G. A. Abers, Relationship between shallow­and intermediate depth seismicity in the Eastern Aleutian subduction zone, Geophys. Res. Lett, vol.19, 1992.

G. A. Abers, P. Van-keken, E. A. Kneller, A. Ferris, and J. Stachnik, The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow The nature of orogenic crust in the central Andes, Earth Planet. Sci. Lett. J. Geophys. Res, vol.241, issue.107B10, p.223010, 1029.

M. I. Billen and M. Gurnis, A low viscosity wedge in subduction zones, Earth and Planetary Science Letters, vol.193, issue.1-2, pp.227-236, 0193.
DOI : 10.1016/S0012-821X(01)00482-4

H. Brasse, P. Lezaeta, V. Rath, K. Schwalenberg, W. Soyer et al., The Bolivian Altiplano conductivity anomaly, Journal of Geophysical Research, vol.408, issue.46, 2002.
DOI : 10.1029/2001JB000391

H. Brasse, The mantle wedge in the Bolivian orocline in the view of deep electromagnetic soundings Extended Abstract, 6th International Symposium on Andean Geodynamics Global Prevalence of Double Benioff Zones, pp.316-1472, 2005.

E. B. Burov and M. Diament, ) of continental lithosphere: What does it really mean?, Journal of Geophysical Research: Solid Earth, vol.95, issue.suppl. 1, pp.3905-3927, 1995.
DOI : 10.1029/94JB02770

E. B. Burov and A. Poliakov, Erosion and rheology controls on synrift and postrift evolution: Verifying old and new ideas using a fully coupled numerical model, Journal of Geophysical Research: Solid Earth, vol.27, issue.B8, pp.16461-16481, 2001.
DOI : 10.1029/2001JB000433

E. B. Burov, C. Jaupart, and L. Guillou­frottier, Ascent and emplacement of magma reservoirs in brittle­ductile upper crust, J. Geophys. Res, vol.108, pp.10-1029, 2003.

S. C. Cande and W. E. Haxby, Eocene propagating rifts in the southwest Pacific and their conjugate features on the Nazca Plate, Journal of Geophysical Research: Solid Earth, vol.93, issue.B12, 1991.
DOI : 10.1029/91JB01991

C. J. Carson, R. Powell, and G. L. Clarke, Calculated mineral equilibria for eclogites in CaO­Na 2 O­FeO­MgO­Al 2 O 3 ­ SiO 2 ­H 2 O: application to the Pouébo Terrane, Pam Peninsula Mantle flow patterns at an oceanic spreading centre : the Oman peridotites record,Tectonophysics Poisson's ratio and crustal seismology, J. metamorphic Geol. J. Geophys. Res, vol.17, issue.101, pp.151-3139, 1988.

G. L. Clarke, J. C. Aitchison, D. Clouard, V. , J. Campos et al., Eclogites and Blueschists of the Pam Peninsula, NE New Caledonia: a Reappraisal, Outer rise stress changes related to the subduction of the Juan Fernandez Ridge, p.530510, 1029.
DOI : 10.1093/petroj/38.7.843

R. G. Coleman and T. E. Keith, A chemical study of serpentinisation, Burro Mountain, California, J. of Petrol, vol.12, pp.311-328, 1971.

D. Comte and G. Suarez, An Inverted Double Seismic Zone in Chile: Evidence of Phase Transformation in the Subducted Slab, Science, vol.263, issue.5144, pp.263-212, 1994.
DOI : 10.1126/science.263.5144.212

D. Comte, J. Battaglia, C. Thurber, H. Zhangl, B. Dorbath et al., High­resolution Subducting Slab Structure Beneath Northern Chile Using the Double­Difference Method Fall Meet A case for hot slab surface temperatures in numerical viscous flow models of subduction zones with improved fault zone parameterization, Eos. Trans. AGU J.A. Phys. Earth Planet. Int, vol.85, issue.149, pp.155-164, 2004.

P. Cundall and M. Board, A microcomputer program for modeling large­strain plasticity problems, Numer. Methods Geomech, vol.6, pp.2101-2108, 1988.

C. A. Currie, R. D. Hyndman, E. R. , and C. H. Scholz, The thermal structure of subduction zone back arcs B08404, doi:10, Current plate motions A double Benioff zone beneath the central Aleutians: An unbending of the lithosphere, pp.473-476, 1029.

B. W. Evans, The serpentinite multisystem revisited: chrysotile is metastable, Intern Double seismic zones and stresses of intermediate depth earthquakes, Geophys, Geol. Rev. J. R. astr. Soc, vol.46, issue.66, pp.131-156, 1981.

M. Gerbault, S. Henrys, and F. Davey, Numerical models of lithospheric deformation forming the Southern Alps of New Zealand, Journal of Geophysical Research: Solid Earth, vol.316, issue.B6, pp.234110-1029, 2003.
DOI : 10.1029/2001JB000186

URL : https://hal.archives-ouvertes.fr/ird-00388241

M. Graeber, G. Asch, M. Guiraud, T. Holland, R. Powell-hacker et al., Three­dimensional models of P wave velocity and P­to­S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data Calculated mineral equilibria in the greenschist­blueschisteclogite facies in Na 2 O­FeO­MgO­Al 2 O 3 ­SiO 2 ­H 2 O. Methods, results and geological applications Coincident anomalies of seismic attenuation and electrical resistivity beneath the southern Bolivian Altiplano plateau Subduction factory 3: an Excel worksheet and macro for calculating the densities, seismic wave speeds, and H 2 O contents of minerals and rocks at pressure and temperature, J. Geophys. Res. Contrib. Mineral. Petrol. Geophys. Res. Lett. Geochem. Geophys. Geosyst, vol.104, issue.5, pp.237-257, 1029.

B. R. Hacker, G. A. Abers, and S. M. Peacock, Subduction factory 1.Theoretical mineralogies, densities, seismic wave speeds, and H 2 O contents, J. Geophys. Res, vol.108, issue.B1, pp.202910-1029, 2003.
DOI : 10.1029/2007gc001707

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.513.829

B. R. Hacker, S. M. Peacock, G. A. Abers, S. D. Holloway-hasegawa, A. et al., Are intermediate­depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?, Subduction factory Heat flow map of South America Double­planed deep seismic zone and upper mantle structure in the northeastern Japan arc, Geophys. J. R. astr. Soc, pp.281-296, 1029.

S. Honda, Northeast Japan­ a case study for understanding the detailed thermal structure of the subduction zone, Thermal structure beneath Tohoku, 1985.

R. D. Hyndman, S. M. Peacock-isacks, B. L. , and M. Barazangi, Serpentinization of the forearc mantle, Island Arcs, Deep Sea Trenches, and Back­arc Basins, pp.417-432, 1977.
DOI : 10.1016/S0012-821X(03)00263-2

S. Ji and Z. Wang, Elastic properties of forsterite???enstatite compositesup to 3.0 GPa, Journal of Geodynamics, vol.28, issue.2-3, pp.147-174, 1999.
DOI : 10.1016/S0264-3707(98)00034-9

H. Jung, H. W. Green, I. , and L. F. Dobrzhinetskaya, Intermediate­depth earthquake faulting by dehydration embrittlement with negative volume change, Nature, 428, 545, doi:10.1038/nature02412 High­resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochem. Geophys. Geosyst, vol.3, p.10, 1029.
DOI : 10.1038/nature02412

P. B. Kelemen, J. L. Rilling, E. M. Parmentier, L. Mehl, and B. R. Hacker, Thermal structure due to solid­state flow in the mantle wedge beneath arcs, in: Inside the SubductionFactory, AGU Geophys. Monogr, vol.138, pp.293-311, 2003.

S. H. Kirby, E. R. Engdahl, R. Denlinger, and G. E. Bebout, Intermediate­depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs B­type olivine fabric in the mantle wedge: Insights from high­resolution non­Newtonian subduction zone models, Subduction: Top to Bottom, AGU Monograph 96 Stress, strain, and B­type olivine fabric in the fore­arc mantle: Sensitivity tests using high­resolution steady­state subduction zone models, pp.195-214, 1029.

S. H. Lamb and P. Davis, Cenozoic climate change as a possible cause for the rise of the Andes, Nature, vol.425, issue.6960, pp.425-792, 2003.
DOI : 10.1038/nature02049

S. Lamb, Shear stresses on megathrusts: Implications for mountain building behind subduction zones, Self­consistent rolling­hinge model for the evolution of large­onset low­angle normal faults, pp.10-1029, 1999.
DOI : 10.1029/2005JB003916

L. Pourhiet, L. , E. Burov, and I. Moretti, Rifting through a stack of inhomogeneous thrusts (the dipping pie concept), Tectonics, pp.1-14, 2004.
DOI : 10.1029/2003TC001584

URL : https://hal.archives-ouvertes.fr/hal-00022416

F. Lucassen, R. Becchio, R. Harmon, S. Kasemann, G. Franz et al., Composition and density model of the continental crust in an active continental margin ? the Central Andes between 18° and 27° S. Tectomophys An analysis of the variation of ocean floor bathymetry and heat flow with age Seismic Consequences of Warm Versus Cool Subduction Metamorphism: Examples from Southwest and Northeast Japan Are the lower planes of double seismic zones caused by serpentinite dehydratation in subducting oceanic mantle?, Three­dimensional structure of Vp, Vs, and Vp/Vs beneath northeastern Japan: Implications for arc mgmatism and fluids Kinetics of antigorite dehydration: a real­time X­ray diffraction study 899­913. Poliakov A., and Y. Podladchikov Diapirism and topography, pp.937-939, 1029.

R. A. Prince and L. D. Kulm, Crustal rupture and the initiation of imbricate thrusting in the Peru­Chile Trench, Geol, 1975.

A. Rietbrock and F. Waldhauser, A narrowky spaced double­seismic zone in the subducting Nazca plate, 2004.

P. Roperch, T. Sempere, O. Macedo, C. Arriagada, M. Fornari et al., Counterclockwise rotation of late Eocene­Oligocene forearc deposits in southern Peru and its significance for oroclinal bending in the Central Andes, Tectonics, 25, TC3010, doi:10 Double seismic zones, compressional deep outer­rise events, and superplumes, Subduction: Top to Bottom, AGU Monograph 96, pp.347-355, 1029.

R. Ramelow, E. Rietbrock, T. Ricaldi, and . Vietor, Partial Melting in the Central Andean Crust: a Review of Geophysical, Petrophysical, and Petrologic Evidence, The Andes, pp.459-474, 2006.

B. Schurr and A. Rietbrock, Deep seismic structure of the Ata­cama basin, Northern Chile, Geophys. Res. Lett, vol.31, issue.10, 1029.

D. R. Shelly, G. C. Beroza, H. Zhang, C. H. Thurber, and S. Ide, High­resolution subduction zone seismicity and velocity structure beneath Ibaraki Prefecture, Japan The double seismic zone in downgoing slabs and the viscosity of the mesosphere, What drives orogeny in the Andes? Geology, pp.10-1029, 1979.

S. V. Sobolev and A. Y. Babeyko, Modeling subduction of the continental crust at the Andean type convergent margin, Geochimica et Cosmochimica Acta, vol.70, issue.18, 2006.
DOI : 10.1016/j.gca.2006.06.1116

M. Springer, A. Forster, 1. Springer, and M. , Heat­flow density across the Central Andean subduction zone, Interpretation of heat­flow density in the Central Andes, pp.377-395, 1998.

E. M. Syracuse, G. A. Abers, E. , T. Okayasu, and K. Sahoh, Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochem, Geochemistry and origin of the basal lherzolites from the northern Oman Ophiolite (northern Fizh Block), Geochem. Geophys. Geosyst, pp.1-31, 2003.

Y. Takei, Acoustic properties of partially molten media studied on a simple binary system with a controllable dihedral angle, Journal of Geophysical Research: Solid Earth, vol.280, issue.B7, pp.16665-16682, 2000.
DOI : 10.1029/2000JB900124

Y. Takei, Effect of pore geometry on Vp/Vs: From equilibrium geometry to crack, J. Geophys. Res, vol.107, issue.B2, pp.10-1029, 2002.

A. Tassara, Interaction between the Nazca and South American plates and formation of the Altiplano???Puna plateau: Review of a flexural analysis along the Andean margin (15?????34??S), Tectonophysics, pp.15-34, 2005.
DOI : 10.1016/j.tecto.2004.12.014

A. Tassara, Factors controlling the crustal density structure underneath active continental margins with implications for their evolution, Three­dimensional density model of the Nazca plate and the Andean continental margin, p.10, 1001.
DOI : 10.1029/2005GC001040

A. Tassara, C. Swain, R. Hackney, and J. Kirby, Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data, Earth and Planetary Science Letters, vol.253, issue.1-2, pp.17-36, 2007.
DOI : 10.1016/j.epsl.2006.10.008

C. H. Thurber, Earthquake locations and three­dimensional crustal structure in the Coyote Lake area, central California, Local earthquake tomography: velocities and Vp/Vs­theory Seismic Tomography: Theory and Practice, pp.563-583, 1983.

D. Turcotte and G. Schubert, Geodynamics: applications of continuum physics to geological problems, 1982.
DOI : 10.1017/CBO9780511807442

F. Waldhauser, hypoDD: A computer program to compute double­difference hypocenter locations, Open File Rep Unbending combined with dehydration embrittlement as a cause for double and triple seismic zones, Geophys. Res. Lett, vol.29, p.10, 1029.

T. Watanabe, Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors, Geophysical Research Letters, vol.85, issue.24, pp.2933-2936, 1993.
DOI : 10.1029/93GL03170

T. Yamasaki and T. Seno, Double seismic zone and dehydratation embrittlement of the subducting slab, J. Geophys. Res, vol.108, pp.10-1029, 2003.

P. Yamato, P. Agard, E. Burov, L. L. Pourhiet, L. Jolivet et al., Burial and exhumation in a subduction wedge: Mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustr??s, western Alps), Journal of Geophysical Research, vol.11, issue.B12, pp.10-1029, 2007.
DOI : 10.1029/2006JB004441

H. Zhang, Double difference seismic tomography method ans its application, 2003.

H. Zhang and C. H. Thurber, Double-Difference Tomography: The Method and Its Application to the Hayward Fault, California, Bulletin of the Seismological Society of America, vol.93, issue.5, pp.1875-1889, 2003.
DOI : 10.1785/0120020190

H. Zhang, C. H. Thurber, D. Shelly, S. Ide, G. C. Beroza et al., High­resolution subducting­slab structure beneath Northern Honshu, Japan, revealed by double­difference tomography, Tomographic imaging of P and S wave velocity structure beneath northeastern Japan, pp.909-19928, 1992.
DOI : 10.1130/g20261.2