Combining scintillometer measurements and an aggregation scheme to estimate area-averaged latent heat flux during the AMMA Experiment

To cite this version:

HAL Id: ird-00389812
http://hal.ird.fr/ird-00389812
Submitted on 4 Jun 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Combining scintillometer measurements and an aggregation scheme to estimate area-averaged latent heat flux during the AMMA experiment

J. Ezzahar, A. Chehbouni, J. Hoedjes, D. Ramier, N. Boulain, S. Boubkraoui, B. Cappelaere, L. Descroix, B. Mougenot, F. Timouk

Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco

IRD, Centre Niamey, Niger

Centre d'Etudes Spatiales de la Biosphère (CESBIO)/IRD, 18 Avenue Edouard belin, 31401 Toulouse Cedex 9, France

HSM, Montpellier, France

doi:10.1016/j.jhydrol.2009.01.010

ARTICLE INFO

Available online xxxx

Keywords:
Scintillometry
Eddy covariance
Regional surfaces fluxes
Non-uniform and heterogeneous surfaces
Aggregation schemes

SUMMARY

This paper deals with the issue of using scintillometry in conjunction with a simple aggregation scheme to derive area-averaged sensible and latent heat fluxes over a small watershed in Niamey, Niger (Wankama catchment). Data collected in the context of the African Monsoon Multidisciplinary Analysis (AMMA) program has been used to test the proposed approach. For this purpose, a Large Aperture Scintillometer (LAS) was set up over heterogeneous surface transect of about 3.2 km spanning three vegetation types.

The comparison between scintillometer-based estimates of area-averaged sensible heat fluxes and those measured by a network of the classical eddy covariance (EC) devices showed good agreement, with a relative error of about 20% (R2 = 0.85, RMSD = 32 W m-2, and SEE = 21.39 W m-2). This is a good result considering the contrast in footprint scales associated with the devices, which is amplified by the heterogeneity of the area-average sensible heat flux in conjunction with a simple aggregation rule to estimate area-average available energy led to a reasonable prediction of area-averaged latent heat flux (R2 = 0.75, RMSD = 64 W m-2, and SEE = 50 W m-2). When compared to those measured using the EC network, this is of interest as the LAS can be used to validate estimates of surface fluxes, but also to estimate area averages using a meso-scale aggregation scheme as well as to generate large spatial variability of surface fluxes. This paper deals with the issue of using scintillometry in conjunction with a simple aggregation scheme to derive area-averaged sensible and latent heat fluxes over a small watershed in Niamey, Niger (Wankama catchment). Data collected in the context of the African Monsoon Multidisciplinary Analysis (AMMA) program has been used to test the proposed approach. For this purpose, a Large Aperture Scintillometer (LAS) was set up over heterogeneous surface transect of about 3.2 km spanning three vegetation types.

The comparison between scintillometer-based estimates of area-averaged sensible heat fluxes and those measured by a network of the classical eddy covariance (EC) devices showed good agreement, with a relative error of about 20% (R2 = 0.85, RMSD = 32 W m-2, and SEE = 21.39 W m-2). This is a good result considering the contrast in footprint scales associated with the devices, which is amplified by the heterogeneity of the area-average sensible heat flux in conjunction with a simple aggregation rule to estimate area-average available energy led to a reasonable prediction of area-averaged latent heat flux (R2 = 0.75, RMSD = 64 W m-2, and SEE = 50 W m-2). When compared to those measured using the EC network, this is of interest as the LAS can be used to validate estimates of surface fluxes, but also to estimate area averages using a meso-scale aggregation scheme as well as to generate large spatial variability of surface fluxes.
Nomenclature

Abbreviations
AMMA African Monsoon Multidisciplinary Analysis
EC eddy covariance
IRTS-P ion Infrared temperature sensor
LAS Aperture Scintillometer
MOST Monin–Obukhov Similarity Theory
SVATs Vegetation–Atmosphere Transfer Schemes
WAM African Monsoon

Greek Symbols
\(\beta \) Bowen ratio (=H/LE) [-1]
\(\kappa \) Von Karman constant (0.4)
\(\theta \) temperature [K]
\(\rho \) y of air [kg m\(^{-2}\)]
\(\psi \) ated stability function [-1]
\(\omega_s \) viscosity of atmosphere [kg m\(^{-1}\) s\(^{-1}\)]
\(\omega_s \) emissivity [-1]
\(\rho \) –Boltzman constant (8.616 \(\times \) 10\(^{-5}\)) [J K\(^{-1}\) m\(^3\) molecule\(^{-1}\)]
\(\alpha \) e albedo [-1]

General
\(AE \) available energy [W m\(^{-2}\)]
\(C_2^1 \) ure parameter of refractive index of air [m\(^{-2/3}\)]

Numerous Soil–Vegetation–Atmosphere Transfer schemes (SVATs) have been developed with varying degrees of complexity, and many are intended for use remote sensing data to provide an area-averaged LE (Allen et al., 2007; Bastiaansen et al., 1998; Caparrini et al., 2003, 2004; Cleugh et al., 2007; Crow and Kustas, 2007; Zhan et al., 1996) which can be integrated length [m] radiation [W m\(^{-2}\)] Transfer constant

Similarity Theory (MOST). It should be mentioned that the use of MOST scaling function also holds over heterogeneous surfaces (tall and sparse vegetation). This study—as well as that of Caparrini et al., 2003, 2004; Cleugh et al., 2007; Zhan et al., 1996

It is thus feasible to use the LAS for operationally estimating area-average LE as the residual term of the energy balance equation providing estimates of area-average available energy (AE = \(\text{net radiation} \), where \(\text{net radiation} \) is the net heat flux. Here again, area-average AE can be constructed deploying a network of net radiation sensors \((R_n) \) and soil heat plates \((G) \), which is also costly and really not particularly feasible. An aggregation scheme for estimating area-average AE from remotely sensed surface temperature, albedo, incoming radiation and other ancillary meteorological data is therefore needed in order to estimate area-average LE through the combination of the LAS measurements and the energy balance equation.

In this regard, substantial efforts have been made in the development of the aggregation scheme to estimate area-average surfaces fluxes over heterogeneous surfaces (Koster and Suárez, 1992; Sellers et al., 1997; Noilhan and Lacarrere, 1995; Arain et al., 1996; Noilhan et al., 1997; Raupach and Finnigan, 1995; Lhomme et al., 1994; Chehbouni et al., 1995, 2000a, 2000b, 2008). The aggregation scheme is conceived as a method which sequentially link the model parameters which control surface exchange at patch scale with the area-average value of equivalent model parameters applicable at larger scale or grid scale, assuming that the same equations are used to describe surface fluxes at both scales.

The present study is specifically devoted to the investigation of whether the combination of the LAS and a simple aggregation scheme for estimating area-averaged available energy can provide reasonable estimates of area-average LE over a heterogeneous catchment. This has been undertaken in the framework of the international AMMA program, which aims to improve our knowledge and understanding of the West African Monsoon (WAM) and its variability.

This paper is organized as follows: “Theory” presents the theoretical background used to estimate area-average LE; “Experimental site and measurements” describes the site and the

Please cite this article in press as: Ezzahar, J., et al. Combining scintillometer measurements and an aggregation scheme to... J. Hydrol. (2009), doi:10.1016/j.jhydrol.2009.01.010
Experimental setup; “Results and discussion” presents the results of the comparison between the measured and estimated area-averaged surface fluxes; finally, “Conclusions and perspectives” provides a discussion and concludes.

Theory

Determination of the turbulent heat fluxes with the LAS

The LAS is a device that provides measurements of the variation in the refractive index of air caused by atmospheric turbulence. This instrument consists of a transmitter and a receiver, both with an aperture diameter of 0.15 m, set up at a separation distance (or path length) ranging from 250 to 5000 m. The transmitter emits electromagnetic radiation, which is scattered by the turbulent atmosphere, and the resulting variations in signal intensity (scintillations) are recorded by a receiver comprising an identical mirror and a photodiode detector. The intensity fluctuations are related to the path-averaged structure parameter of the refractive index of air, C_n^2. For the scintillometers operating at near-infrared wavelength, Wesely (1976) and, more recently, Moen (2003) demonstrate that C_n^2 is related to C_T^2, the structure parameter of temperature, as

$$C_n^2 = \frac{2}{C_T^2} \left(\frac{T_o^2}{-0.78 \times 10^{-6} \rho} \right)^{2} \left(1 + 0.03 \right)^{-2}$$

where T_o is the air temperature, ρ is atmospheric pressure, and β is the Bowen ratio. The factor involving the Bowen ratio is the correction term for the influence of humidity fluctuations. C_n^2 and C_T^2 are in $(m^{-2/3})$ and $(K^2 m^{-2/3})$, respectively.

Using the Monin–Obukhov Similarity Theory (MOST), the sensible heat flux can be obtained from a combination of C_n^2 and additional weather data through the following dimensionless relationship

$$C_n^2 (Z_{LAS} - d)^{1/3} = f_i \left(\frac{Z_{LAS} - d}{L} \right) = C_i^2 = 1 - \frac{Z_{LAS} - d}{L}$$

where L is the Obukhov length (m), $L = \frac{\rho \gamma (\theta_{surf} - \theta)}{\theta_{surf}}$, the θ is the temperature scale ($T_0 = \frac{\rho \gamma (\theta_{surf} - \theta)}{\theta_{surf}}$), and u' is the friction velocity expressed as

$$u' = k u \ln \left(\frac{Z_{LAS} - d}{Z_0} \right) - \psi \left(Z_{LAS} - d \right) / L$$

where Z_{LAS} is the effective height of the LAS above the surface. Here, Z_{LAS} was estimated following the procedure of Hartogensis (2003), which takes into account the change in topography. The LAS transect between the transmitter and the receiver. ψ is the integrated stability function (Panofsky and Dutton, 1984), d is the displacement height, Z_0 is the roughness length, κ is von Karman constant, g is the gravitational acceleration, ρ is the density of air and c_p is the specific heat of air at constant pressure. During the iteration procedure, the Bowen ratio is evaluated using the H_{LAS}-net radiation (R_{net}), soil heat flux (G), and θ_{surf} (Hartogensis et al., 2003). In this study, we will discuss the instability conditions and will use the MOS relationship f_i given by De Bruin et al. (2003).

Available energy

Net radiation

The net radiation quantifies the energy available for crop evapotranspiration, photosynthesis, and soil heating (Monteith and Unsworth, 1990). It is the biggest or most important term of the surface energy balance equation. In the current study, the net radiation was expressed as follows:

$$R_n = (1 - \alpha) R_s + \epsilon_s R_e - R_t$$

where α is the surface albedo, R_s is the solar global radiation ($W m^{-2}$), ϵ_s is the surface emissivity which has an almost constant value (in practical work a value of 0.98, may be taken for crop canopies; Ortega Farías et al., 2000), R_t the atmospheric radiation which is emitted by air molecules ($W m^{-2}$) and R_e is the terrestrial radiation which is emitted by the surface ($W m^{-2}$). By using the Stefan-Boltzmann equation (Monteith and Unsworth, 1990), R_e can be expressed as functions of air and surface temperature respectively. Then Eq. (4) can be rewritten as

$$R_n = (1 - \alpha) R_s + \epsilon_s R_e - R_t$$

with ϵ_s as the emissivity of the atmosphere, T_a is the air temperature (K), T_{surf} is the surface temperature (K), and ρ is the Stefan-Boltzmann constant ($5.67 \times 10^{-8} W m^{-2} K^{-4}$).

The ϵ_s is calculated using an expression proposed by Utsaert (1975)

$$\epsilon_s = 1.24 \left(\frac{e_s}{T_a^4} \right)^{1/4}$$

with e_s as the air vapor pressure (hPa).

Soil heat flux

The soil heat flux is the conduction of energy per unit area in response to a temperature gradient. It is the most difficult scalar to measure accurately at the appropriate space-scale, due to the complexity of surface cover and physical processes occurring in the soil. Therefore, in several micrometeorological studies G is parameterized as a constant proportion of R_n (i.e., $G = c R_n$) that is fixed for the entire day or period of interest (Meixner et al., 1999; Norman et al., 1995, 2000; Crawford et al., 2000). This constant is typically around 0.3 for the sparse canopies and ranges from 0.15 to 0.40 in the literature (Brutsaert, 1982; Choudhury, 1987; Humes et al., 1994; Kustas and Goodrich, 1994). As reported in Santanello and Friedli (2003), G is unfortunately neither constant nor negligible on diurnal time scales. G/R_n can range from 0.05 to 0.50 and is driven by several factors: (1) day, soil moisture and thermal properties, as well as the amount and height of vegetation (Kustas et al., 1999). In this study, the ratio of the soil heat flux to net radiation was calculated according to Santanello and Friedli (2003) as follows:

$$G/R_n = A \cos \left(2 \pi (t + 10800)/B \right)$$

where t is the time of day in seconds, and A and B are adjusting factors which were set by Santanello and Friedli (2003) as 0.31 and 74000 s, respectively. Recently, Hoedjes et al. (2008), Chehbouni et al. (2008) have tested this relationship over a complex field of olive trees (Enfis Al Haouz basin, Morocco) and a semi-arid mixed agric land (Yaqvi Valley, Mexico), respectively. They found reasonably good results when comparing the measured and estimated values of AE. The RMSE was $51 W m^{-2}$ (maximum value was about 600 $W m^{-2}$) and 3 $W m^{-2}$ (minimum value was about 500 $W m^{-2}$), respectively. In this section, a simple aggregation scheme was used to estimate the area-average available energy. As reported in Chehbouni et al. (2008), this procedure is based on two assumptions. The first one is of formulating grid-scale surface fluxes using the same ions that govern patch-scale behavior, but whose arguments are the aggregate expressions of those at the patch-scale. The second one stipulates that “the effective area-average value of a land surface parameter is defined as a weighted average over the component land types in each grid, through that function involving the parameter which most succinctly expresses its relationship with the associated surface flux” (Shuttleworth et al., 1997). Applying this...
simple aggregation rule to area-averaged (denoted by angle brackets) net radiation and soil heat flux leads to:

$$\langle R_n \rangle = (1 - \langle \gamma \rangle)R_e + \langle \phi_a \rangle \sigma (\phi_a T_a^4 - \langle T_a^4 \rangle)$$ \hspace{1cm} (8)

$$\langle G \rangle \approx \langle R_n \rangle$$ \hspace{1cm} (9)

Similarly, the application of the second assumption leads to the following set of relationships between local (subscript i) and effective (in brackets) radiative temperature, surface emissivity, surface albedo, displacement height, and roughness length (Chehbouni et al., 2008):

$$\langle T_{surf}\rangle = \left[1 + \sum_{i=1}^{N} \frac{f_i \langle T_{surf,i} \rangle}{\langle z_i \rangle} \right]^{0.25}$$ \hspace{1cm} (10)

$$\langle \alpha \rangle = \sum_{i=1}^{N} f_i \langle \alpha_i \rangle$$ \hspace{1cm} (11)

$$\langle \chi \rangle = \sum_{i=1}^{N} f_i \chi_i$$ \hspace{1cm} (12)

$$\langle d \rangle = \sum_{i=1}^{N} f_i d_i$$ \hspace{1cm} (13)

$$\ln(\phi_a) = \sum_{i=1}^{N} f_i \ln(\phi_{ai})$$ \hspace{1cm} (14)

where f_i is the fraction of the surface covered by the patch i with, obviously, $\sum f_i = 1$.

The area-average estimates of available energy ($AE=\langle R_n \rangle - \langle G \rangle$) were combined with the estimates of sensible heat from the LAS to obtain the area-average latent heat flux. ($LE_{\text{LAS}} = \langle LE \rangle - \langle H_{\text{LAS}} \rangle$)

Experimental site and measurements

The study took place in Wankama catchment, between Day of Year (DOY) 204 and 225 (July 23rd–August 13th) in 2006. This catchment is located near the city of Niamey, Niger. In this section, site description and experimental setup are briefly summarized; the reader is referred to Cappelaere et al. (this issue) for a complete description. The climate is typically Sahelian with a short rainy season from June to September and high temperatures throughout the year. Potential evapotranspiration is about 2500 mm per year. The catchment is intensively cultivated: 54% planted fields (mainly millet), and 26% of the field lands fallow (Peugeot et al., 2003); the remaining area is classified as degraded shrubs.

The LAS used in this study was developed and built by the Meteorology and Air Quality Group at Wageningen University, the Netherlands. This instrument has been constructed according to the basic design described in Ochs and Wilson (1993). It has an aperture size of 0.15 m and the transmitter operates at a wavelength of 0.94 μm. At the receiver, C_2 is sampled at 1 Hz and averaged over 1 min intervals by a CR510 data logger (Meijninger et al., 2000). The transmitter and the receiver were mounted on 10-m-high tower and an altitude difference of approximately 3.5 m. The receiver was installed at the highest part of the basin (pl. while the transmitter was installed at the lowest part of the basin (Fig. 1). The LAS was set up over a 3.2 km transect spanning three vegetation types—fields of millet, fallow fields, and areas of degraded shrub. The direction of the LAS path was 250° from North. Analysis of the wind direction pattern during the study period showed that the dominant (70%) wind direction is situated within an interval ranging from 157.5° to 247.5° (see Fig. 2).

Along the LAS transect, three vegetation types have been instrumented with eddy covariance (EC) systems. Two fields—millet (denoted “site A”) and fallow (denoted “site B”)—were instrumented since 2005 (Ramier et al., this issue). In order to measure representative fluxes along the transect of the LAS, in 2006 we installed a third EC system over the degraded shrubs site (denoted “site C”); see Fig. 1. The EC systems, installed at the A and B sites, consisted of a 32 sonic anemometer (CSAT3, Campbell Scientific Ltd.) and an open-path infrared gas analyser (LI7500, Licor Inc.). At the third site—i.e. “site C”—the EC system consisted of a 32 sonic anemometer (CSAT3, Campbell Scientific Ltd.) and a Krypton hygrometer (KH30, Campbell Scientific Ltd.). Raw data were sampled at a rate of 20 Hz and were recorded using CR5000 data loggers (Campbell Scientific Ltd.). The half-hourly fluxes were later calculated off-line using two post-processing software packages: ECpack and EdiRe, which are developed, respectively, by the Meteorology and Air Quality Group at Wageningen University and by...
The area-average fluxes of the EC systems were calculated displays a comparison between area-average sensible and those obtained by the footprints of the LAS and EC (corresponding to approx-

ARTICLE IN PRESS

Fig. 2. Mean frequency of wind direction during the study period (DOYs 204–225).

Edinburgh University. The ECpack and EdiRe are available for download from http://www.met.wau.nl/ and http://www.geos.e-

d.ac.uk/abs/research/micromet/EdiRe/Downloads.html, respectively. For the ECpack software, the fluxes were calculated after performing planar fit corrections (Wilczak et al., 2001), correcting the sonic temperature for the presence of humidity (Sobotan et al., 1983), frequency response corrections for slow apparatus and path length integration (Moore, 1986), the inclusion of the mean vertical velocity according to Webb et al. (1980), and oxygen correction for the Krypton hygrometer, which is sensitive to O2. (Van Dijk et al., 2003). For the EdiRe software, the fluxes were calculated after despiking, double rotation, Webb correction and the cross-correlation for derivation of time lag between the sonic anemometer and the gas analyser (Cappelaere et al., this issue). It is certainly unfortunate that two processing programs have been used. This is due to the groups and we did not have access to raw data for “site A” and “site B”. Nevertheless, we did perform a comparison of the two post-processing programs using one week of data over “site C”. The correspondence in terms of sensible heat flux estimates was very good ($R^2 = 0.99$ and RMSE = 6.7 W m$^{-2}$). It can be thus concluded that the difference between the programs is not very significant, and should not be considered as a decisive factor in the study.

In the vicinity of each EC tower, a set of standard meteorological instruments were installed to measure net radiation using the Q7 net radiometer (REBS Inc., WA, USA) over “site C” and the CNR1 (Kipp and Zonen, the Netherlands) over “site A” and “site B”, air temperature and humidity using a Vaisala (HMP45AC temperature and humidity probe), soil heat flux at different depths using the soil heat flux plates (HFT3-L, Campbell Scientific Ltd.), and surface temperature using the Precision Infrared temperature sensor (IRTS-P) over “site C”. Over “site A” and “site B,” the surface temperature was inverted from the CNR1 measurements. In addition, two CM3 pyranometers were installed over “site C” to measure incoming and outgoing shortwave (CM3, Campbell Scientific Ltd.).

Results and discussion

In this section, we first compare the LAS-based estimates of area-average sensible heat flux values to those constructed as area-average from measured values of sensible heat flux using the three EC systems (from here on, the constructed fluxes will be called measured). Second, the estimated and measured area-average AE were compared. Thereafter, we evaluate the applicability of the LAS to estimate the evapotranspiration flux over the Wankama catchment through the comparison of measured and estimated values. In this study, we will only consider daytime observations with half-hourly time scale, from 07:30 UTC until 18:00 UTC, since the behavior of the temperature structure parameter is not well known for stable conditions which can create greater uncertainty in the fluxes, especially over heterogeneous surfaces.

It should be noted that during this study, about 9% of LAS data was lost due to rainfall and very strong wind associated with storms which disturbed the alignment of the LAS. However, knowing that this study was undertaken during the rainy season, this quantity can be considered as being very small: during the rainy season, most rain falls during the night, which minimizes the loss of daytime data.

Sensible heat flux estimated by LAS

In this study, the EC data were used for assessing the accuracy of the LAS. Therefore, an analysis of the energy balance flux components was performed first. The comparison between the available energy ($R_n - G$) and the sum of the latent and sensible heat fluxes ($H_{LS} + LE$), measured independently by the EC systems, showed a good agreement (Cappelaere et al., 1996, 1997, 1998, 2000; Hoedjes et al., 2002, 2008; Chehbouni et al., in press). In this study, we chose to follow the approach suggested by Cappelaere et al. (2000), which consists of considering that, although the EC system underestimates sensible and latent heat fluxes, their ratio (the Bowen ratio) is correctly measured. Based on this assumption, we recalculated sensible and latent heat fluxes—over each, individual site—using measured Bowen ratio and available energy, thus forcing the closure of the energy balance. This correction is important in the case of comparison with the LAS, since LAS calculations of H and LE are made using an iterative procedure involving R_n and G, and thus based on the principle of conservation of energy (Horst and Weil, 1992, 1994). The theoretical background of this model is briefly given in Appendix A. Fig. 3a and b shows the footprints of the LAS and EC (corresponding to approximately 95% of the sensible heat flux) for two wind intervals, 70° to 250°, and 250° to 70°, respectively. It can be seen that within the wind interval from 70° to 250°, the footprint LAS covers the area where the systems are installed (Fig. 3a), thus the LAS fluxes are more representative of those measured by the EC systems. On the contrary, when the wind comes from 250° to 70°, the footprint of the LAS (which spans more depth 1 fields) and the EC systems differ strongly (Fig. 3b), showing large differences between LAS fluxes and those measured by the EC. Consequently, we will only consider the fluxes associated with wind from the 70° to 250° wind interval.

Fig. 4 displays a comparison between area-average sensible heat fluxes derived from the LAS (H_{LAS}) and those obtained by weighting the values measured at the EC systems (H_{EC}). The area-average fluxes of H_{EC} were calculated from the local values obtained by each EC system are represented on the graphs. The results show that the local values obtained by each EC system are representative of the site conditions for the sites where those systems are installed along the basin. Sites A, B, and C represented about 54%, 26%, and 20%
of the Wankama catchment. The statistical results—including the slope, correlation coefficient (R^2), the root mean square difference (RMSD), standard error of the estimates (SEE), and mean bias error (MBE)—are shown in Table 1. It can be seen that the LAS sensible heat fluxes agree quite well with those derived from the EC systems. The (H_{LAS}) is 3% higher than (H_{EC}) with a relative error of about 20% ($R^2 = 0.85$, RMSD = 21.59 W m$^{-2}$, and SEE = 21 W m$^{-2}$). These results are similar to those reported in Chehbouni et al. (1999, 2000a, b, in press) and Meijninger et al. (2006) over heterogeneous surfaces. Although the correspondence between (H_{LAS}) and (H_{EC}) is good, some scatter is still seen. This can be explained by several factors: the contrast in the footprint scale (see Fig. 3) with is amplified by the strong heterogeneity along the LAS path due to the changes in vegetation type and cover, as well as to topography; and the uncertainties of the similarity stability functions.

To illustrate this heterogeneity, the daytime evaporation rates measured over each site, which is defined as the ratio of the latent heat flux and the sum of the sensible and latent heat fluxes, were plotted in Fig. 5. Here, it can be seen that the curves of the evaporation rate for “site A” and “site C” are close, with a difference of only about 4%. For “site B,” the evaporation rate was very high

![Fig. 3. Footprint of the LAS and EC systems, calculated using the footprint model of Horst and Weil (1994) for the wind coming from the intervals 70° to 250° (a) and 250° to 70° (b).](image)

![Fig. 4. Comparison between measured—derived from the EC systems, (H_{EC})—and estimated—derived from the LAS, (H_{LAS})—area-averaged sensible heat fluxes during the study period (DOYs 204–225). The error bars represent the average uncertainty of the fluxes for each 50 W m$^{-2}$ interval.](image)

Table 1

<table>
<thead>
<tr>
<th>Type of Flux</th>
<th>Slope</th>
<th>R^2</th>
<th>RMSD (W m$^{-2}$)</th>
<th>MBE (W m$^{-2}$)</th>
<th>SEE (W m$^{-2}$)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensible Heat flux, H</td>
<td>1.03</td>
<td>0.85</td>
<td>21.59</td>
<td>7.38</td>
<td>21</td>
<td>291</td>
</tr>
<tr>
<td>Available energy, AE</td>
<td>0.93</td>
<td>0.83</td>
<td>59.53</td>
<td>-24</td>
<td>55.44</td>
<td>370</td>
</tr>
<tr>
<td>Latent heat flux, LE (using the estimated AE)</td>
<td>0.83</td>
<td>0.72</td>
<td>64</td>
<td>-36.5</td>
<td>50</td>
<td>254</td>
</tr>
</tbody>
</table>

Please cite this article in press as: Ezzahar, J., et al. Combining scintillometer measurements and an aggregation scheme to ... J. Hydrol. (2009), doi:10.1016/j.jhydrol.2009.01.010
compared with that of the other sites. This was expected, however, owing to the type of vegetation encountered at “site B” (savannah with a height of 3 m).

Estimating available energy

In many practical applications, area-average observations of net radiation and soil heat flux are not available, especially at the scintillometer footprint scale. However, providing a spatial distribution of surface temperature, albedo, and solar radiation from the satellite images (i.e. MODIS, ASTER), one can estimate the available energy at the catchment scale, using the proposed aggregation approach Eqs. (8)–(12). In the current study, the local measurements of the surface temperature, the albedo, and the incoming solar radiation have been used to estimate the area-averaged available energy \(<\text{AE}_{\text{est}}>(\text{Wm}^{-2})\), assuming that these local measurements are representative of the individual site. The albedo and the incoming solar radiation were calculated as area-weighted averages of those measured over the three sites. The effective surface temperature was obtained by combining Eqs. (10) and (11). In order to quantify the error related to the application of the aggregation rules to the flux estimation, the estimated area-averaged available energy \(<\text{AE}_{\text{est}}>(\text{Wm}^{-2})\) compared against the measured values—\(<\text{AE}_{\text{meas}}>(\text{Wm}^{-2})\)—obtained as area-weighted averages of those measured over the three sites. The linear regression shows that \(<\text{AE}_{\text{est}}>(\text{Wm}^{-2})\) is 7% lower than \(<\text{AE}_{\text{meas}}>(\text{Wm}^{-2})\), with a relative error of about 34% (\(R^2 = 0.83\), RMSD = 59.53 W m\(^{-2}\) and SEE = 55.44 W m\(^{-2}\); Table 1). This result indicates that the aggregation schemes are not exact and errors are associated with some of the assumptions used to derive them. Additionally, it is important to mention that the use of the Brutsaert’s formula for estimating the atmospheric radiation—which was established for clear sky conditions only—may create an extra scatter between measured and estimated values.

![Fig. 5. Daily evaporation rate estimated at the three EC sites during the study period (DOYs 204–225). The rainfall is shown in the same figure.](image)

![Fig. 6. Comparison between the estimated—\(<\text{AE}_{\text{est}}>(\text{Wm}^{-2})\)—obtained using the aggregation approach—and measured—\(<\text{AE}_{\text{meas}}>(\text{Wm}^{-2})\)—obtained as area weighted averages of those measured over the three sites—area-averaged available energy during the study period (DOYs 204–225). The error bars represent the average uncertainty of the fluxes for each 50 W m\(^{-2}\) interval.](image)
and estimated net radiation (Ezzahar et al., 2007a). Therefore, this scatter can be translated to the soil heat flux, since the latter was estimated as a fraction of net radiation. Overall, these results showed that, at least under the prevailing conditions of this study, the proposed approach leads to accurate estimates of instantaneous area-averaged available energy over heterogeneous and contrasted surfaces.

Latent heat flux

The estimated area-average latent heat flux from the LAS (denoted \(\text{LE}_{\text{LAS}} \)) was obtained as the residual term of the energy balance (Eqs. (1)–(15)). Fig. 7 displays a comparison between measured and estimated \(\text{LE}_{\text{LAS}} \). Measured \(\text{LE}_{\text{EC}} \) was obtained as the residual term of the energy balance equation using the estimated available energy, \(\text{AE}_{\text{est}} \). The comparison shows that \(\text{LE}_{\text{LAS}} \) is 17% lower than \(\text{LE}_{\text{EC}} \), with a relative error of about \(R^2 = 0.72 \), RMSD = 64 W m\(^{-2}\), and SEE = 50 W m\(^{-2}\). There are several reasons for this relatively large scatter between measured and estimated area-average latent heat fluxes. First, the effect of the contrast in the footprint scale: the LAS covers approximately the whole basin and the EC fluxes were local measurements; the area averages of EC were calculated by assuming that the measurements were representative for each of the sites from which they were taken. Second, the errors associated with the estimated available energy, which can have a big impact on the estimation of \(\text{LE}_{\text{LAS}} \). Since the sensible heat fluxes from the LAS agree well with those derived from the EC, nevertheless, the results show the under prevailing climatic and environmental conditions within the considered study, the combination of the LAS and an aggregation scheme leads to reasonably accurate estimates of area-average latent heat flux over heterogeneous, contrasted, and non-uniform surfaces.

Conclusions and perspectives

Within the AMMA program, we have investigated the performance of an approach combining the Large Aperture Scintillometer (LAS) measurements and an aggregation scheme to estimate the latent heat flux over the entire basin of Wankama. The LAS was installed over a 3.2 km slanted, heterogeneous, and contrasted path with a difference in altitude between the receiver and the transmitter of approximately 46 m. Micrometeorological instruments were deployed over several sites along the LAS path. These included classical meteorological stations, turbulent fluxes using eddy covariance devices, net radiation and soil heat flux measuring devices. We found that the sensible heat flux derived from the LAS agrees reasonably well with area-average EC fluxes, with a relative error of approximately 20% \((R^2 = 0.85, \text{RMSD} = 21.56 \text{ W m}^{-2}, \text{SEE} = 21.39 \text{ W m}^{-2}) \). The proposed model to aggregate the available energy used local measurements of surface temperature, albedo, and solar radiation, and assumed that these local measurements are representative of the individual sites. This assumption can certainly lead to some errors because the heterogeneity is also encountered at the field or patch scale. To overcome this problem, a forthcoming investigation will address the possibility of using MODIS data to derive spatially-distributed available energy before aggregating it according to the LAS footprint, in order to assure spatial matching of the \(H \) and \(AE \) scales.

Finally, despite the limitations mentioned above, one can safely conclude that the proposed approach is reasonably adequate for routinely quantifying the values of LE at a catchment scale.
implication of this result is of great importance for improving the parameterization of land surface fluxes in meso-scale models. This result is also of great interest for hydrological modeling and, therefore, for water resources management. Indeed, accurate basin scale estimates of LE will significantly help in assessing the overall performance of hydrological models. In this regard, Chaponnière et al. (2007) have shown that the fact that a hydrological model correctly simulates the observed runoff does not mean that intermediate processes such as the interaction between ground water and surface water or basin evapotranspiration are well reproduced.

Acknowledgements

This study has been funded by the Institut de Recherche pour le Développement (IRD). Additional funding was provided by the E.U. through the AMMA and PLEIADES projects. AMMA was developed by an international scientific group and is currently funded by a large number of agencies, especially from France, the UK, the US, and Africa. It has been the beneficiary of a major financial contribution from the European Community’s Sixth Framework Research Program. Detailed information on scientific coordination and funding is available on the AMMA International website http://www.ammainternational.org.

Appendix A

The contributing surface-to-scalar flux measurement from the LAS, called the source area (SA), was calculated using the analytical footprint model proposed by Horst and Weil (1992, 1994). The footprint function f, or the contribution per unit surface flux of each unit element i, upwind surface area to a measured vertical flux, relates to the spatial weighting of surface fluxes, R_x, R_y, R_z, to the spatial distribution of surface fluxes, $R_f(x, y, z) = f(x, y, z; \eta, \tau, \kappa)$. (A.1)

where x and y, respectively, are the upwind and crosswind distances; z; (m) frc: point where the measurements are taken. i: from the integration of the footprint function. In this study, we calculated the crosswind-integrated footprint function using the model of Horst and Weil (1994):

$$f(x, y, z_m) = \int_{-\infty}^{\infty} F_0(x', y') f(x-x', y-y', z_m) d\gamma$$

where γ is the mean plume height for diffusion from a surface i, and (z) -1/2 the mean wind speed profile. The variables a, b are parameters of shape parameter r. We have assumed that the vio of the MOST is small (Meijninger et al., 2002b). In the case of the LAS, one has to combine with the spatial weighting function $W(x)$ of the LAS in order to calculate the source area. Caparrini, F., Castelli, F., Entekhabi, D., 2004. Varaitional estimation of soil and vegetation turbulent transfer and heat flux parameters from sequences of multisensor imagery. Water Resources Research 40, W12515. doi:10.1029/2003WR002387.

components over a semiarid rangeland watershed. Water Resources Research 30, 1363–1373.

