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Abstract

In this study we investigated the perspective offered by coupling a simple vegetation growth model and ground-based remotely-sensed data
for the monitoring of wheat production. A simple model was developed to simulate the time courses of green leaf area index (GLAI), dry above-
ground phytomass (DAM) and grain yield (GY). A comprehensive sensitivity analysis has allowed addressing the problem of model calibration,
distinguishing three categories of parameters: (1) those, well known, derived from the present or previous wheat experiments; (2) those, phe-
nological, which have been identiÞed for the wheat variety under study; (3) those, related to farmer practices, which has been adjusted Þeld by
Þeld. The approach was tested against Þeld data collected on irrigated winter wheat in the semi-arid Marrakech plain. This data set includes
estimates of GLAI with additional DAM and GY measurements. The model provides excellent simulations of both GLAI and DAM time
courses. GY space variations are correctly predicted, but with a general underestimation on the validation Þelds. Despite this limitation, the
approach offers the advantage of being quite simple, without requiring any data on agricultural practices (sowing, irrigation and fertilisation).
This makes it very attractive for operational application at a regional scale. This perspective is discussed in the conclusion.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Irrigated agriculture represents a major contribution to food
security, producing nearly 40 percent of food and agricultural
commodities on 17% of cultivated lands (FAO, 2002). Irri-
gated areas, which have almost doubled in recent decades, sig-
niÞcantly contribute to the increase of global production. The
scope for further irrigation development to meet food require-
ments in the coming years is, however, severely constrained by
decreasing water resources. In particular, serious water short-
ages occur in semi-arid areas as existing resources reach full
exploitation. A challenging objective is thus to ensure food se-
curity in a sustainable way of these regions. The design of op-
erational tools that would provide decision-makers with

regional estimates of crop production could help to reach
this objective. Quantifying crop production at a regional scale
would facilitate the monitoring of irrigation efÞciency and
crop water use. In these regards, the scientiÞc community
has paid an increasing interest on approaches based on agro-
ecological process models and remote sensing observations
(Moulin et al., 1998; Pellenq and Boulet, 2004; Olioso et al.,
2005). Models continuously simulate crop development and
growth, while satellite imagery provides with space and time
regular observations of some biophysical variables of canopies
such as the green leaf area index or the fraction of absorbed
photosynthetically active radiation (Bastiaanssen et al., 2000;
Scotford and Miller, 2005). Approaches based on the combi-
nation of modelling and remote sensing thus offers strong op-
portunities for the monitoring at a regional scale (Clevers
et al., 2002; Lobell et al., 2003; Verhoef and Bach, 2003; de
Wit et al., 2004; Mo et al., 2005).

* Corresponding author. Tel.:þ 33 5 61 55 85 01; fax:þ 33 5 61 55 85 00.
E-mail address:duchemin@ird.fr(B. Duchemin).

1364-8152/$ - see front matter� 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.envsoft.2007.10.003

Available online at www.sciencedirect.com

Environmental Modelling & Software 23 (2008) 876e 892
www.elsevier.com/locate/envsoft



Author's personal copy

A lot of process-based crop models have been developed in
the recent years (see comparisons and reviews inJ¿rgensen,
1994; Jamieson et al., 1998or Eitzinger et al., 2004). These
models simulate crop development, growth and yield on the
basis of the interaction between agro-environmental condi-
tions and plant physiological processes such as photosynthesis,
respiration, evapotranspiration and N-uptake. The complexity
of these models is increasing because they include either
new processes or new details for their description. Although
the performance and accuracy of crop models have
continuously made progresses over the past few years, applica-
tions for yield forecasting over large areas (10 km2 to
100,000 km2) have encountered a number of limitations since
most of the models were initially conceived for local/Þeld-
scale applications (Boote et al., 1996; Faivre et al., 2004; de
Wit et al., 2005). Two major limitations are basically pointed
out. Firstly, there are generally a large number of model pa-
rameters compared to the amount of observation available
for their identiÞcation. This makes optimisation procedure dif-
Þcult to operate, since good Þts may be achieved for many
combinations of the parameters values. Thus, prior (imperfect)
information on parameters is required. This results in simula-
tion errors and reduction of the predictive capacity of models
(Franks et al., 1997; Wallach et al., 2002). Secondly, it is dif-
Þcult to cope with the lack of adequate and sufÞcient input
data to run the model at a regional scale. This typically con-
cerns data related to technical practices such as crop calendar
as well as irrigation and fertilisation schedules, which know
large space and time variations. As an example,Mo et al.
(2005) assume uniform irrigation dates and optimal fertilisa-
tion over a 90,000 km2 area; these authors conclude that
more timely agronomic information are needed to improve
the reliability of yield prediction. An alternative for regional
application is to consider simple algorithms which are able
to deal with a strong heterogeneity compared to more complex
models that treat the surface as homogeneous (Franks et al.,
1997). There is thus a large place for testing simple models
being speciÞcally designed for the assimilation of remote
sensing data.

Amongst the simplest approaches, the theory of light-use-
efÞciency (Monteith, 1977) has provided a basis to simulate
canopy light interception and dry mass production. This theory
offers a strong opportunity to be tested in combination with
satellite imagery in the optical domain. Indeed, there is an ob-
vious link between surface reßectances and plant light absorp-
tion. This link has been widely used to predict dry matter
production on natural ecosystems, especially grassland in the
Sahelian pastoral zone with the help of coarse spatial resolu-
tion satellite data (e.g.Tucker, 1996). For irrigated crop lands,
the implementation of such approach is complicated since the
growing season varies according to agricultural practices. To
track the variability in crop development and production, the
use of high spatial resolution satellite data appears more ade-
quate.Lobell et al. (2003)have performed such an analysis
on the large irrigated Yaqui Valley (North-West of Mexico)
using Landsat-TM images, but the number of images per grow-
ing season was limited, and rough estimates of planting dates

performed. The design, from now or in a near future, of Earth
Observation Systems designed to provide both high spatial res-
olution (w 10 m) and frequent time of revisit (w 1 day)d such
as RHEA (Dedieu et al., 2003) or FORMOSAT-2 (Chern et al.,
2001)d should make improvement possible.

In this context, this study investigates the perspectives of-
fered by the availability of times series of a key biophysical
variable (leaf area index) for the monitoring of phytomass pro-
duction and grain yield of cereal crops. The investigation is
based on the ÔÔSimple Algorithm For Yield estimateÕÕ
(SAFY) model, which was speciÞcally developed for this
work. The main idea is to use the model to represent well-
known processes involved in crop development and growth,
with the requirement that these processes can be simulated us-
ing standard data, i.e. climatic data and optical imagery (which
provides estimates of leaf area index). The model simulates
the increase of the dry above-ground phytomass based on
the light-use efÞciency theory ofMonteith (1977), with an ac-
count of the dynamics of green leaves and of the effect of tem-
perature. In contrast, the transfers of water and nutriments
between the soil and the plant were not explicitly simulated,
because of the inability to provide a spatial distribution of
the complete set of parameters, initial conditions and input
data in case of regional applications. The impact of water
and nitrogen stresses is believed to be adjusted from leaf
area observations through one main parameter, which is
named effective light-use efÞciency. It has thus been assumed
that the dynamics of green leaves is a good tracer of these
agro-environmental stresses.

The objective of this article is threefold: (1) to present the
SAFY model; (2) to develop a robust method for its control
from time series of green leaf area index; (3) to evaluate this
method using data collected over semi-arid wheat crops under
a large range of irrigation and fertilisation schedules. The ar-
ticle is organised as follows. The region of interest, the Þelds
of study and the experimental data set are Þrst presented. Then
the SAFY model is described, along with a discussion on the
parameters that can be identiÞed from literature or Þeld data
with satisfying accuracy. The calibration of the remaining pa-
rameters is discussed in Section4, with emphasis on the prob-
lem of equiÞnality and over-parameterisation. Section5
presents the model evaluation, followed by concluding
remarks.

2. The experimental data set

The region of interest is the Haouz plain which surrounds
the Marrakech city in the Centre of Morocco. The plain is en-
closed between the ÔJbiletÕ hills at North and the High-Atlas
mountain range at South. The High-Atlas, which culminates
up to 4000 m above the mean sea level at the Toubkal summit,
is the water bank which supplies several big irrigated areas in
the plain (Chaponnie`re et al., 2005).

The experiment took place in an irrigated area of 2800 ha
located in the Haouz plain, 40 km East of Marrakech. The
area is managed by a regional public agency (ORMVAH:
OfÞce Re«gional de Mise en Valeur Agricole du Haouz), which
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is in charge of dam water distribution. Field data were col-
lected during two successive agricultural seasons, years
2002e 2003 and 2003e 2004. This area as well as the Þrst-
year experimental set-up has been fully presented inDuche-
min et al. (2006). Its main characteristics are the following: ce-
real crops are dominant, mostly wheat; soils are homogeneous
with dominant clay, rather deep (around 1 m) and poor in or-
ganic matter (< 2%); climate is of semi-arid continental type,
with low and irregular rainfall (w 240 mm year� 1), tempera-
tures moderately low in winter and very high in summer,
and a very high evaporative demand (w 1500 mm year� 1).

2.1. Fields of study

The Þelds of study are located inFig. 1 and presented in
Table 1. A total of 17 Þelds have been monitored, 9 during
the 2002/2003 and 8 during the 2003/2004 agricultural season.
They were labelled C1 to C9 the Þrst season and V1 to V8 the
second season as they were used to calibrate and validate the
SAFY model, respectively. There are also referred to as cali-
bration and validation Þelds hereinafter.

All Þelds were cropped with a short-cycle durum wheat va-
riety suitable for semi-arid conditions and commonly used in
the Marrakech plain (ORMVAH technical document). The
sowing dates ranged from mid-November to mid-January,
with a delay of up to one month between the 2003e 2004 sea-
son and the 2002e 2003 season (Table 1). At the beginning of
both season three irrigation rounds were decided on by ORM-
VAH, but the amount of water supplied was doubled the sec-
ond season (60 mm per round in 2004 instead of 30 mm in
2003) because the dam level was higher. Fertilisation practices
have been highly variable: no fertilisers were applied on the

calibration Þelds except on C5 at ßowering time, while 60%
of the validation Þelds were fertilised at sowing (Table 1).

During the experiment a meteorological station was in-
stalled in the vicinity of the Þelds of study (Fig. 1). The
2002e 2003 and 2003e 2004 wheat seasons appeared rather
comparable in terms of climate (Fig. 2). Because of excep-
tional rainfall in November (more than 130 mm), both seasons
were more humid than usual, with accumulated rainfall close
to 380 mm for November to May. The rainfall knows a
bimodal distribution with two peaks at the beginning of
December and April. The climate was slightly more rainy in
2003e 2004 than in 2002e 2003 but rainfall events were
more irregular the second year, with no rain from mid-Decem-
ber to end of February and late precipitation (40 mm in May).
Mean air temperature varied on average from 10� C in January
to more than 20� C in May. The climate was hotter in
2002e 2003 than in 2003e 2004, slightly at the beginning of
the season, more signiÞcantly in May. The evaporative
demand logically followed the same trend. According to the
reference evapotranspiration ETo (Penmane Monteith equa-
tion adapted by FAO for well-watered grass, seeAllen,
2000), the two years look roughly comparable until May: ETo
was around 2 mm day� 1 until end of January, then it varied
between 2 and 5 mm day� 1 between February and April. The
main difference between the two seasons occurred later with
very high ETo values between 6 and 7 mm day� 1 in May
2003. This explains why the seasonal evaporative demand
was 50 mm larger in 2002e 2003 than in 2003e 2004.

2.2. Green leaf area index (GLAI) and grain yield (GY)

During the 2002/2003 agricultural season, the Green leaf
area index (GLAI) was monitored through reßectances data
acquired with a hand-held radiometer (Duchemin et al.,
2006). We used a MSR87 multispectral radiometer (Cropscan
Inc., USA) to measure both incoming and reßected radiation
over the spectral bands of LandSat Thematic Mapper (TM)
sensor. The red (0.63e 0.69mm) and near-infrared (0.76e
0.90mm) reßectances were used to calculate the Normalised
difference vegetation index (NDVI). The comparison with di-
rect metric measurements has allowed establishing an expo-
nential relationship between GLAI and NDVI.

During the 2003/2004 agricultural season, GLAI was de-
rived from hemispherical digital photography based on the
analysis of canopy gap fraction (see the review byJonckheere
et al., 2004). For this analysis we strictly followed the proce-
dure designed byWelles and Norman (1991)for the LI-COR
LAI-2000 plant canopy analyser instrument. This technique
was inter-calibrated with direct measurements and NDVI
estimates performed the Þrst season.

At the end of May of both seasons, grain maturity was
reached and grain yield (GY) was estimated by ORMVAH
technicians. These estimates accounted for yield loss due to
the harvesting technique, around 20% of the total yield. The
second season cutting and weighting of wheat plants were ad-
ditionally performed to monitor the dynamics of dry aerial
phytomass (V5 Þeld only, on a 10-day basis) and to estimate

Fig. 1. Location of the Þelds of study on a Quickbird panchromatic image.
Hatched areas with horizontal and vertical lines indicate the calibration (C1
to C9) and validation (V1 to V8) Þelds, respectively. The black lines delimitate
the irrigation units. The black disc highlights the location of the meteorolog-
ical station.
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Table 1
Fields of study, agricultural practices and grain yield

Field Agricultural season Sowing date Irrigation Fertilisation (kg ha� 1) Grain yield (t ha� 1)e

ORMVAH estimates Field measurements

C1 2002e 2003 Dec 18 2.5e 3
C2 #Jan 15a Three events 30 mm each 0.7e 1
C3 0.7e 1
C4 0.7e 1
C5 Jan 11 Six eventsb 100c 1.8e 2.2
C6 # Dec 15a Three events 30 mm each 1.5e 2
C7 2.5e 3
C8 2.5e 3
C9 2e 2.5
Average yield value 1.87

V1 2003e 2004 Nov 21 Three events 60 mm each 2e 2.5 1.6 (0.4)
V2 Nov 21 50d 2.5e 3 3.4 (1.7)
V3 Dec 15 2e 2.5 2.8 (0.8)
V4 Dec 19 100d 1.8 e 2.2 2.3 (2.3)
V5 Dec 19 100d 3e 3.5 4.3 (1.9)f

V6 Dec 19 100d 3.5e 4 3.9 (1.3)
V7 Dec 20 1e 1.5 2.2 (1.0)
V8 Dec 24 100d 2e 2.5 2.5 (1.4)
Average yield value 2.53 2.9(1.4)

a The exact sowing date is unknown.
b The farmer was asked for supplementary irrigation to avoid drought.
c Fertilisers were applied at ßowering time.
d Fertilisers were applied just before sowing.
e Left column: range correspond to ORMVAH estimates right column: average values and standard deviation (in parenthese) derived from Þeld measurements.
f Measurement of the dry aerial phytomass have also been performed every 10 days on this Þeld.

Fig. 2. Time courses of main climatic variables on the area of study during 2002/2003 (top) and 2003/2004 (bottom) agricultural seasons: daily mean air temper-
ature (dotted lines) and reference evapotranspiration (full lines) are associated to the Y-left axis; rainfall (bars) is associated to Y-right axis.
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the Þnal grain yield (all Þelds). GY was measured following
the protocol detailed byHadria et al. (2007), and varied
from 0.85 to 4.3 t ha� 1 (Table 1). Yield values were much
lower than those observed in other wheat experiments, even
under semi-arid climate (e.g.Lobell et al., 2003; Rodriguez
et al., 2004) or drought conditions in temperate climate (e.g.
Jamieson et al., 1998; Clevers et al., 2002). The probable
main cause is nitrogen stress (Hadria et al., 2007).

The analysis of yield data inTable 1allows pointing out the
difÞculty to get accurate estimates of grain yield in the condi-
tion prevailing during the experiment. There is a large scatter
of measurements due to the high heterogeneity of wheat can-
opy, and the standard deviation can be as large as the average
value (e.g. Þeld V4). Estimates by ORMVAH technicians
moderately match Þeld measurements, with a correlation coef-
Þcient of 0.81 and large differences around 1 t ha� 1 in two
cases (Þelds V5 and V7). The bias of 0.4 t ha� 1 between the
two techniques is coherent with the fact that ORMVAH esti-
mates accounts for yield loss during harvest.

3. Model presentation

Monteith (1977)has developed a simple theory to link the
production of total dry phytomass and the photosynthetically
active portion of solar radiation (PAR) absorbed by plants.
The SAFY (Simple Algorithm For Yield estimates) model
uses this relationship. It operates at a daily time step from
the day of plant emergence (D0) to the day of complete leaf
senescence. During this period, the phytomass production is
driven by the incoming PAR radiation absorbed by leaves,

with two successive phenological phases: (1) leaf extent; (2)
grain Þlling.

3.1. Formalisms

The SAFY model includes three sub-sets of equations to
simulate the time courses of the dry above-ground mass, the
Green Leaf Area Index and the Grain Yield. The DAM
variable refers to the total aerial phytomass, grains excepted.
The climatic forcing includes daily incoming global radiation
and daily average air temperature. The notations and units of
the main variables and parameters are summarised inTable
2. The equations of the model are detailed below. The model
has been developed in MATLAB code and is available upon
request to the corresponding author.

3.1.1. Dry above-ground mass (DAM)
The phytomass increases during the period of photosyn-

thetic activity, from an initial value (DAM0) at plant emer-
gence to a Þnal value when leaf senescence ends. During
this period, the production of dry above-ground mass
(DDAM) is driven by incoming global radiation Rg through
the following three factors: (1) the climatic efÞciency3C,
which is the ratio of incoming photosynthetically active to
global radiation; (2) the light-interception efÞciency3I, which
is the fraction of photosynthetically active radiation that is ab-
sorbed by the canopy (APAR); (3) the effective light-use efÞ-
ciency ELUE, which is the ratio of photochemical energy
produced as DAM from APAR. In addition,DDAM is affected
by the daily average of air temperature (Ta) through the tem-
perature-stress-function FT. This leads to:

Table 2
Parameters and variables of the SAFY model (notation and identiÞcation)

Description Notation Unit Value Source

Input variables
Daily incoming global variation Rg MJ m� 2 d� 1 Meteorological station
Daily mean air temperature Ta � C Meteorological station

Parameters
1st Initial dry above-ground mass DAM0 g m� 2 4.5 IdentiÞed as initial green leaf area index of 0.1

Climatic efÞciency 3C e 0.48 Varlet-Grancher (1982)
Light-interception coefÞcient K e 0.5 Arora (1998); Brisson (1998); Meinke (1998)
Minimal temperature for growth Tmin � C 0 Porter (1999)
Optimal temperature for growth Topt � C 20 Porter (1999)
Maximal temperature for growth Tmax � C 37 Porter (1999)
SpeciÞc leaf area SLa m2 g� 1 2.2� 10� 2 Measured at Þeld

2nd Partition-to-leaf function: parameter 1 PLa e 15.73� 10� 2 Calibrated
Partition-to-leaf function: parameter 2 PLb e 1.96� 10� 3 Calibrated
Sum of temperature for senescence STT

� C 1008 Calibrated
Rate of senescence Rs � C day� 1 6875 Calibrated
Rate of grain Þlling Py � C� 1 5.1� 10� 3 Calibrated

3rd Day of plant emergence D0 day Local To be adjusted Þeld-by-Þeld
Effective light-use efÞciency ELUE g MJ� 1 Local To be adjusted Þeld-by-Þeld

Output variables
Green leaf area index GLAI m2 m� 2

Dry above-ground phytomass DAM g m� 2

grain yield GY g m� 2

Parameters are presented in 3 groups according to the method used for their identiÞcation, discussed in Section3.2.
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DDAM ¼ Rg, 3C, 3I, ELUE� FTðTaÞ

¼ APAR� ELUE� FTðTaÞ ð1Þ

The light-interception efÞciency3I depends on the green leaf
area index (GLAI) and a light-interception coefÞcient k
through the well-known BeerÕs law:

3I ¼ 1 � e� k� GLAI ð2Þ

Both high and low temperatures decrease the rate of
phytomass production (Porter and Gawith, 1999). This effect
is accounted for by introducing the air temperature (Ta) in
2nd-degree polynomials determined by an optimal tempera-
ture for crop functioning (Topt) and two extreme values
(Tmin and Tmax) beyond which the plant growth stops (after
Brisson et al., 2003). This leads to:

3.1.2. Green leaf area index (GLAI)
The dynamics of green leaf area index is simulated from

the balance between leaf extent during growth (DGLAIþ ,
eq. 4) and leaf disappearance during senescence (DGLAI � ,
eq. 6). These two phenological phases are identiÞed based
on a degree-day approach from accumulated air temperature
(thermal timeSTa).

During growth, the aerial phytomass production is distrib-
uted into leaf and non-leaf mass according to the partition
function PL, then the increase of leaf mass is converted in in-
crease of leaf area (DGLAIþ ) according to the value of the
speciÞc leaf area (SLA). This leads:

DGLAIþ ¼ DDAM, PLðSTaÞ, SLA ð4Þ

The partition-to-leaf function PL (eq. 5) is an empirical func-
tion of air temperature with 2 parameters (PLa and PLb) adap-
ted from Maas (1993). It is based on the sum of air
temperature higher than a base temperature accumulated since
plant emergence (STa). The base temperature that affects
wheat phenology does not explicitly appear in the equation
since it is known to be 0� C for wheat (Porter and Gawith,
1999; Brisson et al., 2003; Xue et al., 2004). As the PLa param-
eter is close to 0, PL exponentially decreases with thermal time
from a value close to 1 at plant emergence to a value of 0 at the
end of the leave production phase.

PLðSTaÞ ¼1� PLa, ePLb, STa ð5Þ

The senescence of leaves starts when accumulated air temper-
ature has reached a given threshold STT. It increases with ther-
mal time at a rate determined by the Rs parameter. It ends

when GLAI has returned to a value lower than the initial
one, indicating total senescence. This leads to:

if STa> STT

DGLAI � ¼ GLAI , ðSTa� STTÞ=Rs
ð6Þ

3.1.3. Grain yield (GY)
The grain Þlling phase is bounded by the day when

foliage production ends and the day when total senescence
occurs. During this period, the daily increase of grain yield
(DGY) is proportional to the total above-ground phytomass,
with a constant fraction Py partitioned to grains. This simply
leads:

DGY ¼ DAM, Py ð7Þ

3.2. Parameters

The level of complexity of SAFY is low in the perspective
to facilitate the optimisation of unknown parameters using few
observations. The parameters are limited in number (14) and
can be divided into the three categories highlighted inTable 2
and are discussed below.

In the Þrst category,a priori values has been identiÞed ac-
cording to some previous and the present experimental studies.
This was the case for the climatic efÞciency (3C, eq. 1), the
light-interception coefÞcient (k, eq.2), the speciÞc values of
air temperature related to plant functioning (Tmin, Topt and
Tmax, eq.3), the speciÞc leaf area (SLA, eq.4) and the initial
value of dry above-ground phytomass (DAM0). Many studies
have shown that incoming PAR is roughly half of the incoming
global radiation Rg, independently of atmospheric conditions
(e.g.Szeicz, 1974). Thus, the climatic efÞciency3C is nearly
constant in space and time, around a value of 0.48 (afterVar-
let-Grancher et al., 1982). The light-use efÞciency is calcu-
lated from GLAI based on the light-interception coefÞcient k.
k values range between 0.45 and 0.5 in most of modelling
studies. Here we choose the value of 0.5, also used byArora
and Gajri (1998), Meinke et al. (1998)and Brisson et al.
(2003). SLA has been measured at Þeld to 0.022 m2 g� 1.
This value is consistent with other values found in the litera-
ture (0.024 or 0.025 m2 g� 1 in Sinclair and Amir, 1992;
Maas, 1993; Arora and Gajri, 1998). Wheat is generally con-
sidered to take advantage of an optimum temperature range of
17e 23 � C over the entire growing season, with extreme
temperatures of 0� C and 37� C beyond which growth stops
(Porter and Gawith, 1999). Thus the minimal, optimal and

FTðTaÞ ¼1� ½ðTopt� TaÞ=ðTopt� TminÞ�2 if Tmin < Ta< Topt
¼ 1 � ½ðTa� ToptÞ=ðTmax� ToptÞ�2 if Tmax > Ta> Topt
¼ 0 if Ta < Tmin or Ta> Tmax

ð3Þ
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maximal temperatures for wheat growth have been set up to 0,
20 and 37� C, respectively. Finally, a low initial value of
4.5 g m� 2 has been identiÞed for the dry above-ground mass
at plant emergence. Given the SLA value, the DAM0 value
correspond to an initial GLAI of 0.1 (see eq.4). The fact of
identifying (somehow) arbitrarily this parameter is not critical
since it is closely related to the deÞnition of the plant emer-
gence stage (GLAI¼ 0.1 in this study). Indeed, the model
would give comparable results in case of a low initial GLAI
value with early plant emergence as in case of a higher initial
GLAI value with delayed emergence. Keeping constant the
initial DAM value thus allowed gaining consistence in the def-
inition and in the inversion of the date of plant emergence.

The second category includes phenological parameters,
which depend on the genetic characteristics of the crop (type
and variety). It includes the Þve parameters that drive the
mass partitioning between organs and the change in phytomass
status: leaf appearance during growth (PLa and PLb, in eq.5);
beginning and rate of senescence (STT and Rs, in eq.6); rate of
grain Þlling (Py, in eq.7). The four Þrst parameters affect the
seasonal patternd but not the amplituded of the GLAI time
course.

The third category is made of the two last parameters that
strongly depend on agro-environmental conditions. The Þrst
one is the day of plant emergence (D0), which occurs generally
1 to 3 weeks after sowing depending on the soil temperature
and moisture. The second one is the effective light-use efÞ-
ciency (ELUE), which is supposed in this study to account
for all agro-environmental stresses, temperature excluded.
This parameter is expected to give in a simple manner a global
level of all these agro-environmental stresses integrated to-
gether, which could be an indicator of the performance of ag-
ricultural practices, such as the irrigation and fertilisation
schedules.

The total number of parameters is 14, amongst which 7
have been obtained from the above mentioned literature, Þeld
data or assumptions (1st category inTable 2). We can distin-
guish the 7 other parameters in terms of their variations in
space. Since the life cycle of wheat plants are determined by
genetic characteristics, the phenological parameters (2nd cate-
gory in Table 2) are assumed to be dependent of the wheat va-
riety. Consequently, there are supposed to be constant through
the Þelds of study. However, because their direct measure-
ments are difÞcult or impossible, they need to be calibrated.
The last two parameters (3rd category inTable 2) are highly
variable in space as they are directly affected by farmer prac-
tices. They required to be adjusted locally, at least at a Þeld
scale.

4. Model calibration

In this study, calibration is considered as the procedure of
identifying a single optimum parameter set resulting in a sim-
ulation that best reproduces several observed variables.
Though important, evaluation of crop model parameters has
not been fully investigated. More studies have been under-
taken on soil-vegetation-atmosphere transfer and hydrological

models (Beven and Binley, 1992; Bastidas et al., 1999; Beven,
2001; Wagener et al., 2001; Demarty et al., 2004; Vrugt et al.,
2002, 2005). These studies have shown that the calibration of
(even simple) models is a complex issue since the parameters
are often inter-dependant. Dependency or compensation be-
tween parameters causes equiÞnality or functional similarity
(Franks et al., 1997; Beven and Franks, 1999). In particular,
this may occur when different sets of parameter values can re-
sult in similar simulations of a particular variable while other
variables may strongly and inconsistently differ from one sim-
ulation to the next, though initial and boundary conditions are
kept constant. That is why it is essential to identify the param-
eters which have a biophysical interpretation based on exper-
imental results, as done for half of the SAFY model
parameters (1st category of parameters inTable 2 with the
values discussed in the last section). The procedure to identify
the remaining parameters is discussed in this section.

4.1. A typical example of parameter compensations

A Þrst attempt to derive the phenological parameters was
performed based on the experimental data collected on the
C1 Þeld taken as an example. The objective was to retrieve
all the non-a priori-known parameters that drive the time
course of GLAI, i.e. all the parameters of the above-discussed
2nd and 3rd categories except the rate of grain Þlling which
only inßuences yield. There are 6 such parameters (Table 3):
the day of plant emergence (D0), the two parameters of the
partition-to-leave function (PLa and PLb), the two parameters
of the senescence function (STT and Rs), and the effective
light-use efÞciency (ELUE). All these parameters were cali-
brated against the GLAI observations collected on the C1 Þeld
using the SCEM-UA algorithm (Vrugt et al., 2002). This algo-
rithm is adapted from the SCE-UA global optimisation method
(Duan et al., 1992), which has been used extensively and
proved to be robust and efÞcient for the calibration of concep-
tual rainfall runoff models. The setting of the method was the
following: we assumed a uniform prior distribution of the pos-
sible parameters (option 3), the number of complexes was 10,
the population size was 200, the number of function evaluation
was 5000, and the residual error was assumed normally dis-
tributed (Gamma¼ 1). The conditions of application were
strictly similar from one optimisation to the next: same for-
malisms and equations, samea priori-known parameters,

Table 3
Parameters targeted for robustness and sensitivity analysis

Description Notation Unit Range of variation

Day of plant emergence D0 day 50e 150
Leaf partitioning

function: parameter 1
PLa e 0.01e 0.3

Leaf partitioning
function: parameter 2

PLb e 5 � 10� 4e 1 � 10� 2

Sum of temperature
to start senescence

STT
� C 200e 2000

Rate of senescence RS
� C day� 1 1000e 15000

Effective light-use efÞciency ELUE g MJ� 1 0e 10
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same climatic forcing, same set of targeted observations. With
this setting, the SCEM-UA algorithm was successively applied
200 times with a large range of feasible parameters (seeTable
3). For each run, we retained the best parameters set as the one
with the best posterior density (i.e. the lowest absolute error
between observed and measured values). The result consists
in 200 sets of the targeted six parameters associated with sim-
ulations of GLAI and DAM time courses, which were ana-
lysed using the following statistical indicators:

EFF¼ 1�
P n

i¼1ðyi mod � yi obsÞ
2

P n
i¼1ðyi obs� yobsÞ

2 ð8Þ

(efÞciency)

RMSE¼

�������������������������������������
1
n

Xn

i¼1

ðyi mod� yi obsÞ
2

s

ð9Þ

(root mean square error)

R¼
P n

i¼1ðyi mod � ymodÞðyi obs� yobsÞ
��

P n
i¼1ðyi mod � ymodÞ

2
��

P n
i¼1ðyi obs� yobsÞ

2�
� 1=2 ð10Þ

(correlation coefÞcient)
whereyi mod is one simulated value,yi obs is one measurement,
ymod is the average of simulated values,yobs is the average of
measurements.

The result is displayed inFigs. 3 and 4. It appears clearly
that the GLAI observations are always accurately captured

Fig. 3. Time courses of green leaf area index (a) and dry aerial phytomass (b). The simulations have been carried out using 200 sets of the 6 parameters that drive
the GLAI time course, each set being calibrated against the GLAI values observed on one Þeld of study (symbols in a).
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by the model (Fig. 3a): for the 200 simulations, the root mean
square error between observed and simulated GLAI values is
on average 0.06 with a maximum of 0.11 (3% of the maximum
observed GLAI), and individual errors are lower than this av-
erage value for 70% of the 200 cases; the efÞciency is always
very close to 1 with a minimum value of 0.997. Nevertheless,
the parameters may strongly vary from one optimisation to the
next. The histograms of the 200 sets of parameters which are
compatible with the observed data are displayed inFig. 4. The
relative variations of the parameters, i.e. the ratio of the differ-
ence between the maximum and the minimum value to the av-
erage value, ranges between 17% for the emergence date (D0)
to almost 200% for the second parameter of the partition-to-
leave function (PLb). These variations result in large discrep-
ancy in the simulations of the dry above-ground phytomass
from one set of parameter to the other (Fig. 3b): the Þnal
DAM values range from 6.8 to 11.6 t ha� 1 for the 200 simula-
tions, varying more or less by 50% around the average value
(9.7 t ha� 1). Indeed, similar simulations of GLAI can be for
instance obtained with a high growing rate (high ELUE) in
combination with a low biomass allocation to leaf (low PL),
or with less growth (low ELUE) in combination with a high
biomass allocation to leaf (high PL). These non-coherent var-
iations will affect the estimates of grain yield with the same
order of magnitude.

This Þrst analysis typically allowed to highlight what is re-
ferred to as equiÞnality in this study: good Þts of GLAI may
be achieved in many areas of the parameters space, but there
is still a consequent uncertainty in the simulations of other

variables (DAM and GY). Similar behaviours have been par-
ticularly studied by S.W. Franks and K.J. Beven in the case
of hydrological and soil-vegetation-atmosphere transfer
models (Beven and Binley, 1992; Franks et al., 1997; Beven
and Franks, 1999; Beven, 2001).

4.2. Sensitivity analysis

The implication of the equiÞnality problem is that addi-
tional parameters should be identiÞed to calibrate the SAFY
model. In order to quantify the respective importance of the
parameters as well as their inter-connection, we have carried
out one (1D) and two (2D) dimensional sensitivity analysis.
The analysis was done from the comparison of simulated
and observed GLAI on Þeld C1, with a focus on one or two
of the six nona priori known parameters that impact on the
GLAI time course (see the previous section). The method con-
sisted in choosing one parameter (1D) or a couple of parame-
ters (2D), for which changes in GLAI simulations in response
to their variations were systematically analysed.

The 1D analysis was carried out by letting one parameter
vary, the Þve others being kept constant at their median values
displayed inFig. 4. The interval of variation of the targeted pa-
rameter was chosen from� 50% toþ 50% of its median value.
The result is displayed in terms of errors between simulated
and observed GLAI on Þeld C1 (Fig. 5). Taking as an indicator
of the sensitivity the maximum value of the root mean square
error through the interval of variation (black discs inFig. 5),
the most sensitive parameter appears to be the effective

Fig. 5. Results of the 1-D sensitivity analysis. The targeted parameter appears as the title of each subplot. The root mean square error (RMSE) betweenobserved
and simulated values of green leaf area index (GLAI) is plotted for each of the six parameters that drive the GLAI time course. Each parameter varies by� 50%
around its median values displayed inFig. 4. Black discs and associated labels highlight maximum errors.
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light-use efÞciency (ELUE), followed by the two parameters
of the partition-to-leave function (PLa and PLb) and the day
of plant emergence (D0), then the parameter that determines
the beginning of senescence (STT), and Þnally the rate of se-
nescence (Rs).

The 2D analysis was carried out by letting two parameters
vary, the four other being constant to their median values dis-
played inFig. 4. The intervals of variation of the targeted pa-
rameters accounted for the result of the 1D analysis in order to
have homogeneous representations of all the 2D-error plots.
The result of the 2D analysis is displayed inFig. 6. When
one dimension includes the date of plant emergence
(Fig. 6ae e), the RMSE regularly increases in all directions
of the 2D-parameter spaces around a minimum value. In other
words, the emergence date is the only parameter that appears
nearly fully independent. In contrast, the presence of valleys in
several plots indicates that one parameter strongly compen-
sates the other, i.e. the two parameters are partly dependent.
The strongest compensation occurs between the two

parameters of the partition-to-leaves function (Fig. 6f), fol-
lowed by each of these two parameters and the effective
light-use efÞciency (Fig. 6i and l), then the two parameters
of the senescence function (Fig. 6m), and Þnally the parameter
that determines the beginning of senescence and each of the
two parameters of the partition-to-leaves function (Fig. 6g
and j).

4.3. IdentiÞcation of parameters: simulation of leaf area
index and grain yield

According to the presentation of the SAFY model and its
sensitivity analysis (see Sections3 and 4.2), it seems justiÞed
to calibrate the phenological parameters in priority. Indeed,
these parameters depend on the plant genetic characteristics
and are thus believed not to vary for a given crop type and va-
riety. Consequently, a single set of parameters should be suit-
able for all the Þelds of study which are cropped with the same
wheat variety. Furthermore, their determination will limit

Fig. 6. Results of the 2D-sensitivity analysis. The root mean square errors between observed and simulated green leaf area index are plotted as surfaces for the
different couples of parameters used in the simulations (X- and Y-axis). The parameters deviate from their median values (seeFig. 4) by 100% divided by the
maximum errors displayed inFig. 5. The colour bar displays the error ranging from 0.1 to 0.7 with a linear grey scale. Negative Rs values, which are out of
the physical deÞnition domain, appear non-gridded in graphs d, h, k, m and o.
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ambiguity in the retrieval of the remaining 2 parameters (D0

and ELUE), which have been found independent (Fig. 6e).
The calibration was based on the experimental data set ac-

quired during the 2002/2003 agricultural season (Þelds C1 to
C9 in Fig. 1 and Table 1). It consisted in the following
three-step procedure:

(1) A statistical analysis on 1800 sets of parameters (200 runs
for each of the 9 calibration Þelds) was performed to iden-
tify the optimal set of the fourd genetic, thus a priori
uniqued parameters that drives the dynamics of plant
leaves (development and senescence);

(2) The same optimisation scheme was used to identify the
two remaining parameters (ELUE and emergence date)
that control the vegetation growth; however, as these pa-
rameters varied with agricultural practices, they have
been retrieved Þeld by Þeld; their variations are discussed
at the end of this section;

(3) Finally, we adjusted thed uniqued parameter that deter-
mines the increase of grain weight; in this last step, esti-
mates of grain yield were used as the optimisation
objective, whereas in the two previous steps the optimisa-
tion objective is only GLAI.

4.3.1. Green leaf area index
There are four parameters that affect the shape of the GLAI

time course: the two parameters of the partition-to-leaf func-
tion (PLa and PLb in eq. 5) and the two parameters of the se-
nescence function (STT and Rs, in eq.6). The procedure for
their retrieval was similar to that applied on Þeld C1 (based
on the SCEM-UA algorithm, see Section4.1, Figs. 3 and 4)
but generalised to all the calibration Þelds. The four parame-
ters, together with the day of emergence and the effective
light-use efÞciency, have been adjusted 200 times for each
of the 9 calibration Þelds. All the retrieved parameters were
mixed together, and then one can choose amongst three statis-
tical variables to derive a single value from the resulting histo-
grams: median, mean and maximum of occurrence. Though
there are few differences amongst the variables, the use of me-
dian values led to the best agreement between observations
and simulations. Indeed, the mean value can be affected by un-
realistic extreme values, while the maximum of occurrence is
not satisfying in case of non-monomodal histogram. This is il-
lustrated in the case of Þeld C1 inFig. 4: for the PLb parame-
ter, there is a shift of the mean compared to the median due to
several large values; for the PLa parameter, the value associ-
ated to the maximum of occurrence is signiÞcantly different
from both the median and the mean value.

The set of PLa, PLb, STT and Rs median values resulting
from the previous analysis is displayed inTable 2. After cali-
bration, simulations were adjusted again on GLAI observa-
tions for each individual Þeld, with all the parameters
remaining constant and Þxed at the values displayed inTable 2
excepted the day of emergence and the effective light-use ef-
Þciency. These two parameters have been re-optimised Þeld by
Þeld using the SCEM-UA algorithm, which was repeated 50

times for each Þeld, always resulting in the same D0 � ELUE
couple of values. This Þnding was expected since the two param-
eters have been found independent (seeFig. 6e).

The resulting simulations of green leaf area index are plot-
ted together with observations inFig. 7. The time courses of
GLAI are quite well simulated: for the 9 calibration Þelds ef-
Þciencies are on average 0.95 with a minimal value of 0.88 for
Þeld C9; the root mean square error between observed and
simulated GLAI ranges between 0.08 for Þeld C2 and 0.59
for Þeld C9, representing 3% and 12% of the maximum
values, respectively. The maximum errors, which occur on
Þelds C7 and C9, appear Þrstly linked to underestimation at
the end of simulations (see days after 180 inFig. 7). This un-
derestimation is explained by uncertainty in the retrieval of the
day of plant emergence due to a lack of measurements at the
beginning of the season (see Section4.3.3). Large errors are
secondly due to the fact that the normalised difference vegeta-
tion index saturates for well-developed canopy (seeDuchemin
et al., 2006), resulting in scatter of high GLAI observations
(e.g. day 150, Þelds C6 to C9).

4.3.2. Grain yield
The six parameters that controls LAI and DAM being now

identiÞed, the only unknown parameter is the one that deter-
mines the partition of the dry above-ground phytomass into
grains (Py, eq.7). This parameter was adjusted from simula-
tions obtained with a realistic interval of variation with the ob-
jective to accurately predict the crop yield. In this objective,
we search to minimise the root mean square error between ob-
served and simulated yield values, with this error calculated
from the 9 calibration Þelds. A minimal root mean square er-
ror of 0.47 t ha� 1 was found for a Py value equal to
5.1 � 10� 3 � C� 1. This error represents 25% of the C1 to C9
average yield value (1.87 t ha� 1, seeTable 1).

Observations and simulations of grain yield are plotted to-
gether with the GLAI time courses inFig. 7. The model ap-
pears able to track a signiÞcant part of yield variation: the
correlation coefÞcient between simulated and observed GY
is 0.8 (R2 ¼ 0.64) for the nine calibration Þelds. GY simula-
tions end within the range of error assumed for ORMVAH es-
timates, excepted on Þelds C1 and C7 for which GY appears
underestimated by 0.8 and 0.7 t ha� 1, respectively. Although
the formalism of the SAFY model to simulate grain yield is
quite simple, the accuracy of these results are comparable to
that obtained with more complex models (e.g.OÕLeary and
Connor, 1996; Asseng et al., 1998; Jamieson et al., 1998;
Clevers et al., 2002; Brisson et al., 2003).

4.3.3. Day of emergence and light-use efÞciency
Table 4provides with the Þnal values of days of plant emer-

gence (D0), together with the value of sowing dates collected
from the farmers. Sowing and emergence dates are highly cor-
related (R2 ¼ 0.93), with emergence occurring on average
21 days after sowing. However, there are large variations in
the delay between sowing and emergence, which may partly
be due to uncertainty in the observations (seeTable 1). Ex-
cluding the case of Þeld C1, the delay appears to increase
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by about 10 days for the Þelds sown in December (C6 to C9)
to around 30 days for the Þelds sown in January (Þelds C2 to
C5). Although these variations are coherent with the fact that
both air temperature and soil moisture are higher in December
than in January (seeFig. 2, left), the short delays on Þelds C6
to C9 appears unrealistic. The Þtting procedure probably un-
derestimates D0 on these four Þelds which have not been

monitored at the beginning of the season. This also explains
the shift in the simulation of GLAI at the end of leaf senes-
cence (Fig. 7).

The effective light-use efÞciency varies between 1.49 and
2.43 g MJ� 1 (Table 4), in the range found in the literature
for the production of wheat above-ground dry mass, e.g.
1.34 to 2.5 g MJ� 1 (Maas, 1993; Jamieson et al., 1998;

Table 4
Values of the local parameters of the SAFY model (adjusted Þeld by Þeld)

Calibration Þelds

C1 C2 C3 C4 C5 C6 C7 C8 C9

Day of emergencea Jan 1 Feb 22 Feb 16 Feb 14 Feb 4 Dec 15 Dec 12 Dec 21 Dec 17
30 w 38 w 32 w 30 24 w 8 w 5 w 14 w 10

Light-use efÞciency 1.89 1.66 1.64 1.49 1.82 1.74 2.13 2.43 2.26

Validation Þelds

V1 V2 V3 V4 V5 V6 V7 V8

Day of emergencea Dec 16 Dec 11 Jan 24 Jan 20 Jan 14 Jan 13 Jan 23 Feb 3
25 20 36 31 25 24 33 41

Light-use efÞciency 2.18 2.37 1.75 1.56 1.94 2.18 1.46 2.19

a Numbers in italics indicate the delay between the sowing day and day of plant emergence (thew symbol is used if the sowing date is not exactly known, see
Table 1).

Fig. 7. Observations of green leaf area index (stars) and grain yield (ranges of ORMVAH estimates displayed by vertical lines) together with their respective sim-
ulations (lines) after calibration. Each subplot corresponds to one calibration Þeld named in the title. Root mean square error and efÞciency between observed and
simulated GLAI values are displayed with label ÔrmsÕ and ÔeÕ, respectively. The days are numbered from October 15, 2002.
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Meinke et al., 1998; OÕConnell et al., 2004). Its variation ap-
pears consistent with agricultural practices. Firstly, ELUE is
higher when sowing is earlier (Þelds C1 and C6 to C9 com-
pared to others). The advantage of early sowing has been
also underlined using the STICS crop model byHadria et al.
(2007). In case of early sowing the plant takes advantage of
the Þrst effective rainfalls (3 events with daily rainfall higher
than 20 mm between November 15 and December 9, 2002, see
Fig. 2, left) and do not suffer from water stress at the end of
the season when the evaporative demand reach its maximum
values. Amongst the remaining Þelds (C2 to C5), ELUE is
the highest for the Þeld which has been irrigated six times
and fertilised (Þelds C5 compared to C2, C3 and C4, which
are all sown Mid-January).

5. Model evaluation

The SAFY model was evaluated against the experimental
data set collected on the validation Þelds during the 2003/
2004 agricultural season (V1 to V8 inFig. 1 and Table 1).
The day of emergence and the effective light-use efÞciency
have been adjusted for each of these Þelds, with all other pa-
rameters remaining constant to their calibrated values (seeTa-
ble 2). The values of these two parameters are Þrst discussed,
then the simulations of the three main output variables (green
leaf area index, dry above-ground mass, and grain yield) are
analysed.

5.1. Day of emergence and light-use efÞciency

The values of days of emergence and effective light-use ef-
Þciencies are presented inTable 4. The trends in their variation
are common with the calibration Þelds. Firstly, days of plant
emergence and sowing date are highly correlated (R2 ¼ 0.92
in Fig. 8). Secondly, the delay between sowing and emergence
increases with the time of sowing: it is on average 22.5 days

for the Þelds sown in November (V1 and V2) against
31.5 days for the Þelds sown in December (V3 to V8). This de-
lay appears more regular on validation Þelds than on calibra-
tion Þelds. The effective light-use efÞciency ranges between
1.56 and 2.37 MJ� 1 on the validation Þelds and shows the
same trends than on calibration Þelds. Its variation between
Þelds appears to be Þrst linked to agricultural practices: the
Þeld displaying the highest efÞciency (V2) was sown early
and fertilised at sowing; the Þeld that displays the lowest efÞ-
ciency is V7, with late sowing and no fertilisation (seeTable
1). However, if these two extreme values correspond to the
best and the worst practices, the hierarchy is not so clear for
intermediate values. In particular, the differences in practices
do not explain the variation in ELUE between the Þelds V4,
V5 and V6, which are juxtaposed and cropped by the same
farmer. It is possible here that inaccuracy occurs during the
collection of technical itinerary. As additional indicators of
the crop behaviour, it would be also interesting to consider
other practices such as ploughing or weed/pest controls as
well as the Þeld history, but these data were unavailable for
most of the Þelds of study.

5.2. Green leaf area index

The performance of the SAFY model to simulate GLAI
time courses on the validation Þelds appears quite satisfactory
(Fig. 9). The seasonal variation appears as well reproduced as
for the calibration Þelds (compareFigs. 7 and 9), even if the
root mean square errors is slightly larger than on the calibra-
tion Þelds (on average 0.4 for the validation Þelds against
0.24 for the calibration Þelds). The explanation appears to
be Þrst linked to observations: it seems that high GLAI values
are more scattered the second season (using hemispherical
photography) than the Þrst season (estimates from NDVI).
Furthermore, it is clear fromFigs. 7 and 9that GLAI observa-
tions are much noisy for well-developed canopies than for
scarce vegetation. However, the consequence is limited for
the simulation of the crop production since the intercepted
radiation saturates for high GLAI values (exponential law in
eq. 2).

Despite this, the GLAI seasonal patterns are all well repro-
duced by the model. This conÞrms the quality of the calibra-
tion of the phenological parameters. In the conditions
prevailing in this study, the assumption that these parameters
do not depend on water and nitrogen stresses appears valid.
This assumption is used in several crop models (e.g. STICS,
Brisson et al., 2003), while other models simulate an acceler-
ation of leaf senescence in case of water stress. In the last case,
the impact of water stress is nevertheless much larger on the
amplitude than on the shape of the GLAI seasonal course
(e.g.Jamieson et al., 1998).

The accuracy of GLAI simulations appears comparable to
that of other simpliÞed models with a higher degree of liberty
during calibration (e.g. 5 parameters adjusted inMaas, 1993).
The performance of the SAFY model to simulate GLAI time
courses is often much better than that of more complex models
(e.g. Pala et al., 1996; Asseng et al., 1998; Jamieson et al.,

Fig. 8. Comparison between sowing and emergence dates for the validation
Þelds (in number of days after October 15, 2003). The dotted line highlights
the X¼ Y line.
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1998; Meinke et al., 1998; Clevers et al., 2002; Olesen et al.,
2002; Panda et al., 2003; Asseng et al., 2004; Rodriguez et al.,
2004; Hadria et al., 2007). However, it should be kept in mind
that the SAFY model is driven by GLAI observations, which is
not always the case in the above-mentioned studies.

These results are quite acceptable regarding the accuracy of
leaf area index estimates performed with indirect methods
such as remote sensing or hemispherical photography. Indeed,
average difference of 30% on wheat GLAI estimates between
direct (metric) and indirect methods have been reported during
this experiment (Duchemin et al., 2006; see alsoWeiss et al.,
2004for a review).

5.3. Grain yield

The SAFY model moderately reproduces the variation ob-
served from one validation Þeld to the next (Fig. 10). The corre-
lation coefÞcient between simulation and visual estimates is
around 0.69 (R2 ¼ 0.48), slightly lower than for the calibration
Þelds. Furthermore, the model clearly underestimates grain
yield, by on average 0.5 t ha� 1 when compared to ORMVAH es-
timates and 0.9 t ha� 1 when compared to Þeld measurements.

Fig. 9. Times course of observed (stars) and simulated (lines) green leaf area index (GLAI). Each subplot corresponds to one validation Þeld named in the title.
Root mean square errors and efÞciencies between observations and simulations are displayed with label ÔrmsÕ and ÔeÕ, respectively. The days are numbered from
October 15, 2003.

Fig. 10. Simulated values (black discs) of grain yield, together with ORMVAH
estimates (vertical full lines) and Þeld measurements (vertical dotted lines) on
the validation Þelds. The length of full and dotted lines indicates the error
associated to ORMVAH estimates and the standard deviation associated to
measurements, respectively.

889B. Duchemin et al. / Environmental Modelling & Software 23 (2008) 876e 892



Author's personal copy

The problem may be due to the fact that the agricultural condi-
tions on the calibration Þelds do not encompass those of the val-
idation Þelds. In particular, the validation Þelds have been sown
earlier and have received more irrigation water and fertiliser
than the calibration Þelds. The model partly account for these
variation because the GLAI was slightly larger on the validation
than on the calibration Þelds: the simulations result in an average
yield of 1.95 t ha� 1 for Þelds V1 to V8 against 1.74 t ha� 1 for
Þelds C1 to C9. Nevertheless, re-calibration of the Py parameter
would be necessary to obtain good estimate of grain yield for the
2003/2004 agricultural season.

5.4. Dry aerial mass

The dry aerial phytomass was measured on Þeld V5 during
the 2003/2004 agricultural season. The measurements of this
variable are plotted against its simulation inFig. 11. The
performance of the SAFY model was surprisingly good since
no speciÞc calibration was performed for this variable. The
agreement between observation and simulation is perfect at
the beginning of the season (before day 150). The explanation
is twofold: numerous GLAI observations are available to
constrain the phytomass production and inaccuracy of mea-
surements at high GLAI values does not strongly affect the
phytomass production because of the saturation of PAR
absorption (eq.2). At the end of the season, the SAFY model
clearly underestimates the dry aerial phytomass. This discrep-
ancy appears to be due to the underestimation of grain yield.
Globally, the SAFY model simulates the time course of dry
aerial phytomass as accurately as others wheat models (e.g.
Maas, 1993; OÕLeary and Connor, 1996; Pala et al., 1996;

Asseng et al., 1998; Jamieson et al., 1998; Olesen et al.,
2002; Panda et al., 2003; Asseng et al., 2004; Wahbi and Sin-
clair, 2005). However, there is a need for evaluation on a wider
range of crops and/or conditions to strengthen this conclusion.

6. Conclusion

The use of crop models on large areas for local (Þeld scale)
estimates of crop production is hampered by the lack of sufÞ-
cient and accurate spatial information about model inputs. In
particular it is impossible to exactly know the space and
time variation of the input related to farmer practices (sowing,
irrigation and fertilisation). As an alternative, a simple model
(SAFY) was developed under the assumption that a key-pa-
rameterd the effective light-use efÞciencyd is sufÞcient to
furnish an indicator of all agro-environmental stresses to-
gether. The model simulates the time courses of leaf area,
dry above-ground phytomass and grain yield, with no explicit
modelling of the effects of water or nutrient limitations on
plant growth. The impact of possible water and nitrogen deÞcit
is expected to be accounted for by the variation of the effective
light-use efÞciency, with the idea that this parameter can be
derived from the time course of the green leaf area index
(GLAI). This variable is critical in plant modelling, and
a lot of techniques and methods are available for its observa-
tion by remote sensing from ground as well as from space.
Since the model is based on a limited number of parameters
and equations, its control with GLAI observations appears
simple and robust. The approach offers the advantage to
only describe well documented processes with standard data,
i.e. data supplied by meteorological stations and time series
of GLAI estimates which can be derived from satellite data.
This makes it very attractive for operational application at a
regional scale.

The approach was tested against Þeld data collected on
winter wheat during two successive agricultural seasons
(2002/2004) in the plain that surrounds the city of Marrakech
(Morocco). During this experiment 17 Þelds were monitored,
with a large range of sowing dates as well as irrigation and fer-
tilisation schedules. GLAI estimates were performed based on
the NDVI collected at Þeld using a handheld radiometer and
the analysis of hemispherical photography. A method was de-
veloped to invert the two most sensitive parameters (date of
emergence and effective light-use efÞciency) from GLAI
time courses at a Þeld scale. The comparison of simulated/in-
verted and observed data has allowed us to reach the following
conclusions:

U The retrieval of the dates of plant emergence appears
satisfactory.

U The model provided with excellent simulations of the time
courses of green leaf area index.

U Though no speciÞc calibration was performed, the model
accurately simulates the time course of the dry above-
ground phytomass.

U Field-to-Þeld variations of grain yield were also correctly
predicted, but signiÞcant underestimation was observed

Fig. 11. Time courses of observed (stars) and simulated (full line) total dry
above-ground phytomass on the V5 Þeld. The root mean square error and
the efÞciency between measured and simulated values are displayed with label
ÔrmsÕ and ÔeÕ, respectively. The dashed line corresponds to the dry mass of all
aerial organs except grain. The dotted line displays the time course of simu-
lated grain yield, associated with ORMVAH estimates and Þeld measurement
at the end of the season (vertical line with stars and plus symbols, respec-
tively). The days are numbered from October 15, 2003.
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during evaluation. Underestimation was attributed to a shift
in agricultural practices (irrigation and fertilisation) be-
tween the Þelds used for calibration (2002/2003) and those
used for validation (2003/2004).

The last statement highlights the limit of the assumption
prevailing in this study, which is the use of GLAI as an indi-
cator of all agro-environmental stresses considered together.
For grain yield prediction, strong attention should be paid at
using the SAFY model close to its domain of calibration.
The control of the model with satellite data (e.g. daily time se-
ries of images at high spatial resolution acquired by the new
FORMOSAT-2 satellite) could result in accurate regional
crop yield estimate provided that local measurements are
available for calibration and that the agricultural practices do
not much vary within the area of interest. Nevertheless, the
SAFY model could be combined with remote sensing data
to detect anomalies in crop phenology and to predict above-
ground phytomass production at a regional scale. In particular,
it could be used as a simple and accurate interpolator to mon-
itor and/or predict the dynamics of the vegetation (green
leaves). In this perspective it would be interesting to investi-
gate the performance of the model in case of reduced GLAI
data availability. The model can be also adapted to integrate
additional processes associated to crop growth such as water
transfer between soil, plant and atmosphere. SAFY was al-
ready coupled with the soil water balance and evapotranspira-
tion models developed by the FAO to schedule irrigation
(Duchemin et al., 2005). The assimilation of satellite data in
the coupled model offers perspectives for the operational mon-
itoring of crop actual evapotranspiration and water require-
ments at a regional scale.
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èle simpliÞe« pour lÕestimation du bilan hydrique et du rendement de cul-
tures ce«re«alières en milieu semi-aride. Deuxie`me Congre`s Me«diterrane«en
ÔRessources en Eau dans le Bassin Me«dite«rrane«enÕ, Marrakech (Maroc).

Duchemin, B., Hadria, R., Erraki, S., Boulet, G., Maisongrande, P.,
Chehbouni, A., Escadafal, R., Ezzahar, J., Hoedjes, J.C.B.,
Kharrou, M.H., Khabba, S., Mougenot, B., Olioso, A., Rodriguez, J.-C.,
Simonneaux, V., 2006. Monitoring wheat phenology and irrigation in Cen-
tral Morocco: on the use of relationships between evapotranspiration, crops

891B. Duchemin et al. / Environmental Modelling & Software 23 (2008) 876e 892



Author's personal copy

coefÞcients, leaf area index and remotely-sensed vegetation indices. Agri-
cultural Water Management 79, 1e 27.

Eitzinger, J., Trnka, M., Ho¬sch, J., Zÿalud, Z., Dubrovsky«, M., 2004. Compar-
ison of CERES, WOFOST and SWAP models in simulating soil water con-
tent during growing season under different soil conditions. Ecological
Modelling 171, 223e 246.

Faivre, R., Leenhardt, D., Voltz, M., Benoõöt, M., Papy, F., Dedieu, G.,
Wallach, D., 2004. Spatialising crop models. Agronomie 24, 205e 217.

FAO, 2002. In: DeÞcit Irrigation Practicesd Foreword. FAO Technical Papersd
Water Reports No. 22.http://www.fao.org/documents/show_cdr.asp?url_
Þle¼/docrep/004/Y3655E/y3655e01.htm.

Franks, S.W., Beven, K.J., Quinn, P.F., Wright, I.R., 1997. On the sensitivity of
soil-vegetation-atmosphere transfer (SVAT) schemes: equiÞnality and the
problem of robust calibration. Agricultural and Forest Meteorology 86,
63e 75.

Hadria, R., Khabba, S., Lahrouni, A., Duchemin, B., Chehbouni, A.,
Carriou, J., 2007. Calibration and validation of the STICS crop model
for managing wheat irrigation in the semi-arid Marrakech/Al Haouz Plain.
Arabian Journal for Science and Engineering 32, 87e 101.

Jamieson, P.D., Porter, J.R., Goudriaan, J., Ritchie, J.T., van Keulen, H.,
Stol, W., 1998. A comparison of the models AFRCWHEAT2, CERES-
Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat
grown under drought. Field Crops Research 55, 23e 44.

Jonckheere, I., Fleck, S., Nackaerts, K., Muysa, B., Coppin, P., Weiss, M.,
Baret, F., 2004. Review of methods for in situ leaf area index determina-
tion. Part I. Theories, sensors and hemispherical photography. Agricultural
and Forest Meteorology 121, 19e 35.

J¿rgensen, S.E., 1994. Models as instruments for combination of ecological
theory and environmental practice. Ecological Modelling 75-76, 5e 20.

Lobell, D.B., Asner, G.P., Ortiz-Monasterio, J.I., Benning, T.L., 2003. Remote
sensing of regional crop production in the Yaqui Valley, Mexico: estimates
and uncertainties. Agriculture. Ecosystems and Environment 94, 205e 220.

Maas, S.J., 1993. Parameterized model of gramineous crop growth: I. Leaf
area and dry mass simulation. Agronomy Journal 85, 348e 353.

Meinke, H., Hammer, G.L., van Keulen, H., Rabbinge, R., 1998. Improving
wheat simulation capabilities in Australia from a cropping systems per-
spective III. The integrated wheat model (I_WHEAT). European Journal
of Agronomy 8, 101e 116.

Mo, X., Liu, S., Lin, Z., Xu, Y., Xiang, Y., McVicar, T.R., 2005. Prediction of
crop yield, water consumption and water use efÞciency with a SVAT-crop
growth model using remotely sensed data on the North China Plain. Eco-
logical Modelling 183, 301e 322.

Monteith, J.L., 1977. Climate and the efÞciency of crop production in Britain.
Philosphical Transactions of the Royal Society of London Ser. B 281,
277e 294.

Moulin, S., Bondeau, A., Dele«colle, R., 1998. Combining agricultural crop
models and satellite observations from Þeld to regional scales. Interna-
tional Journal of Remote Sensing 19, 1021e 1036.

OÕConnell, M.G., OÕLeary, G.J., WhitÞeld, D.M., Connor, D.J., 2004. Inter-
ception of photosynthetically active radiation and radiation-use efÞciency
of wheat, Þeld pea and mustard in a semi-arid environment. Field Crops
Research 85, 111e 124.

OÕLeary, G.J., Connor, D.J., 1996. A Simulation Model of the Wheat Crop in
Response to Water and Nitrogen Supply: II. Model Validation. Agricultural
Systems 52, 31e 55.

Olesen, J.E., Berntsen, J., Hansen, E.M., Petersen, B.M., Petersen, J., 2002.
Crop nitrogen demand and canopy area expansion in winter wheat during
vegetative growth. European Journal of Agronomy 16, 279e 294.

Olioso, A., Inoue, Y., Ortega-Farias, S., Demarty, J., Wigneron, J.-P., Braud, I.,
Jacob, F., Lecharpentier, P., Ottle«, C., Calvet, J.-C., Brisson, N., 2005.

Future directions for advanced evapotranspiration modeling: assimilation
of remote sensing data into crop simulation models and SVAT models.
Irrigation and Drainage Systems 19, 377e 412.

Pala, M., Stockle, C.O., Harris, H.C., 1996. Simulation of durum wheat (Tri-
ticum turgidumssp.durum) growth under different water and nitrogen re-
gimes in a Mediterranean environment using CropSyst. Agricultural
Systems 51, 147e 163.

Panda, R.K., Behera, S.K., Kashyap, P.S., 2003. Effective management of ir-
rigation water for wheat under stressed conditions. Agricultural Water
Management 63, 37e 56.

Pellenq, J., Boulet, G., 2004. A methodology to test the pertinence of remote-
sensing data assimilation into vegetation models for water and energy ex-
change at the land surface. Agronomie 24, 197e 204.

Porter, J.R., Gawith, M., 1999. Temperatures and the growth and development
of wheat: a review. European Journal of Agronomy 10, 23e 36.

Rodriguez, J.-C., Duchemin, B., Hadria, R., Watts, C., Garatuza, J.,
Chehbouni, A., Khabba, S., Boulet, G., Palacios, R., Lahrouni, A., 2004.
Wheat yield estimation using remote sensing and the STICS model in
the semiarid valley of Yaqui, Mexico. Agronomie 24, 295e 304.

Scotford, I.M., Miller, P.C.H., 2005. Applications of spectral reßectance tech-
niques in northern European cereal production: a review. Biosystems En-
gineering 90, 235e 250, doi:10.1016/j.biosystemseng.2004.11.010.

Sinclair, T.R., Amir, J., 1992. A model to assess nitrogen limitations on the
growth and yield of spring wheat. Field Crops Research 30, 63e 78.

Szeicz, G., 1974. Solar radiation for plant growth. Journal of Applied Ecology
11, 617e 636.

Tucker, C.J., 1996. History of the use of AVHRR data for land applications. In:
DÕSouza, G., et al. (Eds.), Advances in the Use of NOAA AVHRR Data for
Land Applications. ECSC, EEC, EAEC, Brussels and Luxembourg.

Varlet-Grancher, C., Bonhomme, R., Chartier, M., Artis, P., 1982. EfÞcience
de la conversion de lÕe«nergie solaire par un couvert ve«ge«tal. Acta Oecolo-
gia/Oecologia Plantarum 17, 3e 26.

Verhoef, W., Bach, H., 2003. Remote sensing data assimilation using coupled
radiative transfer models. Physics and Chemistry of the Earth 28, 3e 13.

Vrugt, J.A., Diks, C.G.H., Bouten, W., Gupta, H.V., Verstraten, J.M., 2005. To-
wards a complete treatment of uncertainty in hydrologic modelling: com-
bining the strengths of global optimisation and data assimilation. Water
Resources Research 41, doi:10.1029/2004WR003059. W01017.

Vrugt, J.A., Gupta, H.V., Bouten, W., Sorooshian, S., 2002. A Shufßed Com-
plex Evolution Metropolis algorithm for optimization and uncertainty as-
sessment of hydrologic model parameters. Water Resources Research 39
(8), 1201, doi:10.1029/2002WR001642.

Wagener, T., Boyle, D.P., Lees, M.J., Wheater, H.S., Gupta, H.V.,
Sorroshian, S., 2001. A framework for development and application of
hydrological models. Hydrology and Earth System Sciences 5, 13e 26.

Wahbi, A., Sinclair, T.R., 2005. Simulation analysis of relative yield advantage
of barley and wheat in an eastern Mediterranean climate. Field Crops Re-
search 91, 287e 296.

Wallach, D., GofÞnet, B., Bergez, J.-E., Debaeke, P., Leenhardt, N.A.D., 2002.
The effect of parameter uncertainty on a model with adjusted parameters.
Agronomie 22, 159e 170.

Weiss, M., Baret, F., Smith, G.J., Jonckheere, I., Coppin, P., 2004. Review of
methods for in situ leaf area index (LAI) determination: Part II. Estimation
of LAI, errors and sampling. Agricultural and Forest Meteorology 121,
37e 53.

Welles, J.M., Norman, J.M., 1991. Instrument for indirect measurement of
canopy architecture. Agronomy journal 83, 818e 825.

Xue, Q., Weiss, A., Stephen Baenziger, P., 2004. Predicting leaf appearance in
Þeld-grown winter wheat: evaluating linear and non-linear models. Eco-
logical Modelling 175, 261e 270.

892 B. Duchemin et al. / Environmental Modelling & Software 23 (2008) 876e 892




