
Research) for providing the access to the site and SEMA of South Mato Grosso State for logistical support.

References

Costa, MPF and Telmer, KH. Utilizing SAR imagery and aquatic vegetation to map fresh and brackish lakes in the Brazilian Pantanal wetland. Remote Sensing of Environment 2006; 105: 204-213

Morrison, RIG, Manore, M, Ross, MRK, and Padovani CR. Identificação das lagoas salinas da região da Nhecolândia - Pantanal, através de técnicas de sensoriamento remoto. 3rd Symposium on natural and socio-economical resources of the Pantanal 2000, Corumbá-MS, 88-89.

Powe, AM, Fletcher, KA, St Luce, NN, Lowry, M, Neal, S, McCarroll, M, Oldham, PB, McGown, LB and Warner IM. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Analytical Chemistry 2004; 76: 4614-4634.

Quénol, H, Fort, M, Sakamoto, A, Barbiero, L, Gradella, F and Bacani, V. Fine scales climatology in saline lakes at the Pantanal of the Nhecolandia, Brazil. European Geophysical Society, April 2005, Vienna.

Sierra, MMD, Giovanela, M, Parlanti, E and Soriano-Sierra, EJ. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere 2005; 58: 715-733.

Silva TC. Contribuição da Geomorfologia para o Conhecimento e Valorização do Pantanal. 1st Symposium on natural and socio-economical resources of the Pantanal, Corumba-MS, December 1984, 77-90.

Souza Santos, KR, Sakamoto, AY, José Neto, M, Barbiero, L and Queiroz Neto, JP. Ficoflora do Pantanal da Nhecolândia, MS, Brasil: um levantamento preliminar em três lagoas salinas e
uma salitrada. 4th. Symposium on natural and socio-economical resources of the Pantanal, Corumba-MS, November 2004.

Fig. 1: Aerial view of the study site (dry season): sampled waterbodies are SM (Salina do Meio), SP (Salina da Ponta), SO (Salina do Oito), SL (Salitrada), B (Banhado) and BS (Baia da Sede). The arrow denotes the seasonal entrance of freshwater into SO.

Fig. 2. Dissolved Organic Carbon from the studied lakes: SM = Salina do Meio, SO = Salina do Oito, SP = Salina da Ponta, SL = Salitrada, BS = Baia da Sede, B = Banhado).

Fig. 3: Relationship between Dissolved Organic Carbon and Electrical Conductivity of the studied lakes.

Fig. 4: Excitation-Emission Matrice of the lake Salitrada (SL) - Note the low reactivity of the organic matter.

Fig. 5: Excitation-Emission Matrice of the lake Banhado (B) - Although the DOC content is low, note the high reactivity of the organic matter.

Fig. 6: Excitation-Emission Matrice of the lake Salina do Meio (SM) – Note the fluorescence at about $\lambda_{ex}=230$nm and $\lambda_{em}=290$nm corresponding to proteinaceous material.
Fig. 7: Excitation-Emission Matrices of the lake Salina do Oito (SO) showing the differences between the eastern saline part of the lake (b) and the western part (a) where an entrance of freshwater have been detected.

Fig. 8: Organic Carbon contents from soil-water extracts in the Salina do Meio (SM) and Salitrada (SL) lakes.

Fig. 9: Excitation-Emission Matrice of soil-water extracts from sediments of lake Salina do Meio (SM) – Note the similarity with Fig. 6 and disappearance of peaks of proteinaceous material.

Fig. 10: Excitation-Emission Matrice of soil-water extracts from sediments of lake Salitrada (SL) – Note the similarity with Fig. 4.

Table 1. Dissolved organic matter’s characteristics
Fig. 1: Aerial view of the study site (dry season): sampled waterbodies are SM (Salina do Meio), SP (Salina da Ponta), SO (Salina do Oito), SL (Salitrida), B (Banhado) and BS (Baia da Sede). The arrow denotes the seasonal entrance of freshwater into SO.
Fig. 2. Dissolved Organic Carbon from the studied lakes: SM = Salina do Meio, SO = Salina do Oito, SP = Salina da Ponta, SL = Salitrada, BS = Baia da Sede, B = Banhado.)
Fig. 3: Relationship between Dissolved Organic Carbon and Electrical Conductivity of the studied lakes.

$R^2 = 0.835$
Fig. 4 : Excitation-Emission Matrice of the lake Salitrada (SL) - Note the low reactivity of the organic matter.
Fig. 5: Excitation-Emission Matrice of the lake Banhado (B) - Although the DOC content is low, note the high reactivity of the organic matter.
Fig. 6: Excitation-Emission Matrice of the lake Salina do Meio (SM) – Note the fluorescence at about $\lambda_{ex}=230\text{nm}$ and $\lambda_{ex}=290\text{nm}$ corresponding to proteinaceous material.
Fig. 7: Excitation-Emission Matrices of the lake Salina do Oito (SO) showing the differences between the eastern saline part of the lake (b) and the western part (a) where an entrance of freshwater have been detected.
Fig. 8: Organic Carbon contents from soil-water extracts in the Salina do Meio (SM) and Salitrada (SL) lakes.
Fig. 9: Excitation-Emission Matrice of soil-water extracts from sediments of lake Salina do Meio (SM) – Note the similarity with Fig. 6 and disappearance of peaks of proteinaceous material.
Fig. 10: Excitation-Emission Matrix of soil-water extracts from sediments of lake Salitrada (SL) – Note the similarity with Fig. 4.
<table>
<thead>
<tr>
<th>Water body</th>
<th>Number of samples</th>
<th>λ_{ex} (nm)</th>
<th>λ_{em} (nm)</th>
<th>F (a.u.)</th>
<th>[DOC] (mg L$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banhado (B)</td>
<td>4</td>
<td>220</td>
<td>425.5→431.5</td>
<td>705→915</td>
<td>47.2→52.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>335</td>
<td>425.5→431.5</td>
<td>374→622</td>
<td></td>
</tr>
<tr>
<td>Salitrada (SL)</td>
<td>7</td>
<td>220</td>
<td>422→424.5</td>
<td>232→332</td>
<td>44.8→117.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>320</td>
<td>422→424.5</td>
<td>112→141</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>230</td>
<td>333→355</td>
<td>207→711</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>290</td>
<td>342→362</td>
<td>133→438</td>
<td></td>
</tr>
<tr>
<td>Salinas (SM, SO, SP)</td>
<td>21</td>
<td>260</td>
<td>433→458</td>
<td>125.8→585</td>
<td>144.7→381.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>380</td>
<td>450→484</td>
<td>161.1→463</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>230</td>
<td>431→438</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>431→438</td>
<td>181.4→241.5</td>
<td>105.7→143.3</td>
</tr>
</tbody>
</table>

λ_{ex}: excitation wavelength; λ_{em}: emission wavelength; F (arbitrary units): fluorescence intensity