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 ED PROr downscaling � 40 km resolution Soil Moisture and Ocean Salinity (SMOS)

observations is developed from 1 km resolution MODerate resolution Imaging Spectroradiometer (MODIS)
data. To account for the lower soil moisture sensitivity of MODIS surface temperature compared to that of L -

^
band brightness temperature, the disaggregation scale is � xed to 10 times the spatial resolution of MODIS
thermal data (10 km). Four different analytic downscaling relationships are derived from MODIS and
physically -

^
based model predictions of soil evaporative ef � ciency. The four downscaling algorithms differ

with regards to i) the assumed relationship (linear or nonlinear) between soil evaporative ef � ciency and
near-

^
surface soil moisture, and ii) the scale at which soil parameters are available (40 km or 10 km). The 1 km

resolution airborne L -
^
band brightness temperature from the National Airborne Field Experiment 2006

(NAFE'06) are used to generate a time series of eleven clear sky 40 km by 60 km near -
^
surface soil moisture

observations to represent SMOS pixels across the three -
^
week experiment. The overall root mean square

difference between downscaled and observed soil moisture varies between 1.4% v/v and 1.8% v/v depending
on the downscaling algorithm used, with soil moisture values ranging from 0 to 15% v/v. The accuracy and
robustness of the downscaling algorithms are discussed in terms of their assumptions and applicability to
SMOS.

© 2008 Elsevier Inc. All rights reserved.
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UNCORREC1. Introduction

Soil moisture observations over large areas are increasingly
required in a range of environmental applications including meteor-
ology, hydrology, water resource management and climatology.
Various approaches have been developed over the past two decades
toinfer near -

^
surface soil moisture from remote sensing measurements

of surface temperature, radar backscatter and microwave brightness
temperature (e.g. Prigent et al., 2005; Crow and Zhan, 2007 ). The
relative merit of these approaches depends on i) the strength of the
physical link between the observable in the different spectral domains
and soil water content, and ii) the spatial/temporal resolution that is
technically achievable by the different spaceborne remote sensing
systems. The physical link between L -

^
band brightness temperature

and soil moisture pro � le (up to 5 cm) has been shown to be stronger
than at higher frequency, and more direct than with radar backscatter
and with thermal data ( Kerr, 2007; Wagner et al., 2007 ).

The Soil Moisture and Ocean Salinity (SMOS) mission ( Kerr et al.,
2001) is to be the � rst soil moisture dedicated satellite. It will use L -

^
band radiometry to provide data of the 0 …

^
5 cm soil moisture every

3 days at 40 km resolution globally. Despite the high sensitivity of
71

72

73cesbio.cnes.fr (O. Merlin).

rights reserved.
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008), doi: 10.1016/j.rse.2008
microwave radiometers to near -
^
surface soil moisture, their spatial

resolution is about 10 to 500 times coarser than that of active
microwave and optical systems. For instance, the L -

^
band Phased Array

type L-
^
band Synthetic Aperture Radar (PALSAR) and the Advanced

Spaceborne Thermal Emission and Re� ection Radiometer (ASTER) can
achieve a spatial resolution of about 100 m. Note however that current
and planned radar observations have repeat cycles of about 30 days
with high -

^
resolution products and about 6 days with medium -

^
resolution products such as 1 km resolution C -

^
band Advanced

Synthetic Aperture Radar (ASAR) data. In the optical domain, high -

^
resolution data are also currently acquired sparsely with a repeat cycle
of 16 days for ASTER. In fact, only optical sensors at intermediate
spatial resolution, such as the MODerate resolution Imaging Spectro-
radiometer (MODIS) having 1 km resolution, provide a global coverage
every 1…

^
2 days.

Given the high soil moisture sensitivity but low spatial resolution
of passive microwave data, and the high spatial resolution but non -

^
optimal soil moisture sensitivity of optical/thermal data, the combina-
tion of both types of information is expected to result in reliable soil
moisture products at intermediate spatial resolution. However, such
downscaling approaches need to be matured so that SMOS data can be
used in the numerous applications requiring high -

^
resolution soil

moisture information. To date, disaggregation strategies based on
optical data have been developed by building either stochastic (e.g.
aling of SMOS soil moisture using MODIS derived soil evaporative
.06.012
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Fig. 1. Time series of wind speed monitored at Y11 in the Yanco area. The overpass time on clear sky days of MODIS/Terra (
^
10 am) and MODIS/Aqua (

^
1 pm) are also shown.
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Chauhan et al., 2003) or deterministic (e.g. Merlin et al., 2006b )
relationships between near -

^
surface soil moisture and optical -

^
derived

soil moisture indices. While stochastic approaches have the advantage
of requiring few ancillary data, they may not be valid outside the
conditions used for calibration. Conversely, deterministic approaches
can potentially be transferred to a wider range of conditions, but
generally require a larger amount of surface parameters and micro -

^
meteorological data which may not be available over large areas.

This paper develops a novel analytic approach for downscaling
� 40 km resolution SMOS soil moisture from 1 km resolution MODIS
derived and physically -

^
based model predictions of soil evaporative

ef� ciency (soil evaporative ef � ciency is de� ned as the ratio of the
actual to potential soil evaporation). Four different downscaling
algorithms are developed, differing only in i) the assumed relationship
(linear or nonlinear) between soil evaporative ef � ciency and near-

^
surface soil moisture and ii) the scale at which soil parameters are
available (40 km or disaggregation scale). The four algorithms are
tested with data from the National Airborne Field Experiment 2006
(NAFE'06, Merlin et al., 2008b ). A simulated SMOS near-

^
surface soil

moisture observation is derived from the Polarimetric L -
^
band Multi -

^
beam Radiometer (PLMR) data acquired at 1 km resolution over the 40
by 60 km Yanco area on eleven cloud free days during the three -

^
week

campaign. Moreover, the 1 km resolution data are also used to verify
downscaling results at the disaggregation scale. The downscaling
algorithms are compared in terms of accuracy and robustness with the
NAFE'06 data set. Their operational applicability to SMOS is also
discussed.

2. Data

NAFE'06 was undertaken from 30 October to 20 November 2006 in
the Murrubidgee catchment, in southeastern Australia. A detailed
description of the data set is provided in Merlin et al. (2008b) so only
the pertinent details are given here. The data used in this study are
composed of: the 1 km resolution PLMR data over the 40 by 60 km
Yanco area, the MODIS data acquired over the Yanco area on clear sky
days during the three -

^
week experiment, and a times series of wind

speed measurements at one micro -
^
meteorological station included in

the study area.

2.1. L-
^
band derived soil moisture

During NAFE'06, L-
^
band brightness temperature was mapped at

1 km resolution over the 40 by 60 km Yanco area on 11 days: JD 304,
306, 307, 308, 309, 311, 313, 317, 318, 320 and 322. A soil moisture
product at 1 km resolution was derived over the area from PLMR data
on each acquisition date ( Merlin et al., submitted for publication ). The
error in soil moisture retrievals as compared to ground measurements
aggregated to 1 km resolution was estimated to be less than 4% v/v.

Note that the presence of standing water over rice crops included
in the Yanco area was not explicitely accounted for in the retrieval
procedure. By doing so, all water surfaces were interpreted as bare soil
with 100% moisture content. In other words, any standing water in the
Please cite this article as: Merlin, O., et al., Towards deterministic downsc
ef� ciency, Remote Sensing of Environment(2008), doi: 10.1016/j.rse.2008
TE
D PROOF

11 km PLMR pixels systematically increases the retrieved soil moisture.
1However, this assumption is consistent with the use of MODIS surface
1temperature and NDVI to estimate soil evaporative ef � ciency (see next
1section).

12.2. MODIS data

1The MODIS data used in the downscaling algorithms are composed
1of MODIS/Terra (10 am) and MODIS/Aqua (1 pm) 1 km resolution daily
1surface temperature, and MODIS/Terra 1 km resolution 16 -

^
day

1Normalized Difference Vegetation Index (NDVI). The MODIS NDVI
1data are from Terra only to minimize sun -

^
glint effects occuring with

1Aqua re� ectances at lower sun incidence angles. The 16 -
^
day NDVI

1product was cloud free. In between the � rst (Julian day JD 304) and
1last day (JD 322) of 1 km resolution PLMR � ights over Yanco,12 MODIS
1surface temperature images with less than 10% cloud cover were
1acquired including six aboard Terra (JD 307, 309, 311, 313, 318 and 322)
1and six aboard Aqua (JD 304, 308, 310, 312, 313 and 321).

12.3. Wind speed data

1Wind speed was monitored at 2 m by a meteorological station near
1Y11 (southwestern corner of the Yanco area) continuously during
1NAFE'06 with a time step of 20 minutes. The time series is illustrated
1in Fig. 1. Note that wind speed is assumed tobe uniform within the 40
1by 60 km area, at the time of MODIS overpass.

13. Approach

1The three general steps of the downscaling approach consist of
1(i) estimate soil evaporative ef � ciency from MODIS data (ii) link soil
1evaporative ef � ciency to near -

^
surface soil moisture via a physically -

1
^
based scaling function and (iii) build a downscaling relationship

1to express high -
^
resolution near -

^
surface soil moisture as function

1of SMOS-
^
scale observation and high -

^
resolution soil evaporative

1ef� ciency.

13.1. MODIS-
^
derived soil evaporative ef� ciency

1The � ne-
^
scale information used in the downscaling procedure is

1the soil evaporative ef � ciency derived from MODIS surface tempera-
1ture and MODIS NDVI. The rationale for choosing soil evaporative
1ef� ciency as � ne-

^
scale information is based on the strong correlation

1with near -
^
surface soil moisture ( Anderson et al., 2007) and its relative

1stability during daytime on clear sky days ( Shuttleworth et al., 1989;
1Nichols and Cuenca, 1993; Crago and Brutsaert, 1996 ). The soil
1evaporative ef � ciency � is estimated as in Nishida et al. (2003) .

� MODIS
Tmax � TMODIS

Tmax � Tmin
ð1Þ1

1

1with Tmax being the soil temperature at minimum soil moisture, Tmin

1the soil temperature at maximum soil moisture, and TMODIS the soil
aling of SMOS soil moisture using MODIS derived soil evaporative
.06.012
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Table 1t1:1
Model parameters

t1:2
t1:3 Parameter Value Unit Source

� c0 2.5 % v/v Default value estimated from Komatsu (2003)
� 100 s mŠ

^
1 Default value estimated from Komatsu (2003)

z0m 0.005 m Typical value for bare soil Liu et al. (2007)
t1:7 NDVImin 0.22 …

^
Estimated from NDVI image

t1:8 NDVImax 0.60 …
^

Estimated from NDVI image
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skin temperature derived from MODIS data at the time of interest.
Using the triangle approach ( Price, 1980; Carlson et al., 1995), TMODIS

can be expressed as

TMODIS ¼
Tsurf ; MODIS� fvegTveg

1� fveg
ð2Þ

with Tsurf,MODIS being the MODIS surface skin temperature, Tveg the
vegetation skin temperature and fveg the vegetational fraction cover.
Herein, TMODIS is de� ned as the temperature of the bare soil when
vegetationtemperature Tveg is assumed to be uniform within the
SMOS pixel. In this formulation of soil evaporative ef � ciency, the
impact of spatially variable root -

^
zone soil moisture on Tveg is not

accounted for. Note that � varies between 0 and 1 when fvegb1 and is
not de � ned when fveg=1. Cover fraction is computed as

fveg ¼
NDVIMODIS� NDVImin

NDVImax � NDVImin
ð3Þ

with NDVI MODIS being the MODIS observed NDVI, and NDVImin and
NDVImax the minimum and maximum NDVI values for a particular
scene.

Five parameters are needed to compute soil evaporative ef � ciency
from MODIS data: NDVI min , NDVImax, Tveg, Tmin and Tmax. While NDVI min

and NDVImax are assumed to be constant within the Yanco area during
NAFE'06,Tveg,Tmin and Tmax are assumed to be uniform within the Yanco
area, but vary in time. Parameters NDVI min and NDVImax are determined
from the 16 -

^
day NDVI product within the SMOS pixel. Vegetation

temperature Tveg is estimated at the time of overpass (10 am or 1 pm) as
the minimum temperature reached at maximum NDVI ( fveg=1).
Minimum temperature Tmin can be estimated either over fully vegetated
pixels by assuming Tmin^̂

� Tveg or over water bodies as the minimum
temperature reached at minimum NDVI. Parameter Tmax is the value
extrapolated along the dry edge of the triangle. As the impact of root -

^
zone soil moisture on Tveg is neglected, the dry edge is interpreted as the
1 km pixels with dry soils in the near -

^
surface. Note that the accuracy in

extrapolating Tmax depends on moisture conditions within the study
area; it is optimum in dry -

^
end conditions and is expected to be relatively

low in uniformly wet conditions.

3.2. Scaling function

Although evaporative fraction has been shown to be relatively
constant between 10 am and 1 pm (MODIS overpass times), several
studies have indicated that it cannot be considered as completely
independent from atmospheric conditions ( Lhomme and Elguero,
1999; Gentine et al., 2007 ). Moreover, in constant soil moisture and
atmospheric conditions, soil evaporative ef � ciency may signi � cantly
vary with soil type ( Komatsu, 2003). To account for these temporal
(atmospheric) and spatial (atmospheric and soil properties) effects,
the MODIS-

^
derived � computed from Eq. (1) is explicitly linked to

near-
^
surface soil moisture � by the following model from Komatsu

(2003)

� model ¼ 1� exp � � =� cð Þ ð4Þ
Please cite this article as: Merlin, O., et al., Towards deterministic downsc
ef� ciency, Remote Sensing of Environment(2008), doi: 10.1016/j.rse.2008
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with � c=� c0(1+ � /rah), � c0 (% v/v) and � (s mŠ

^
1) being two soil -

^
dependent parameters and rah (s mŠ

^
1) the aerodynamic resistance

over bare soil, given the soil roughness z0m (see Table 1) and the wind
speed u at a reference height (2 m in our case). Komatsu's model was
validated over bare soil for the very top soil layer (1 mm). The
empirical parameter � c0 (typical range 1 …

^
4% v/v) controls the soil

capacity to retain moisture in optimal evaporative conditions i.e.
when wind speed is zero or rah is in � nite. In other words, the higher
� c0, the slower the soil dries.

By inverting the soil evaporative ef � ciency model from Eq. (4), one
obtains:

� model ¼ � � cln 1� �ð Þ ð5Þ

This model provides an estimate of the slope of the correlation
between near -

^
surface soil moisture and soil evaporative ef � ciency,

� � model /� � =� c/(1 Š
^
� ) and an estimate of the •non-

^
linearity Ž of this

correlation, � 2� model /� � 2=� c/(1 Š
^
� )2. Note that the non -

^
linearity of � model

is a decreasing function of near -
^
surface soil moisture and is maximum at

� =0.

3.3. Downscaling relationships

The physically -
^
based model of Eq. (4) is used to derive four

deterministic relationships between downscaled soil moisture, simulated
SMOS observations, and MODIS-

^
derived soil evaporative ef � ciency.

3.3.1. Linear approximation
A downscaling relationship is derived by writing the � rst-

^
order

Taylor series approximation of the downscaled soil moisture � at the
SMOS-

^
scale observation � SMOS

� ¼ � SMOSþ
A�
A�

� �
�� MODIS ð6Þ

with � � MODIS being the difference between MODIS -derived soil
T ^
evaporative ef � ciency and its integrated value at the SMOS scale. As in
the recent study of Merlin et al. (2008a) , the function f1=� � /� � is used to
convert � variations into soil moisture variations about the low -

^
resolution observation. The main difference here is that this function
f1 depends on soil type, wind speed, and SMOS -

^
scale near-

^
surface soil

moisture. In Merlin et al. (2008a) , the function f1 was assumed to be
constant and was estimated during a training period. Herein, the simple
model of Eq. (4) requiring two soil parameters ( � c0 and � ) and wind speed
is used to describe explicitly the variability of the relationship between
soil evaporative ef � ciency and near-

^
surface soil moisture for different

soils, wind speed and moisture conditions at the SMOS scale. Note that
Eq. (6) relies on the assumption that the 0 …

^
1 mm soil moisture

(as described by MODIS evaporative ef � ciency) and the 0 …
^
5 cm soil

moisture (as derived from PLMR brightness temperature) have the same
spatial variability about the mean within the SMOS pixel.

By replacing f1 by its analytical expression, the downscaling
relationship of Eq. (6) becomes

� ¼ � SMOSþ � c
�� MODIS

1� � SMOS
ð7Þ

with � SMOS=� � � /� � d� the integral of � at the SMOS scale. Eq. (7) can
be simpli � ed as

� ¼ � SMOSþ � cSMPMODIS ð8Þ

with SMP MODIS a soil moisture proxy de � ned as

SMPMODIS ¼
�� MODIS

1� � SMOS
ð9Þ
aling of SMOS soil moisture using MODIS derived soil evaporative
.06.012

Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text:  
Original_text:  
Original_text:  
Original_text:  
Original_text: ~ 
Original_text: ~ 
Original_text: ~ 
Original_text: ~ 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: �
Original_text: �
Original_text: �
Original_text: �
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
http://dx.doi.org/10.1016/j.rse.2008.06.012
merlin
Note
line 174: vegetation temperature



271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

99

00

01

02

03
04
05

06

07
08

09

10

11

12
13
14

15

4 O. Merlin et al. / Remote Sensing of Environment xxx (2008) xxx–xxx

ARTICLE IN PRESS
By assuming that (i) Tmax and Tmin are mostly uniform within the
SMOS pixel and (ii) the integral TSMOS=�

^
� T/� � d� is approximately

equal to the areal average of TMODIS, SMP can be computed as

SMPMODIS ¼
TSMOS� TMODIS

TMODIS� Tmin
ð10Þ

The major advantage of this formulation over Eq. (9) is that SMP
does not depend on the soil temperature at minimum soil moisture
Tmax.

3.3.2. Second-
^
order correction

A second downscaling relationship is derived by adding the term in
� 2 in the Taylor series expansion:

� ¼ � SMOSþ
A�
A�

� �
�� MODIS þ

1
2

A2�

A� 2

 !

�� 2
MODIS ð11Þ

Note that f1 is now � -dependent. In particular, the second
C
16

17
18

19

20

21

22

23

24

25

26

27

28

29

30
^
derivative � 2� /� � 2 speci� cally accounts for the non -

^
linear relationship

between soil evaporative ef � ciency and near-
^
surface soil moisture at

about � SMOS.
By replacing the � rst and second derivatives with their analytical

expression, the downscaling relationship of Eq. (11) becomes

� ¼ � SMOSþ � c
�� MODIS

1� � SMOS
þ

�� 2
MODIS

2 1� � SMOSð Þ2

" #

ð12Þ

and after simpli � cation

� ¼ � SMOSþ � c SMPMODIS þ
1
2

SMP2
MODIS

� �
ð13Þ

with SMP MODIS de� ned as in Eq. (10).

3.3.3. Downscaling relationships
Four downscaling relationships are derived from Eqs. (8) and (13).

They differ with regards to their degree of complexity by assuming a
linear (or non -

^
linear) relationship between soil evaporative ef � ciency
UNCORRE

Fig. 2. Schematic diagram of the validation approach. Downscaling results are validated at 10
surface temperature to near -

^
surface soil moisture.

Please cite this article as: Merlin, O., et al., Towards deterministic downsc
ef� ciency, Remote Sensing of Environment(2008), doi: 10.1016/j.rse.2008
2and near-
^
surface soil moisture, and by using soil parameter � c

3estimated at low -
^

(or high -
^
) resolution:

3€ Downscaling scheme D1 is based on the linear approximation
3between � and � , and assumes � c is uniform:

D1 : � ¼ � SMOSþ � c;SMOSSMPMODIS ð14Þ3
3
3€ Downscaling scheme D2 includes a second -order correction in
^
3SMPMODIS

2 , and assumes � c is uniform:

D2 : � ¼ � SMOSþ � c;SMOS SMPMODIS þ
1
2

SMP2
MODIS

� �
ð15Þ3

3

3€ Downscaling scheme D1 � is based on the linear approximation
F

^
3between � and � , and accounts for the variability of � c at the
3downscaling resolution:

D10: � ¼ � SMOSþ � c;MODISSMPMODIS ð16Þ3
3
3€ Downscaling scheme D2 � includes a second-order correction in
TE
D PROO^ ^

3SMPMODIS
2 , and accounts for the variability of � c at the scale of the

3downscaling resolution:

D20: � ¼ � SMOSþ � c;MODIS SMPMODIS þ
1
2

SMP2
MODIS

� �
ð17Þ3

3

3Note that the difference between D1 and D1 �
^
, and likewise the

3difference between D2 and D2 �
^
, is simply the spatial scale at which soil

3parameters are estimated.

34. Application

3The four downscaling algorithms of Eqs. (14) …
^
(17) are tested with

3the NAFE'06 data set. The •goodnessŽof the disaggregation process is
3measured by two estimators: the root mean square difference and the
3correlation coef � cient between 10 km resolution disaggregated soil
3moisture and 10 km resolution L -

^
band retrieval.

34.1. Validation approach

3The approach for veri � cation of downscaling results is illustrated
3in Fig. 2. The 1 km resolution L -

^
band derived soil moisture is
km resolution to account for the lower sensitivity (relative t o PLMR data) of MODIS

aling of SMOS soil moisture using MODIS derived soil evaporative
.06.012
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Table 2t2:1
List of the acquisition date of MODIS data, satellite platform (Aqua/1 pm and Terra/
10 am), minimum soil temperature Tmin , wind speed u, SMOS-

^
scale soil moisture � SMOS,

and its variability (standard deviation) at 1 km resolution � SMOS

t2:2
t2:3 Tmin u � SMOS (� SMOS)

t2:4 Day Satellite °C msŠ

^
1 % v/v

t2:5 304 Aqua 37 6 4.4 (4.9)
t2:6 307 Terra 28 10 16.6 (5.4)
t2:7 308 Aqua 37 5 11.0 (4.6)
t2:8 309 Terra 35 8 6.5 (4.6)
t2:9 310 Aqua 38 8 5.4 (4.5

^
)a

t2:10 311 Terra 33 9 4.2 (4.4)
t2:11 312 Aqua 35 7 4.0 (4.3) a

^
t2:12 313 Terra 32 8 3.8 (4.3)
t2:13 313 Aqua 39 4 3.8 (4.3)
t2:14 318 Terra 27 6 11.3 (3.8)
t2:15 321 Aqua 37 5 8.0 (4.6) a

^
t2:16 322 Terra 37 6 5.4 (4.7)
t2:17 All

^
b Terra 33 7 6.2 (4.4)

t2:18 All Aqua 37 6 6.1 (4.5)

a Interpolated between dates.t2:19
b All dates except 307.t2:20
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aggregated over the 40 by 60 km Yanco area to generate a � 40 km
resolution SMOS type soil moisture observation on each PLMR � ight
day. The time series of � SMOS and its sub-

^
pixel variability at 1 km

resolution � SMOS are presented in Table 2. The simulated SMOS
resolution observation ranges from 4 to 17% v/v with a spatial
variability at 1 km resolution of about 5% v/v. These coarse
observations are next disaggregated at higher spatial resolution
using 1 km resolution daily MODIS -

^
derived SMP. The L-

^
band derived

soil moisture product is then used to verify downscaling results at the
disaggregation scale.

In this study, the disaggregation scale is 10 km. Consequently, the
MODIS-

^
derived soil temperature is aggregated from 1 km to 10 km

to derive SMP at 10 km resolution. There are several rationales for
UNCORREC

Fig. 3. MODIS daily surface temperature versus MODIS 16 -
^
day NDVI. The minimum

Please cite this article as: Merlin, O., et al., Towards deterministic downsc
ef� ciency, Remote Sensing of Environment(2008), doi: 10.1016/j.rse.2008
D PROOF

aggregating MODIS-
^
derived soil temperature. First, the aggregation of

MODIS derived SMP to 10 km is expected to increase the sensitivity of
SMP to near-

^
surface soil moisture (the sensitivity of surface

temperature to near -
^
surface soil moisture is relatively low compared

to that of L -
^
band brightness temperature). Second, the aggregation

limits the errors on downscaled results associated with the presence
of clouds in surface temperature images and with the re -

^
sampling

strategy that is required for comparison with gridded PLMR data.
Third, meteorological forcing (wind speed notably) reacts to the
surface heterogeneity in an organized manner at scales larger than
1 km ( Shuttleworth et al., 1997 ).

The four algorithms of Eqs. (14) …(17) are applied to 12 MODIS
surface temperature images and downscaling results are compared to
the PLMR retrieval aggregated to 10 km resolution on the same grid as
MODIS derived SMP. For the three MODIS overpass days (JD 310, 312,
and 321) on which no PLMR � ight was undertaken, PLMR data are
interpolated between dates by averaging soil moisture products
obtained on the day before and day after. The interpolation is valid
because no rainfall occurred during the period.

4.2. MODIS derived SMP

All downscaling relationships in (14) …(17)
^

are based on the
MODIS derived SMP computed from the soil temperature TMODIS

and the minimum soil temperature Tmin . The MODIS-
^
derived

soil temperature is computed by estimating Tveg for each MODIS
surface temperature image. Fig. 3 presents the triangles obtained
by plotting 1 km resolution MODIS surface temperature (Terra or
Aqua) against 1 km resolution NDVI (16 -

^
day product from Terra

platform). The vegetation temperature is estimated as the mini-
mum surface temperature reached at maximum NDVI (0.6). The
MODIS-

^
derived SMP is then computed by estimating Tmin for

each MODIS surface temperature image. In practice, the minimum
soil temperature is approximated to the vegetation temperature
TE

soil temperature (and vegetation temperature) is represented in dash line.

aling of SMOS soil moisture using MODIS derived soil evaporative
.06.012

Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: (14-17)
Original_text: (14-17)
Original_text: (14-17)
Original_text: (14-17)
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: )N
Original_text: )N
Original_text: )N
Original_text: )N
Original_text: N
Original_text: N
Original_text: N
Original_text: N
Original_text: N
Original_text: N
Original_text: N
Original_text: N
Original_text: NN
Original_text: NN
Original_text: NN
Original_text: NN
Original_text: - 
Original_text: - 
Original_text: - 
Original_text: - 
http://dx.doi.org/10.1016/j.rse.2008.06.012


UNCORRECTE
D PROOF

376

377

378

379

380

81

82

83

84

85

Fig. 4. Downscaled versus PLMR derived soil moisture for each clear sky MODIS surface temperature image between JD 304 and 311. Results include the downscale d soil moisture at
10 km resolution (circles), and its sub -

^
pixel variability (error bars).
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Tmin =Tveg. One physical explanation behind this is that both
vegetation temperature and the soil temperature at saturation are
in � rst approximation close to the air temperature. Note that on
JD 311 and 321, the surface temperature of some pixels is below the
vegetation temperature. This can be explained by the presence
Please cite this article as: Merlin, O., et al., Towards deterministic downsc
ef� ciency, Remote Sensing of Environment(2008), doi: 10.1016/j.rse.2008
3of small clouds on the images and/or a de -
^
coupling between

3soil skin temperature with evaporation. However, this effect
3was relatively small, and did not appear on the other days.
3Parameter Tmin is listed in Table 2 for each of the 12 MODIS surface
3temperature images.
aling of SMOS soil moisture using MODIS derived soil evaporative
.06.012
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Fig. 5. As for Fig. Fig. 4 but between JD 312 and 322.
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4.3. Downscaling with D1 and D2 (uniform � c)

Downscaling schemes D1 and D2 are applied to the NAFE'06 data
set. In Eqs. (14) and (15), parameter � c,SMOSis evaluated by estimating
� c0 and � when the soil type is not known. In Komatsu (2003) , � c0
Please cite this article as: Merlin, O., et al., Towards deterministic downsc
ef� ciency, Remote Sensing of Environment(2008), doi: 10.1016/j.rse.2008
varied from 1 % v/v for sand to 4 % v/v for agricultural (clay) soil, and �
varied from 85 to 115 s m Š

^
1. Herein, default values are � xed to

� c0 =2.5% v/v and � =100 s mŠ

^
1.

Downscaling results are presented in Figs. 4 and 5 for each MODIS
image separately. The data points represent the 10 km resolution
aling of SMOS soil moisture using MODIS derived soil evaporative
.06.012
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Table 3t3:1
List of the acquisition date of MODIS data, satellite platform (Aqua/1 pm and Terra/
10 am), root mean square error (RMSE) on the 10 km resolution downscaled soil
moisture � , and the correlation coef � cient R2 between 10 km resolution downscaled
and PLMR derived soil moisture

t3:2
t3:3 RMSE on� 10 km Correlation coef � cient r 2

t3:4 D1 D2 D1�
^

D2�
^

D1 D2 D1�
^

D2�
^

t3:5 Day Satellite % v/v %v/v % v/v % v/v …
^

…
^

…
^

…
^

t3:6 304 Aqua 2.0 2.0 1.6 1.7 0.67 0.67 0.81 0.79
t3:7 307 Terra 5.7 8.6 7.0 11 Š

^
0.18 Š

^
0.13 Š

^
0.08 Š

^
0.07

t3:8 308 Aqua 1.3 1.4 1.4 1.6 0.82 0.82 0.86 0.85
t3:9 309 Terra 1.6 1.6 1.3 1.3 0.69 0.70 0.82 0.84
t3:10 310 Aqua 1.3a

^
1.5a

^
0.85a

^
1.1a

^
0.85a

^
0.84a

^
0.93a

^
0.92a

^
t3:11 311 Terra 1.4 1.4 1.0 1.0 0.79 0.80 0.90 0.91
t3:12 312 Aqua 1.8a

^
2.1a

^
1.6a

^
2.1a

^
0.68a

^
0.68a

^
0.81a

^
0.80a

^
t3:13 313 Terra 1.6 1.6 1.6 1.7 0.62 0.64 0.68 0.69
t3:14 313 Aqua 1.6 1.6 1.3 1.2 0.70 0.71 0.85 0.84
t3:15 318 Terra 1.8 1.9 1.9 2.0 0.29 0.27 0.35 0.33
t3:16 321 Aqua 1.9a

^
2.0a

^
1.4a

^
1.6a

^
0.61a

^
0.60a

^
0.77a

^
0.75a

^
t3:17 322 Terra 2.2 2.3 1.8 1.8 0.47 0.43 0.68 0.64
t3:18 All

^
b Terra 1.7 1.8 1.5 1.6 0.57 0.57 0.68 0.68

t3:19 All Aqua 1.6 1.7 1.4 1.6 0.72 0.72 0.84 0.83

a PLMR data interpolated between dates.t3:20
b All dates except 307.t3:21

Fig. 6. Downscaling results at 10 km resolution obtained on all acquisition dates except
JD 307.

Fig. 7. Areal average (circle) and spatial variability (error bar) within the SMOS pixel of
MODIS retrieved � c,MODIS versus 1/rah. The aerodynamic resistance rah was computed
from ground -

^
based measurements of wind speed. Modelled � c is also plotted for

comparison.
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downscaled soil moisture � 10 km and the errorbars represent the 1 km
variability in 10 km � elds � 10 km , computed as the standard deviation
of downscaled � at 1 km resolution. Quantitative results in terms of
root mean square error (RMSE) and correlation coef � cient with L -

^
band derived soil moisture are presented in Table 3. The downscaled
soil moisture is generally in good agreement with PLMR retrieval with
an overall RMSE of 1.7% v/v and 1.8% v/v for D1 and D2 respectively,
and an overall correlation coef � cient of about 0.7 for both schemes.

On JD 307 however, the correlation coef � cient is negative ( Š
^
0.2) for

both D1 and D2 and the RMSE is 6% v/v and 8% v/v for D1 and D2
respectively. In particular, the RMSE is higher in both cases than the
variability of 1 km resolution L -

^
band derived soil moisture within the

SMOS pixel (� SMOS=5% v/v), which means that the � 40 km resolution
observation is a better estimate of near -

^
surface soil moisture than the

downscaled one at scales ranging from 1 km to 40 km. Those poor
results are probably due to the poor estimates of L -

^
band derived soil

moisture on this particular day. The relationship between MODIS
surface temperature and NDVI in Fig. 3obtained on JD307 is consistent
with that obtained on the other days. Consequently, MODIS surface
temperature on JD307 can reliably be used to derive SMP. The point is
that the MODIS surface temperature image on JD 307 is the only image
available that directly follows one of the two major rainfall events of
NAFE'06. In particular, the rainfall event during the night of JD 306 …

^
307 might be the cause of a temporary change in vegetation water
content or possibly intercepted water ( Merlin et al., 2008b ), resulting
in an unreliable L -

^
band derived soil moisture product. Independently

from the impact of canopy water storage on microwave soil moisture
retrieval, one should note that the disaggregation approaches will not
operate well in very wet conditions, under which surface skin
temperature is generally de -

^
coupled from soil moisture levels. This

de-
^
coupling is due to a switch from moisture -

^
limited (dry) to energy -

^
limited (wet) conditions.

The comparison between schemes D1 and D2 shows that better
results in terms of RMSE and correlation coef � cient are generally
obtained with the linear approximation (D1). The inclusion of a
second-

^
order correction slightly deteriorates the results. It is argued

that the agregation of the MODIS derived soil temperature and L -
^
band

derived soil moisture from 1 km to 10 km tends to •linearize Ž the
relationship between soil evaporative ef � ciency and soil moisture. The
aggregation to 10 km makes the linear approximation approach more
valid than the second -

^
order correction one. Moreover, the simple

model of Eq. (4) does not represent the saturation of soil evaporative
Please cite this article as: Merlin, O., et al., Towards deterministic downsc
ef� ciency, Remote Sensing of Environment(2008), doi: 10.1016/j.rse.2008
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4ef� ciency at very low soil moisture values as modelled in Sellers et al.
4(1992) . This saturation is visible in Fig. 6 for soil moisture values below
45% v/v.

44.4. Downscaling with D1�
^

and D2�
^

(spatially variable � c)

4The variability of soil type within the SMOS pixel is now accounted
4for in the disaggregation scheme. Soil parameter � c is � rst � tted with
4MODIS SMP and PLMR soil moisture retrieval during a calibration
4period JD 304…

^
311. The � c,MODIS values at 10 km resolution are then

4used in the application of downscaling schemes D1 �
^

and D2
^
� to the

4whole period JD 304 …
^
322.

4Parameter � c is a function of two soil -
^
dependent parameters � c0

4and � . In Komatsu (2003) , � and � c0 were estimated for three different
4substracts (sand, agricultural soil, and cornstarch). In that study, most
4of the variability in � c was attributed to � c0 (1% v/v for sand and 4% v/v
4for clay), while � remained relatively constant. To simplify our
4analysis, parameter � is thus � xed to a constant, estimated from the
4average of the values in Komatsu (2003) (� =100 s mŠ

^
1). This ap-

4proximation is consistent with the relatively high uncertainty in wind
4speed associated with the extrapolation of point -

^
measurements

4(meteorological station) to the 40 by 60 km Yanco area.
aling of SMOS soil moisture using MODIS derived soil evaporative
.06.012
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Fig. 8. Map over the 40 by 60 km Yanco area of 1 km resolution MODIS/Terra LAI (left), the retrieved 10 km resolution � c0,MODIS (centre) and its sub -
^
pixel variability (right).

Table 4 t4:1
Sensitivity of the disaggregation algorithms D1 and D1 �

^
to a bias of ±0.1 on extreme

NDVI values
t4:2
t4:3Bias (…

^
)
^

RMSE (% v/v) on

t4:4NDVImin NDVImax � D1 � D1�

t4:50 0 1.69 1.45
t4:60 +0.1 1.70 1.43
t4:70 Š

^
0.1 1.75 1.44

t4:8+0.1 0 2.03 1.41
t4:9+0.1 +0.1 2.03 1.41
t4:10+0.1 Š

^
0.1 2.03 1.41

t4:11Š
^
0.1 0 1.84 1.43

t4:12Š
^
0.1 +0.1 1.73 1.46

t4:13Š
^
0.1 Š

^
0.1 2.14 1.43

The RMSE on disaggregated soil moisture is computed from data including all days
except JD 307. t4:14
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Given downscaling scheme D1 was found to be more accurate than

downscaling scheme D2, Eq. (16) is used to estimate parameter � c,MODIS:

� c;MODIS ¼
� PLMR� � SMOS

SMPMODIS
ð18Þ

from L-
^
band derived soil moisture � PLMR and MODIS derived SMP

using the � ve � rst clear sky MODIS images of NAFE'06, on JD 304,
308, 309, 310 and 311. Fig. 7plots the areal average of 10 km resolution
� c,MODIS as function of 1/ rah (rah is computed from ground -

^
based

observation of wind speed). It appears that the model with default
parameters � =100 s mŠ

^
1 and � c0 =2.5% v/v � ts relatively well the

observed mean � c,MODIS, which justi � es the assumptions made
previously. A variation of 0.02 ms Š

^
1 in 1/ rah (equivalent to 4.5 ms Š

^
1

in wind speed) induces an increase of 5% v/v in � c. For a given day, the
spatial variability of � c within the SMOS pixel is about three times
larger ( � 15% v/v).

By � xing the value of � to 100 s m Š

^
1, one is able to estimate � c0,MODIS

with Eq. (18) from � tted � c,MODIS and ground observations of rah

� c0;MODIS ¼
� c;MODIS

1 þ � =rah
ð19Þ

The soil parameter � c0,MODIS retrieved at 10 km resolution over the
Yanco area and its sub-

^
spatial variability (standard deviation) are

mapped in Fig. 8. The spatial variability of � c0,MODIS is linked to soil
type distribution. The soil in the near -

^
surface over Yanco has a high

clay content in the CIA (left part of the image) near Y9 and along the
Yanco Creek (right part of the image) from Y5 to Y12, and a high sand
content in the north of the Yanco area around Y2 ( Hornbuckle and
Christen, 1999; Merlin et al., 2007 ). To determine whether the
retrieved � c0 compensates for possible errors in MODIS derived soil
temperature retrievals, it is correlated with MODIS NDVI at 10 km
resolution. The correlation coef � cient is 0.0004, which indicates that
the retrieved � c0 is mainly dependent on soil properties, and not on
vegetation cover.

The downscaling schemes D1�
^

and D2�
^

are then applied to the
NAFE'06 data set using the soil parameter � c0,MODIS retrieved from JD
304…

^
311. Downscaling results are presented in Figs. 4 and 5 for each

MODIS image separately. Quantitative results in terms of RMSE and
correlation coef � cient with L -

^
band derived soil moisture are listed

in Table 3, showing that the inclusion of a spatially variable � c in the
Please cite this article as: Merlin, O., et al., Towards deterministic downsc
ef� ciency, Remote Sensing of Environment(2008), doi: 10.1016/j.rse.2008
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downscaling relationship signi � cantly increases the accuracy of the
disaggregation. The overall RMSE on the downscaled � is decreased
from 1.7% to 1.4% v/v with the linear approximation, and from 1.7% to
1.6% v/v with the second -

^
order correction. The overall correlation

coef� cient is increased from 0.65 to 0.76 with the linear approxima-
tion and from 0.64 to 0.75 with the second -

^
order correction. These

improvements justify the relative complexity of D1 �
^

compared to D1.
However, the second -

^
order correction in � 2 of D2 and D2�

^
does not

improve the downscaling approach with this data set (and the �
model used).

4.5. Uncertainties in fractional vegetation cover

The performance of disaggregation approaches depends on
fractional vegetation cover estimates. The uncertainties in fveg can
be associated with uncertainties in NDVI min and NDVImax. The NDVI
value at full vegetation cover NDVI max is not very accurate in the low -

^
covered NAFE'06 area, and the value for NDVI min (0.22) does not
probably correspond to pixels with 100% bare soil. To assess the
impact of uncertainties in fractional vegetation cover on disaggrega-
tion results, a sensitivity analysis was conducted by adding a bias of ±
0.1 to NDVImin and NDVImax. Results in terms of RMSE on disaggre-
gated soil moisture are presented in Table 4 for downscaling
algorithms D1 and D1'. When looking at the results for D1, a bias on
aling of SMOS soil moisture using MODIS derived soil evaporative
.06.012
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Fig. 9. 1 km variability in 10 km � elds (� 10 km ) of downscaled soil moisture versus the
� 10 km of PLMR derived soil moisture (for all acquisition dates except JD 307).
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NDVImin has in general more impact than a bias on NDVI max. This was
expected as most pixels are in the lower range of NDVI values. Inthe
worst case (negative bias on both NDVI min and NDVImax), the overall
RMSE on disaggregated soil moisture is estimated as 2.1% v/v, which is
relatively small compared to the range of variation of 10 km resolution
soil moisture (0 …

^
15% v/v). When looking at the results for D1', it is

apparent that a bias on vegetation fraction estimates has almost no
effect on disaggregation results. In fact, the errors associated with an
under(or over)estimation of fveg is compensated by the calibration of
� c0. Consequently, the sensitivity study indicates that the impact of
uncertainties in extreme NDVI values is relatively small, and can be
corrected by a calibration strategy. Moreover, it should be noted that
the accuracy of NDVImax can potentially be improved by combining the
maximum NDVI value observed within the study area with the value
extrapolated along the dry edge of the temperature -

^
NDVI triangle.

4.6. Observation time

The disaggregation results obtained separately with MODIS aboard
Terra (10 am) and MODIS aboard Aqua (1 pm) are compared in Table 3.
While the RMSE is about the same with Terra and with Aqua for all
downscaling schemes, the mean correlation coef � cient between the
downscaled and PLMR derived soil moisture varies between 0.57 and
0.68 with Terra data and between 0.72 and 0.84 with Aqua data
depending on the downscaling scheme. The downscaling approaches
appear to be generally more robust with Aqua than with Terra, despite
the interpolation of PLMR data on three days out of the six clear sky
images (JD 310, 312 and 321). Actually, the acquisition time of surface
temperature is an important requirement for � estimation, as the
evaporation process directly depends on incoming solar radiation.
These results con� rm that the coupling between optical derived � and
near-

^
surface soil moisture is generally stronger at 1 pm than at 10 am.

4.7. Noise-
^
level reduction at 10 km resolution

In the disaggregation approaches, the MODIS soil temperature was
aggregated from 1 to 10 km to reduce the noise -

^
level in data. The aim

here is to verify the noise reduction at 10 km resolution under certain
conditions. Table 5 lists the 10 km variability in the SMOS pixel and the
1 km variability in 10 km � elds of successively, NDVI, soil skin
temperature, SMP, disaggregated soil moisture (scheme D1'), and
PLMR derived soil moisture. When looking at the dry down period JD
308…

^
310 following the � rst rainfall event, it appears that the 1 km

variability of SMP increases on JD 309 from 0.23 …
^
0.24 to 0.38, while

the 10 km resolution variability is constant at 0.18 …
^
0.19. By assuming

that the spatial variability of soil moisture generally decreases with
themean during a dry down period ( Teuling et al., 2007 ), it can be
UNCOR
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Table 5
10 km variability in the SMOS pixel and 1 km variability in 10 km � elds of successively,
NDVI, soil temperature, SMP (Soil Moisture Proxy), disaggregated soil moisture (scheme
D1�

^
) and PLMR derived soil moisture

10 km variability in the SMOS pixel (1 km variability in 10 km � elds)

� NDVI � TMODIS � SMPMODIS �� D1' �� PLMR

Day Satellite …
^

K …
^

% v/v % v/v

304 Aqua 0.033 (0.041) 1.0 (1.6) 0.17 (0.25) 1.9 (2.3) 2.7 (3.2)
307 Terra idem 2.2 (2.3) 0.39 (0.36) 6.5 (5.4) 2.0 (4.7)
308 Aqua idem 1.5 (1.9) 0.18 (0.23) 2.7 (2.6) 2.2 (3.7)
309 Terra idem 0.76 (1.4) 0.18 (0.38) 1.7 (3.0) 2.3 (3.4)
310 Aqua idem 1.4 (1.9) 0.19 (0.24) 2.3 (2.4) 2.4 (3.3)
311 Terra idem 1.3 (2.0) 0.14 (0.25) 2.2 (2.8) 2.3 (3.1)
312 Aqua idem 1.7 (1.9) 0.24 (0.26) 2.9 (2.5) 2.3 (3.1)
313 Terra idem 1.1 (1.6) 0.14 (0.21) 1.9 (2.4) 2.1 (2.9)
313 Aqua idem 1.1 (1.8) 0.15 (0.26) 1.2 (1.7) 2.1 (2.9)
318 Terra idem 1.0 (1.4) 0.15 (0.23) 1.7 (2.2) 1.7 (3.2)
321 Aqua idem 1.5 (1.7) 0.26 (0.34) 2.0 (2.3) 2.3 (3.3)
322 Terra idem 1.2 (1.7) 0.18 (0.26) 1.7 (2.3) 2.4 (3.4)

Please cite this article as: Merlin, O., et al., Towards deterministic downsc
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5concluded that i) the noise -
^
level in SMP observation is higher on JD

5309 than on the other days, and ii) the aggregation to 10 km reduces
5signi � cantly random errors at 1 km resolution. Note that the higher
5uncertainty in SMP on JD 309 is probably due to the observation time:
5the data on JD 309 were acquired at

^
10 am aboard Terra, while the data

5on JD 308 and 310 were acquired at
^
1 pm aboard Aqua.

54.8. Robustness at 10 km resolution

5The robustness of the downscaling schemes is assessed by plotting
5in Fig. 9 the 1 km variability in 10 km � elds (� 10 km ) of downscaled soil
5moisture versus the � 10 km of PLMR derived soil moisture. The RMSE
5(and correlation coef � cient) is 1.9% (0.61), 2.1% (0.58), 1.8% (0.73), and
52.1% v/v (0.72) for D1, D2, D1�

^
, and D2�

^
respectively. Results indicate

5that D1
^
� is the most stable of the four approaches. Moreover, the RMSE

5on the � 10 km of downscaled soil moisture (1.8% v/v for D1 �
^
) is about

5twice as small as the mean � 10 km of PLMR derived soil moisture (3.4%
5v/v). This means that the spatial variability of near -

^
surface soil

5moisture is relatively well represented below the scale of 10 km. The
5scale of the disaggregation algorithm could therefore be improved to a
5resolution higher than 10 km. However, further studies are needed
5to estimate quantitatively an •optimal Ž downscaling resolution in
5between the MODIS resolution (1 km) and 10 km.

55. Discussion

5Comparison of the algorithms using soil properties at SMOS scale
5� cSMOSand at the disaggregation scale � c,MODIS shows that parameter
5� c is the most important parameter to be estimated at both high -

^
and

5low -
^
resolution. The application of the methodology to SMOS would

5therefore require estimating � c over large areas. Given the correlation
5between � c and sand/clay fraction ( Komatsu, 2003), this parameter
5could possibly be derived from existing soil maps. However, soil
5maps of the � rst cm of soil are not available globally and consequently
5a more robust approach is to estimate � c from remote sensing
5observations. One way to do this would be to use the temporal
5behaviour of near -

^
surface soil moisture observation as an index of

5soil evaporative rate: for a given surface area with approximately the
5same amount of precipitation, the faster the soil dries, the higher � c is.
5An iterative procedure on � c,MODIS is proposed. First, the SMOS-

^
scale

5� c,SMOSis estimated from a time series of SMOS observation � SMOSand
5SMOS-

^
scale � SMOS. Next, � c,MODIS is initialized � c,MODIS=� c,SMOS, and is

5retrieved at improved spatial resolution (10 km or higher), by
5iteratively (i) downscaling � SMOSand (ii) evaluating � c,MODIS from the
aling of SMOS soil moisture using MODIS derived soil evaporative
.06.012
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dowsncaled � and measured � MODIS (in Eq. (18)). Such a downscaling/
assimilation coupling scheme would combine the spatial pattern
search (downscaling) and the temporal dynamics search (assimila-
tion) in an optimal manner ( Merlin et al., 2006a ).

The main limitation of the general downscaling approach outlined
in this paper is the derivation of accurate SMP (or soil evaporative
ef� ciency) estimates. For NAFE'06, the LAI ranged from 0 to 1.5 at 1 km
resolution, resulting in relatively low fractional vegetation covers.
It should be noted that the uncertainty in soil skin temperature
retrievals increases with LAI, and the retrieval will not be feasible over
fully vegetated pixels. Also, the formulation of the fractional
vegetation cover fveg as a linear function of NDVI in Eq. (3) could be
improved ( Baret et al., 2007). A second limitation of the method is
estimation of the minimum soil temperature Tmin , as it partly depends
on a subjective interpretation of the triangle. As depicted by Carlson
(2007) •the most severe limitation of the triangle method is that
identi � cation of the triangular shape in the pixel distribution requires
a � at surface and a large number of pixels over an area with a wide
range of soil wetness and fractional vegetation cover Ž. However, the
downscaling approach differs from the traditional triangle analysis as
it does not require estimating the maximum soil temperature Tmax. As
Tmax can be largely uncertain, especially after a rainfall event when the
soil is wet everywhere in the SMOS pixel, the use of SMP (instead of
soil evaporative ef � ciency) represents a key step in the downscaling
procedures. One drawback of the use of SMP is that the denominator
(TMODIS…

^
Tmin ) is subject to numerical instabilities when the MODIS

derived soil temperature is close to the minimum soil temperature.

6. Summary and conclusions

A deterministic approach for downscaling � 40 km resolution
SMOS soil moisture observations was developed from 1 km resolution
MODIS data. To account for the lower soil moisture sensitivity of
MODIS surface temperature compared to L -

^
band brightness tempera-

ture, the downscaling scale was � xed to 10 times (10 km) the spatial
resolution of MODIS thermal data (1 km). The three general steps of
the downscaling procedure were (i) estimate soil evaporative
ef� ciency from MODIS data (ii) link soil evaporative ef � ciency to
near-

^
surface soil moisture via a physically -

^
based scaling function and

(iii) build a downscaling relationship to express high -
^
resolution near -

^
surface soil moisture as function of SMOS type observation and high -

^
resolution soil evaporative ef � ciency. This innovative approach was
able to account for spatial variations in soil type and temporal
variations in wind speed and near -

^
soil moisture across the SMOS

pixels. Four different downscaling algorithms were proposed. They
differed only with regards to i) the assumed relationship (linear or
nonlinear) between soil evaporative ef � ciency and near-

^
surface soil

moisture, and ii) the scale at which soil parameters ( � c) were available
(40 km or 10 km).

The four downscaling algorithms have been tested using the
NAFE'06 data set. The 1 km resolution L -

^
band derived soil moisture

was aggregated over the Yanco area to generate a time series of coarse -

^
scale (� 40 km) near -

^
surface soil moisture observations. The simulated

SMOS soil moisture was then disaggregated by the different down-
scaling algorithms. The disaggregation results obtained at 10 km
resolution from twelve MODIS surface temperature images (six aboard
Terra and six aboard Aqua) were compared with the L -

^
band derived

soil moisture aggregated to 10 km.
The overall root mean square difference between downscaled and

L-
^
band derived soil moisture was better than 1.8% v/v with soil

moisture values ranging from 0 to 15% v/v. The consistency between
downscaled and L-

^
band derived soil moisture was also demonstrated

at the 1 km scale. The overall RMSE on sub-
^
pixel variability (standard

deviation within 10 km resolution pixels) of downscaled soil moisture
was better than 2.1% v/v with a variability ranging from 0 to 12% v/v. In
all cases, the correlation coef � cient between downscaled and L -

^
band
Please cite this article as: Merlin, O., et al., Towards deterministic downsc
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derived soil moisture (and its sub -
^
pixel variability) was better

than 0.6. These results illustrated the remarkable robustness of the
four different algorithms at 10 km resolution across the three -

^
week

experiment. It wasalso found t hat results are more accurate
with MODIS/Aqua than with MODIS/Terra data, due to the stronger
coupling between � and near-

^
surface soil moisture at

^
1 pm than at

^
10 am.

The comparison of the linear and non -
^
linear algorithms showed

that better results were generally obtained with the linear approx-
imation. It was argued that the aggregation from 1 km to 10 km of
MODIS-

^
derived soil temperature and L -

^
band derived soil moisture

tends to •linearize Žthe correlation between soil evaporative ef � ciency
and near-

^
surface soil moisture around the SMOS observation.

However, as the soil moisture variability over the study area was
mainly due to irrigation at scales smaller than 1 km, it is not possible
to generalize this � nding to SMOS pixels with a stronger heterogeneity
at 10 km resolution, for which the impact of the non -

^
linearity of �

would be higher.
The comparison of the algorithms using soil properties at the

SMOS scale� c,SMOS and at the disaggregation scale � c,MODIS showed
that � c is the most important parameter to be estimated at both high -

^
and low -

^
resolution. The knowledge of � c at 10 km resolution made the

overall RMSE on downscaled soil moisture decrease from 1.7% v/v to
1.3% v/v, and the mean correlation coef � cient increase from 0.7 to 0.8.

The application to SMOS data would imply coupling the disag-
gregation approach with an assimilation scheme in order to retrieve
soil parameters (e.g. � c) at the disaggregation scale. Further testing
will be needed to assess the applicability of such an approach in a
wider range of surface conditions, especially over higher vegetation
covers. Also, studies evaluating the relative sensitivity of L -

^
band

observations and soil moisture proxies (such as soil evaporative
ef� ciency) are needed to determine optimal disaggregation scales in
terms of downscaling accuracy.
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