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Abstract

In the Sahel, land surface processes are significantly interacting with climate dynamics. In this paper, we present an original method to
control a simple Sahelian land surface model coupled to a radiative transfer model (RTM) on the basis of ERS wind scatterometer (WSC)
observations. In a first step, a sensitivity study is implemented to identify those parameters of the land surface model that can be estimatec
through the assimilation of WSC data. The assimilation scheme relies on evolution strategies (ES) algorithm that aims at solving the
parameter evaluation problem. These algorithms are particularly well suited for complex (nonlinear) inverse problems. The assimilation
scheme is applied to several study sites located in the Sahelian mesoscale site of the African Monsoon Multidisciplinary Analysis Project
(Gourma region, Mali). The results are compared with ground observations of herbaceous mass. After the WSC data assimilation, the
simulated herbaceous mass curves compare well with observations [187 kilogram of dry matter per hectare (kg DM/ha) of average error]. The
simulated water fluxes exhibit a behaviour in agreement with ground measurements performed over similar ecosystems during the Hape»
Sahel experiment. The accuracy of estimated herbaceous mass and water fluxes resulting from uncertainties on climatic forcing variable i
evaluated using a stochastic approach. The average error on the herbaceous mass values mainly depends on the rainfall estimate accuracy
ranges from 139 to 268 kg DM/ha that compares well with a previous study based on the sole inversion of the radiative transfer model.
Finally, this study underlines the need for a multispectral assimilation approach to get a better constraint on water fluxes estimation.

D 2004 Elsevier Inc. All rights reserved.

Keywords:Wind scatterometer; Sahel; Data assimilation; Radiative transfer modelling; Vegetation functioning model; Parameter identification; Evolutio
strategies

1. Introduction 2000. Vegetation cover modifies the partition of latent fluxes
at the surface between soil evaporation and plant transpiration
The land surface component of the hydrological cycle hasand thus alters the water content of the atmospheric boundary
a major role on the climate of the earth through the exchangedayer available for the development of the convective rainfall
of water and energy at the soil-vegetation—atmosphereevents flahrt, 2000. Within this contextTaylor and Lebel
interface Shukla & Mintz, 1982. Over the Sahel, charac- (1998) have found observational evidence of the direct

terized by a high water recycling rair(baker et al., 1993 impact of this partition on the local persistence of convective
the water fluxes in particular are of prime importance to the events in the boundary layer associated to rainfall in this
understanding and forecasting of the climatkclfolson, region. In particular, vegetation transpiration, by delaying the

return of water to the atmosphere, favours the upkeeping of
convective movements between two rainfall events.
* Corresponding author. Tel.: +33 561 558537; fax: +33 561 558500.  Regarding the role of land surface processes on climate,
E-mail addresslionel.jarlan@cesbio.cnes.fr (L. Jarlan). increasing realistic land surface models have been incorpo-

doi:10.1016/j.rse.2004.10.005
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rated into general circulation models (GCM) by climate better understanding of the interannual and seasonal
modelling communities since Manabe’s pioneering work in dynamics of the African Monsoo®IMA, 2001).
1969. A land surface model forced by meteorological data
and surface-specific characteristics (vegetation types and
soil properties) simulates processes of the surface function2. Data and models
ing such as vegetation dynamics, water, energy and carbon
exchanges, soil water dynamics, etc. (égkinson, 1995; 2.1. The wind scatterometer data set
Polcher et al., 1995The ability of such models to simulate
realistic variations of surface properties as well as The ERS wind scatterometer (WSC) instrument provides
exchanges at the soil-vegetation—atmosphere interface facésackscattering coefficien” measurements at 5.3 GHz and
several limitations: (a) forcing variables such as rainfall or VV polarisation. Data were collected from August 1991 to
available energy exhibits strong spatiotemporal variability; January 1995 onboard ERS-1 and from 1995 to December
(b) no suitable representation is available for the key land2000 onboard ERS-2. The spatial resolution is about 50 km,
surfaces processes at large scale; (c) for those processegth incidence angles comprising betweerB Bhd 5%
adequately parameterized, there is no efficient and generi®ata are provided with a 0.250.25 pixel size. A more
methods to aggregate the available information at a largedetailed description of the instrument capabilities can be
scale Kabat, Hutjes et al., 1997; Sellers et al., 90%& a found inFrison and Mougin (1996b)n the present study, to
consequence, available land surface models have considavoid data discrepancy, only observations acquired between
erable difficulties to correctly simulate surface water and 408and 58 are kept. They are linearly normalized at & 45
energy partitioning and related processes, which limitsincidence angle. The average number of available data is
climate prediction. This has motivated several recent studiesabout 1.8 data/decade. The standard deviation (S.D.) of data
that aim at correcting certain state variables of the landerror is estimated to be 0.55 dB over the Sahel at& 45
surface models via the assimilation of remote sensing datancidence angleJarlan, Mazzega et al., 200For lack of
(Boulet et al., 2002; Cayrol et al., 2000; Crow & Wood, precise information, data are assumed to be contaminated by
2003; Reichle et al., 2001, 2002 a white noise.

Today, limited to the optical domain, coarse resolution
remote sensing sensors enable surface characteristics suéh2. The land surface model
as vegetation cover or leaf area index (LAI) to be monitored
over large areas or even globally with a high temporal The Sahelian Transpiration Evaporation and Production
repetitivity. In addition, radar data acquired by ERS wind (STEP) model is a simple land surface model for Sahelian
scatterometer (WSC) instruments on board ERS-1 andregions that was originally designed for use with remote
ERS-2 satellites have shown strong potentials for monitor-sensing datao Seen et al., 1995; Mougin et al., 199bhe
ing the Sahelian environment, mainly vegetation living STEP model describes the main relevant processes asso-
mass and soil moistur&ijson & Mougin, 1996a; Frison et  ciated with herbage functioning and soil water dynamics in
al., 1998; Jarlan, Mougin et al., 2002; Magagi & Kerr, a Sahelian environment. Processes of the soil-plant—
1997; Wagner & Scipal, 2000; Woodhouse & Hoekman, atmosphere system, such as water fluxes, photosynthesis,
2000. The sensitivity of scatterometers originates from the respiration, plant growth and senescence are simulated with
drastic change of dielectric properties of the surfacea daily time step. The model is driven by standard daily
associated with vegetation development and soil moisteningneteorological variables (rainfall, incident global radiation,
that strikes the Sahelian belt between dry and wet seasonwind speed, minimum and maximum air temperature and
However, this dataset has never been used within anmean relative air humidity), among which the most
assimilation procedure. important are rainfall and global radiation. STEP includes

This study demonstrates the potentialities of coarse radatwo submodels dealing with plant growth and water fluxes.
observations to simultaneously control the simulated vege-The present growth submodel simulates processes of plant
tation dynamics and water budget of a simple land surfaceemergence, photosynthesis, carbon allocation using two
model restricted to Sahelian grasslands. The paper icompartments (aerial vegetation and roots), plant growth
organised as follows. The second section provides a briefand senescence. Plant transpiration and soil evaporation are
description of the data and models used. The assimilationsimulated by the water dynamics submodel using the
methodology is detailed in the third sectiofhe fourth Penman—Monteith equationsl¢nteith, 196%. Water inter-
section deals with assimilation effects on ecosystem ception by vegetation canopy is neglected regarding the low
functioning simulations (vegetation production and water vegetation cover fraction (Vcf) in this region. The soil water
fluxes). Comparison with available ground measurementsdynamics is described using a simple four-layer water
performed over many growing seasons and error barbucket model Nlanabbe 1969. STEP simulates on a daily
estimates is also presented. Finally, conclusions andbasis the structural variables of the vegetation canopy
perspectives are drawn. This work is part of the African [canopy heighth., total herbaceous mad;,,, leaf area
Monsoon Multidisciplinary Analysis project dedicated to a index (LAl) and vegetation cover fraction (Vcf)], the
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vegetation water conteht,, the soil water conteri, and a 15-day period to get a representative value at the 50-km
water fluxes. The main equations of the STEP model arescale followingFrison et al. (1998)Previous studies show
given in Appendix A, and a further description can be found that the combined RTM-STEP models enable interannual

in Mougin et al. (1995) ERS measurements to be well simulated. Details about the
coupled models can be found krison et al. (1998and
2.3. The radiative transfer model Jarlan, Mougin et al. (2002)

The STEP model has already been coupled with a?2.4. Study region and ground observations

radiative transfer model (RTM) in the radar domairison

et al.,, 1998; Jarlan, Mougin et al., 200Zrhis model The study region is located in the Gourma region in Mali.

simulates the interaction between the electromagnetic wavdhe Malian Gourma belongs to the Sahelian zone and

emitted by the scatterometer and the surface componentgxtends to the south of the Niger River between Timbuktu

namely, soil and vegetation. The herbage canopy isand Gao down to the border with Burkina-Fasc8\M/4 78N

modelled as a collection of discrete randomly oriented and BW/18W). This is mainly a pastoral region bracketed

scatterers above a rough surface. For the calculations, they the 500 and 150 mm/year isohyets. Rainfall distribution

herb components are modelled as elliptic discs. Tree cover igs strictly monomodal starting in June and ending in

neglected Jarlan, Mougin et al., 2002The RTM links the September, with a maximum in August. Over the year,

backscattering coefficient to: mean daily global radiation is about 18 MJ 7rd . The
mean annual temperature is about&9 with maximum

— the water content of the upper soil profilg through the and minimum monthly values of 41 and &5 occurring in

soil dielectric constant, April and January, respectively.
— the vegetation water conteiit, through the vegetation Crops are almost absent from the Gourma region apart
dielectric constant, from the southern border. Natural vegetation is composed of a
— the standing herbaceous m&ssand canopy height, herbage layer and a sparse tree layer. The herbage layer is
through the scatterer density, dominated by annual plants among which C4 graminoids
— the scatterer geometrical parameters (dimension angbrevail. For the considered sites, soils are largely sandy (85—
orientation). 95%), poor in organic matter content (0.1-0.2%) and acidic
— the surface roughness. (pH 5-6). The development of herbage plants starts after the

first rains in June or July, and, unless the plants wilt before
The scatterer density, is derived from the vegetation maturity by lack of rain, the senescence follows the
volume fractiorf, and the volume of an elementary scatterer fructification which matches with the end of the rainy season.

Vscat@s Erison et al., 1998 Herbaceous mass measurements are collected between
f one and three times over the growing season over four 25*25
No v 1 km? sites and are expressed in kilogram of dry matter per
Vscat hectare (kg DM/ha). These sites, located along a north—south
w Hy1l w transect, cover the whole bioclimatic gradient of the Sahelian

with fy 0 0001 B, 2 zone, as defined bye Houeou (1989) Over the study
period, the herbaceous mass was measured during the 1992,

wherew is the ratio between the water densiiyand the 1993, 1999 and 2000 seasons (21 points). The uncertainty of

dry matter densityTable llists the RTM input parameters herbaceous mass measurement at that scale is estimated about

(the main equations of the RTM model can be found in 30% Qarlan et al., 2003 Location of the study sites and

Frison et al., 1998 herbaceous mass measurements are giveabie 2 Further

For lack of a dense ground station network to describe description of the study sites and field measurements is
rainfall spatial variability, the simulated soil water content of available inHiernaux and Justice (198&nd Tracol et al.

the upper soil profile from the STEP model is averaged over (submitted for publication)

hge 1 Hp

Table 1

List of the input variables of the radiative backscattering model

Symbol Definition Units Value Source

X, Y, Z Scatterer dimension cm Measurements on typical C4 drassi{ et al., 1998

a, b, c Scatterer orientation radian P32 Measurements on typical C4 gragsigon et al., 1998

No Scatterer density m - Function of herbaceous mass, canopy height and vegetation water content
e Dielectric constant of scatterers - - Function of vegetation water codtehy (& El-Rayes, 1987

e Dielectric constant of soil - - Function of soil water contétllifkainen et al., 1985

S Soil roughness cm [0.001;0.05] Fitted using backscattering coefficient acquired during dry season

(Frison et al., 1998
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Table 2
Location of the study sites and herbaceous mass measurements (the measurement date is given as day of the year -DOY-)
Location Season 1992 Season 1993 Season 1999 Season 2000
Latitude Longitude Date Bm Date Bm Date Bm Date Bm
(DOY) (kg DM/ha) (DOY) (kg DM/ha) (DOY) (kg DM/ha) (DOY) (kg DM/ha)
Rharous 168\ 1.58W 267 375 254 505 270 1550 246 650
219 60
Gossi 16.6N 1.48NV 267 329 253 250 261 1630 244 200
215 163 213 99
Hombori 15.3N 1.58W 234 543 251 744 213 190
263 1061 264 1380 250 990
Seno 14.8N 2.98W 264 1434 249 2135 271 1634 289 1240

Rainfall data are recorded by four meteorological stations A simulated time series of the backscattering coefficient
located near each study site: Gourma Rharous §46.9 using the coupled RTM—STEP models is computed from a-
1.98W), Gossi (15.8N, 1.3W), Hombori (15.8N, 1.78W) priori-chosen parameter values with a temporal repetitivity
and Diankabou (148, 3.18W). The other forcing climatic ~ that mimics the WSC instrument. This simulation is taken as
variables for the STEP model, namely, global radiation, our reference simulatiof‘sterencdt). A set of M parameter
temperature, air humidity and wind speed, are extracted fromvectorsp,, (16-dimensional) is then generated stochastically
the climatological atlas dflorel (1992) using a uniform distribution between two extreme values
either taken from ground measurements or found in the
bibliography. The corresponding M simulatioNg(t, pm)

3. Assimilation methodology (m=1..M) of the RTM—STEP model runs are computed. The
performance of the thsimulationf &t, pm) with regards to

Regarding the numerous parameters of the coupledthe reference time seri€Seerencdt), is evaluated by the
RTM-STEP models, a sensitivity study is first conducted quadratic cost functiod,:
to identify those parameters that can be constrained via the
WSC data assimilation. The assimilation methodology is 1 " 1
then described. InPn FOti P Feronceli 2 3

3.1. Sensitivity study
The whole set of simulations is then divided between

The coupled RTM-STEP models have numerous param-acceptable solutions and nonacceptable ones. Assuming
eters describing the surface functioning and the physicalthat the ERS WSC observations are contaminated by a
properties of the observed surface. From previous studieswhite noise, every solution with a cost lower than twice
parameters of the RTM (s€Bable ) are set to values the observation noise level is kept as acceptakdean,
defined inFrison et al. (1998pand Jarlan, Mougin et al.  Mazzega et al., 2002Cumulative parameter distributions
(2002) Scatterer dimension and orientation parameters haveare computed from the subset ofticceptabl@solutions
values of typical Sahelian annual herbage species. Soiknd compared to cumulative distributions from the M-N
roughness is a site-specific parameter. It is fitted from ERSbnonacceptabl@ones (a priori nearly uniform apart from
observations acquired during the dry season wittOthest numerical sampling errors). If these two distributions
al. (1992)model and kept constant during the wet season significantly differ from each other, the parameter is
(Frison et al., 1998 assumed to have a nonnegligible influence on the back-

Because of the land surface heterogeneity, the spatiakcattering coefficient.
resolution of the WSC data to assimilate (~50 km)  The stochastic feature of the method precludes from a
precludes from setting a priori local measurement valuessystematic exploration of the whole parameter space.
to the STEP model parameters. However, the WSCHowever, a preliminary study shows that, apart from very
observations cannot be used to control every parametergocal nonlinear phenomenon, 100,000 samples are suffi-
of the land surface model. In particular, certain are cient to identify the general behaviour of the coupled
bnonobservabl@by the instrument. Here, a simple Monte RTM-STEP models. The number of acceptable solutions is
Carlo uncertainty analysis is carried out to identify the N=4543 from the 100,000 potential solutions tested within
sensitivity of the simulated backscattering coefficient as athis study (thus, 4.5% of total number of function
function of realistic variations of the STEP model evaluation). Results show that the backscattering coeffi-
parameters. Sixteen key parameters of the STEP modetient is sensitive to 10 parameters listedTeble 3in
are a-priori-selected for the sensitivity analysis. The decreasing order in terms of sensitivity. The sensitivity
implemented sensitivity method used here is a simplifica- analysis is repeated with a different reference simulation
tion of the Bastidas et al. (199%nethod. and leads to similar results.
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Table 3

Selected STEP model parameters used in WSC assimilation

Symbol Definition Units Range

B0 Initial above ground g.m? [0.1;3]
green biomass

Cs Cs3 herb contribution % [0;100]

€max Maximum conversion gDMmJ?t [4:8]
efficiency

SLAO Specific plant area at cnfg ! [180;280]
emergence

SLAslope  Slope of the relation - [0.007;0.06]
SLA=SLAO*exp
( SLAslope*t)

Hemergence  Vegetation water content % [0.7;0.9]
at emergence

Hpeak Vegetation water content % [0.35;0.45]
at herbaceous mass peak

K(0) Infiltration time constant cm day * [100;1200]
for superficial layer (layer 0)

a Parameters of the soil water - [3000;6000]

b Resistance equation [200;1200]

3.2. The assimilation scheme

The assimilation scheme consists of calibrating the
retrievable uncertain parameter veqbo(10-dimensional)
of the STEP model using WSC data (1) to improve the
simulations of the state variables of the model (mainly,

273

(EC) are evolution strategies (ES), evolutionary program-
ming, genetic algorithms and genetic programmichpe-
nauer & Michalewicz, 1997EAs exhibit great potentialities
to solve complex real-world problems. From the point of
view of optimization, EC are very powerful zeroth-order
methods (that is, they only require value of the function to
optimize) that can find the optimum of quite rough
functions. These algorithms work on a population of
individuals, each representing a search point in the space
of potential solutions. The population is arbitrarily initial-
ized and evolves towards better and better regions of the
search space through the application of processes of
selection, mutation, and recombinatioMi¢halewicz,
1996; Rechenberg, 1973; Schwefel, 198hese kind of
stochastic algorithms have been already used with success
within the frame of various environmental inverse problems
(Fang et al., 2003; Jarlan et al., 2003; Wang, 1997

Here, we use an evolution strategies (ES) algorithm
developed bySchoenauer et al. (1999n this particular
design, the individuals of the generation at time stdpare
the best individuals among the parents plus offspring of
generation at time(the so-called ES+strategy). The number
of parents and the number of offspring are set to 50. The total
number of generations is set to 50. The autoadaptative
mutation probability and the crossover probability are set to
0.6 and 0.4, respectively. In the data assimilation process, we

herbaceous mass and water content of the upper soil profileghall not consider only the optimal parameterpsét (i.e.,
and (2) to study the impact of the WSC data assimilation onthat minimizes the cost function) but also the whole set of

simulated water fluxes. This kind of assimilation problem is
called parameter identificatiorD¢lecolle et al., 1992;
Evensen et al., 1998; Maas, 1938R is usually solved by
an optimization process searching for the RTM-STEP

acceptable solutions. The acceptability criterion for a given
trial parameter set corresponds to an associated cost function
lower than twice the data noise levébflan et al., 2003
Accordingly, thanks to the stochastic feature of the ES

parameters that minimize the distance between ERS obserlgorithm, several parameter vectors are tested, and those that
vations and the RTM-STEP-simulated backscattering coef-fulfil the acceptability criterion are kept.

ficient. The distance between theobservations at timg,
r °(t;) and the corresponding model predictidhne|ti, p] is
computed using the following cost functidn

1
n ~0 )
r scenetl P

C

roti 2

1
Jp —
n i
where C(t;) is a nonstationary covariance function that
boverweigh®Qthe high backscattering observations that

mainly control the simulated herbaceous mass peak. Weights|

The schematic description of the assimilation procedure
is given in Fig. 1 Daily outputs from the Land Surface

DATA MODELS RETRIEVAL

e Soil Humidity
e Herbage Mass
o Water fluxes

are set to 1/0.1 for the backscattering peak and to 1/1 for the

lower backscattering observations, with a linear variation
between these two extreme values. The better the solution,
the lower the cost value is. Followidgrlan et al. (2003pnly
those data acquired during the period of vegetation growth
are kept to identify the 10 parameters.

The cost function minimization is carried out using an
evolutionary algorithm (EA). EAs are stochastic optimiza-
tion methods crudely mimicking Darwinian evolution: the
adaptation to a given environment is the result of natural

selection (survival of the fittest) and blind variations. The Fig. 1. Schematic description
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most well-known branches of Evolutionary Computation evolution strategies algorithm.

of the assimilation scheme based on the
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Model STEP—namely, the herbaceous mass and cove#t. Results and discussion

fraction, the vegetation and soil water contents—are used

as inputs of the radiative transfer model to simulate a The time evolution of the STEP-WSC simulated state

temporal series of the backscattering coefficient. Thesevariables (herbaceous mass and soil moisture of the upper

simulations are compared to WSC observations through thdayer and water fluxes) is first analyzed. STEP-WSC

cost function] (Eq. (4)). IfJ is higher than twice the data simulations of herbaceous mass are compared to ground

noise level, the parameter vector is updated by the evolutiormeasurements. The associated simulated daily water fluxes

strategies algorithm. IF is lower, this parameter vector is are analyzed over the AMMA super slielomboriQ(15.3

used to compute an acceptable simulation of daily herba-8N, 1.58W) during the 1992, 1993, 1999 and 2000 seasons.

ceous mass, soil water content and water fluxes. TheBecause of the lack of direct water fluxes observations, the

algorithm is stopped when the maximum number of temporal variability of the water fluxes after data assim-

generations is reached. ilation is evaluated by a comparison with previous field
The assimilation scheme is firstly evaluated using twin campaigns measurements acquired on the same kind of

experiments. A set of backscattering observations is builtecosystems. Error bars on these simulated variables are then

using the RTM-STEP models with a known parameter calculated using a stochastic approach.

vector p,. The assimilation scheme is then applied to this

artificial data set. Results show that the simulated back-4.1. Simulation of herbaceous mass

scattering coefficient time series is recovered with a cost

lower than 0.01 dB, and the optimized parameter vector is Fig. 2 illustrates the interannual variability of back-

equal top, (apart from the error due to the numerical scattering coefficient (a—d), herbaceous mass (e—h) and 15-

sampling of the evolution strategies algorithm). day averaged soil volumetric humidity (i) over the
AMMA project super site (namedHomboril). With regards
3.3. Running the assimilation scheme to climate, the long-term average of rainfall amount of the

Hombori site is about 321 mm/year (over 1984—-2002). With

The assimilation scheme aiming at the 10-parameteran annual report of 521 mm, year 1999 is an excellent one.
vector identification is run for the four Gourma sites during Years 1993 and 2000 are close to the average, and year 1992
the four years: 1992, 1993, 1999 and 2000 (16 cases)is quite dry Table 4.
Compared to the above sensitivity study performed using a Time series of the simulated backscattering coefficient
Monte Carlo approach, ES use a maotkevel sampling after assimilation and the corresponding WSC observations
strategy of the parameter space. As a result, the number oére drawn irFig. 2a—d). The fitting is only performed during
function evaluations necessary to obtain acceptable soluthe vegetation growth period as simulated by STEP-WSC
tions is much lower. For the 50 generation computed (aboutThe duration and time shift of this period show a year-to-year
1900 different cost evaluations), 400, on average, are kept asariability (in relation with rainfall amount and distribution):
acceptable (21% versus 4.5% for the Monte Carlo method).from DOY 210to DOY 275 for year 1999 and from day of the
The distributions of acceptable solutions are summarised byyear (DOY) 190 to DOY 250 for year 1993. The agreement
whisker plots (minimum and maximum values, first and between observations and simulation is acceptable for the
third quartiles and median value). Simulations and groundfour cases. As a result of the nonstationary covariance
measurements are compared by using the average absolutanction (see Eq. (4)), the high values of the WSC
error (AAE). observations are better fitted than the lower ones.

Simulations of the RTM-STEP models after WSC data The STEP-WSC herbaceous mass time series and
assimilation are called STEP-WSC. The STEP model iscorresponding STEP-free and STEP-GM simulations are
used to compute two other groups of simulations to which drawn inFig. 2(e and h) together with ground measurement
STEP-WSC are compared. The free runs of the model, withdata. As expected, the best fit to ground data is obtained
a set of average parameters, are called STEP-free. On theith the STEP model calibrated with ground measurements
whole, these free runs without any calibration provide (STEP-GM), no other constraints being added. However,
erroneous herbaceous mass evolution. When compared tthe constraints brought by the WSC observations signifi-
the 21 ground measurements, the associated AAE is equal toantly improve the herbaceous mass time series when
615 kg DM/ha. Over the reference sites where groundcompared to the free run simulations (STEP-free). The
observations and measured soil characteristics are availablenean parameters used to compute STEP-free simulations do
herbaceous mass measurements are used to calibrate twwt allow any vegetation development during the year 1992.
fitting parameters of the STEP moded {axandBg0) using For year 1999, the free run underestimates the herbaceous
a look up Table approactMpugin et al., 1995 Once the mass, particularly at the peak, whereas, for year 2000, the
STEP model has been calibrated, it allows for a realisticherbaceous mass is overestimated by the STEP-free
simulation of herbaceous mass development with an AAE simulations. By calibrating the 10 uncertain parameters,
about 139 kg DM/ha. This last set of simulations, calibrated the assimilation scheme corrects for this erroneous behav-
with ground measurements, are called STEP-GM. iour of the model, and both the median and optimal STEP-
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AMMA project super site (Hombori, Mali, 15.3 N)
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Fig. 2. Interannual variability: temporal evolution of the acceptable solutions for the Hombori site during years 1992, 1993, 1999 and 20G0 elpresda
whisker plot of the distribution. (a—d) Backscattering coefficient. (e—h) Herbaceous mass. (i-I) Soil water content of the upper soil pnafikol@jin (),
STEP simulations of herbaceous mass without calibration (STEP-free) and calibrated with ground measurements (STEP-GM) are added for comparison.
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WSC solutions are close to the ground measurements. Neaand B0 differs), the slight observed differences are
the herbaceous mass peak, the absolute difference betweaitributed to change in vegetation cover fraction.
STEP-WSC optimal solutions and ground measurements is In Fig. 3, the spatial variability of backscattering
54, 61, 32 and 88 kg DM/ha for years 1992, 1993, 1999 and coefficient (a—d), herbaceous mass (e—h) and 15-day
2000, respectively. Incidentally, it should be noted that the averaged soil volumetric humidity (i-I) is displayed along
exact date of the mass peak is not accurately known. On oneghe north—south bioclimatic gradient of the Gourma region
hand, the temporal repetitivity of the radar sampling (1.8 during year 1993 (an average year in terms of rainfall
data/10 days) precludes from a precise emerging and peakmount). From north to south, it is worth noting the regular
dates recovery. On the other hand, most in situ sites are famcrease of the average level of backscatterifrisgn &
from any road and surveyed just when the occurrence of theMougin, 19963 The fit between simulated and observed
mass peak is expected regionally. backscattering coefficient is satisfying from the northern site
At the beginning of the growing season, the simulated (Rharoud) to the southern onedend). Concerning
vegetation development starts with an average 14-day delayerbage production, STEP-WSC is in better agreement with
(16 cases considered) with STEP-WSC with regard to theground measurements than STEP-free ondRloarougand
STEP-GM simulations. As a consequence, ground measureeHomboriT sites, STEP-free being better fdbossi and
ments acquired at the beginning of the growing season sucliSenoT The simulated soil water content after WSC data
as that of year 2000 are strongly underestimdtad @(h)). assimilation for the northern (and drier) site is higher than
As well, the absolute time shift of herbaceous mass peakbefore (STEP-free and STEP-GM). This contrasts Riigh
between STEP-WSC and STEP-GM is about 9 days on2 showing a lower soil water content after WSC assimilation
average, which corresponds roughly to the WSC temporalduring dry years. This different behaviour is attributed to the
repetitivity. Besides, from the middle stages of developmentlonger dry season encountered in this region bordering
to the mass peak, both herbaceous mass time series are Bahara desert and to the preceding season (1992) that was
good agreement. particularly dry. Soils may have been affected by a strong
Fig. Zi and I) show the 15-day period averaged water crusting, thus increasing the soil resistance to evaporation.
content of the upper soil profile. The STEP-GM and STEP- When moving southward, water availability is less and less
free simulations have been added for comparison. Becausea limiting factor, allowing for a higher evaporation rate and
of the high global radiation and of the small field capacity of lower soil water content than with average parameters (e.g.,
sandy soils, the high rate of evaporation from bare soil afterdcHomboril and dSend sites).
a rainfall event produces a strong day-to-day variability of The STEP-WSC herbaceous mass simulations are then
water content in the upper soil profile. Indeed, the surfacecompared to all the herbaceous mass measurements (21 data
layer completely dries out within less than 5 days distributed over four sites and four years) that are the sole
(unpublished data). This rapid drying of the soil has also available ground data at this spatial scale. Note that the
been observed byallace et al. (1993pr sandy soil under  STEP-WSC simulations are independent from the ground
millet in a Sahelian environment. data, the optimality criterion being defined with regard to
The parameters of the water budget model (time the radar data only (see Eq. (4)). On average, the optimal
infiltration constant and resistance to soil-atmospheresolutions from the set of acceptable STEP-WSC simulations
transfer) control the simulated soil moisture by modifying are nearest to ground measurements than the median ones.
thebdrying rat€after a rainfall event. For years 1992, 1993 In Fig. 4(a), the optimal STEP-WSC mass estimates are
and 2000, STEP-WSC 15-day averaged soil water contenplotted as a function of the ground data at the date of the
simulations are lower than the STEP-GM ones during the measurement. IRig. 4(b), the simulated STEP-WSC mass
whole growing season. For year 1999, the correction appliedpeak estimates are plotted as a function of the corresponding
to soil water content simulations is less important, and simulated STEP-GM estimates. The free runs of the model
STEP-WSC and STEP-GM simulations are in better agree{STEP-free) are not shown here as they provide poor
ment except at the beginning of the growing season (fromsimulations of the herbaceous mass evolution (615 kg DM/
DOY 190 to 220). This can be mainly explained by the ha of AAE with regards to ground measurements date to
vegetation cover fraction difference. When the vegetationdate).
cover fraction is low (e.g., Hombori-2000), the time The results are satisfying on both scatter-plots with 187 kg
variations of soil water content is strongly dependent on DM/ha and 226 kg DM/ha of absolute error, respectively.
soil evaporation which is controlled by the assimilation This represents a noticeable improvement with regards to
scheme through the soil resistance to water transferSTEP-free. Measurements acquired at the beginning of the
(parameters a and b irable 3. When the vegetation cover vegetation growth are underestimated by the assimilation
fraction is high (e.g., year 1999), the soil is partly masked results (STEP-WSC) as can be notice#im 4(a). This can
by the vegetation, and the influence of the soil evaporationbe attributed to the time shift at the start of the vegetation
on the soil water content is less important. STEP-free andgrowth between ground calibrated STEP simulations, STEP-
STEP-GM correspond to identical values of soil resistanceGM and STEP-WSC. The strongest difference is associated
to water transfer and time infiltration constant (oglyax with the southern site during the year 1993 on both plots. For
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AMMA project meso-scale site, year 1993 (Gourma region, Mali)
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this site, the ground measurement and the STEP-GM herbaassimilation particularly affects the STEP model simulations
ceous mass peak are equal to 2135 and 2227 kg DM/haat the beginning of the growing season when the distribution
respectively, whereas the STEP-WSC simulations are 92%f rainfall events is highly irregular (e.g., years 1992, 1993
and 1140 kg DM/ha. The maximum of herbaceous massand 2000), and the near soil surface evaporation dominates
appears to be pretty well estimated with a 226 kg DM/ha evapotranspiratior.{oyd et al., 199). On the day following
average absolute error. These results show that the assin& rainfall event, evaporation simulated by the STEP model
ilation of ERS WSC data into the STEP model strongly after assimilation follows PET very closely during the years
improves its simulations of herbaceous mass with regards td992 and 2000. On the second day, the simulated values
the free run of the model. Furthermore, STEP-WSC comparesiepart significantly from PET. They are well below PET on
well with STEP simulations calibrated on ground measure-the third day, reaching values as low as 0.3 mm/day. This
ments, in particular, around the herbaceous mass peak.  simulated behaviour of soil evaporation after data assimila-
tion is in good agreement with measurements performed
4.2. Simulations of water fluxes during the Hapex Sahel ExperimeRiapat, Dolman et al.,
1997; Wallace & Holwill, 199y, Actual evaporation may
We now aim at evaluating the way the assimilation of even be higher than PET as already observe@dmsh et al.
WSC data into the land surface model affects the simulated1991)over a fallow savannah and Byilf et al. (1993pver a
water fluxes that are critical variables for the Sahelian patterned woodland. On average, the data assimilation leads
climate through the convection processes in the boundaryto higher evaporation rates than those simulated before
layer (Nicholson, 200D By constraining the parameters of assimilation. This higher evaporation leads to lower values
the water and carbon submodels, the data assimilationas already noticed iig. 2(e and f)) and stronger day-to-day
modifies the water partition between evaporation and variability of the soil water content, particularly, during the
transpiration. This process is illustrated Rig. 5 which 1992 and 2000 rainy seasons. Afterwards, in the middle of the
shows the daily evaporation and transpiration (a) and thegrowing season, when vegetation cover fraction increases
daily evapotranspiration (b) before and after the dataand rainfall distribution becomes more regular, the evapo-
assimilation (optimal solutions only) for tkldomboriT site ration time variation is smoother. On year 1999, the Hombori
during years 1992, 1993, 1999 and 2000. Correspondingsite received particularly abundant and regular rainfalls,
simulated herbaceous mass and soil water content arallowing for a high vegetation development (the simulated
displayed inFig. 2 The yearly rainfall and yearly statistics vegetation cover fraction at herbaceous mass peak after
on daily water fluxes are given ifable 4 assimilation reaches 0.85). As a consequence, the soil was
Fig. 5@) shows the time variation of soil evaporation and strongly masked by vegetation, and the simulated evapo-
plant transpiration as compared to potential evapotranspiraration is smooth along the whole growing season.
tion (PET) values taken from Morel’s atladdrel, 1993. The percentage of soil evaporation to total rainfall
The primary factor governing evaporation variability over amount exhibits a strong interannual variability and ranges
Sahelis the rainfall patterSifzakumar, 1990 The control of from 21% to 73% Table 4. On average, over the four
the soil resistance to water transfer by the WSC datastudied years, 57% of the infiltrated water is lost by soil
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evaporation. This percentage tends to increase in dry yeard990, 1993 The assimilation of WSC data leads to more
(e.g., 73% loss during year 1992). This has also beenrealistic simulations of transpiration fluxes, with higher
observed bywallace and Holwill (1997) values encountered during year of high vegetation growth.
Differences between transpiration fluxes before and afterln particular, year 1999 exhibits the highest yearly transpira-
assimilation are mainly associated to differences in simulatedion rate with 115.5 mm/year (cflable 4 and herbage
herbage production and thus in leaf area intiéxliace et al., production (1400 kg DM/ha). The lowest values are obtained

Table 4
Yearly rainfall and statistics on water fluxes overddemboriTsite (15.8N, 1.58W) during the 1992, 1993, 1999 and 2000 growing seasons (before and after
data assimilation)

Rainfall (mm) Evaporation (mm) (% rainfall) Transpiration (mm) (% rainfall) Average evapotranspiration (mm/day)
Before After Before After Before After
1992 276.5 199.0 (72) 201.6 (73) 0.3 (0.1) 61.0 (22) 141 1.86
1993 306.1 203.4 (66) 190.8 (62) 46.3 (15) 70.3 (23) 1.82 1.90
1999 521.0 145.5 (28) 109.3 (21) 82.1 (16) 115.5 (22) 2.39 2.36

2000 306.0 140.3 (46) 219.0 (72) 105.9 (34) 75.0 (24) 2.53 3.01
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for year 1992 (61 mm/year with 750 kg DM/ha). As well, the for estimates derived from a remote sensing instrument such
highest daily value is simulated at peak herbaceous mass foas METEOSAT Ba et al., 200lL The assimilation scheme
the year 1999 (3.2 mm/day at DOY 266). is run 500 times using different noisy forcing variables, and
Finally, WSC data assimilation allows the time variation optimal herbaceous mass and water flux time series are kept.
of both evaporation and transpiration to be corrected. Higher The uncertainty calculations are only illustrated for the
day-to-day simulated variability of soil evaporation after Hombori-2000 and Seno-1999 cases because of computing
assimilation is in good agreement with previous measure-time constraints and because of their different behawayr.
ments available over similar ecosystems. High values close t@&(a—f) show the distributions of the herbaceous mass peak
PET at the beginning of the growing season are also in bettevalues for Seno-1999 and Hombori-2000 resulting from
agreement with what has been measured until now. Thenoise contamination of rainfall, global radiation and rainfall
correction of simulated herbage production affects vegetatiorplus global radiation, respectively. The resulting distributions
transpiration fluxes which exhibit, after assimilation, a more are likely to be quasinormal (only a much larger set of
realistic behaviour with values better correlated with ground simulations would allow to test this assumption). Because of

observations of herbaceous dry matter production. a stronger sensitivity to rainfall than to global radiation, the
herbaceous mass distributions are narrower when noise is
4.3. Uncertainty calculation only added to the global radiation than to the rainfall (Seno-

1999: 139 kg DM/ha versus 268 kg DM/ha standard

The comparison of the STEP-WSC simulations with deviations (S.D.), respectively; Hombori-2000: 124 kg DM/
ground measurements allows to check the overall consisha versus 236 kg DM/ha S.D., respectively). With regards to
tency of the model physical behaviour. The parameter spacegground measurements, adding noise to rainfall recenters the
semistochastic sampling done by the evolution strategiesherbage distribution on the Seno-1999 ground data and leads
algorithm allows the error bar on every state variables of theto a less important underestimation for Hombori-2000.
STEP model to be estimated from the set of acceptableContaminating both forcing variables does not significantly
solutions (materialized by the whisker ploEg. 2(a—f)). change the mass distribution S.D. over the sole rainfall
The expected uncertainties to be associated with thecontamination case. This confirmsthe dominant sensitivity of
herbaceous mass or water fluxes simulations depend orthe STEP model simulations to the rainfall distribution which
the WSC noise level as well as on the accuracies of theis the main climatic factor governing the surface functioning
coupled RTM-STEP models and meteorological forcing over the Sahel. With both rainfall and global radiation noise
variables. Error bars on the STEP simulations induced bycontaminations, the variation coefficients (S.D. divided by
uncertainties on the meteorological forcing variables have tothe mean) of the resulting herbaceous mass distribufans (
be quantified. Rainfall and global radiation are the most 5(c and f)) are about 15.1% for Seno-1999 and 15.9% for
important forcing factors as they govern both the carbon Hombori-2000.
budget (through photosynthesis and water availability for  These uncertainty estimates on the herbaceous mass after
the plant growth) and water budget of the model. Thus, assimilation compare well with those frodarlan et al.
noise is artificially added only to rainfall and to global (2003)based on the inversion of the radiative transfer model.
radiation. For this later case, the herbaceous mass S.D. resulting from

Rainfall in the Sahel is mostly generated by squall lines, forcing uncertainties was between 230 and 271 kg DM/ha
which typically arrive at 3-day intervals throughout the over the whole Gourma region. Relying on the land surface
rainy season. However, storms within these squall lines aremodel, the assimilation approach appears to bring better
convective, and the spatial distribution of rainfall is thus constraints to the herbaceous mass estimation. Indeed, the
highly variable, in particular, at the scale of the WSC standard deviations of the distribution exhibit more varia-
resolution cell. Obviously, this spatial variability cannot be bility (Hombori-2000: 139 DM/ha; Seno-1999: 268 kg DM/
taken into account with the rainfall data obtained from one ha) but still have values lower than those estimated with the
ground station available per site. Consequently, the rainfallinversion process.
data used in the assimilation procedure are probably not Yearly, water flux distributions (evaporation, transpiration
representative of the resolution cell. As the water content ofand evapotranspiration) are showrig. 7(a—f) for the Seno-
the first soil centimetres is only slightly influenced by the 1999 and Hombori-2000 cases. These distributions result
rainfall amount because of a low field capacity, only the from the same noise contamination process of rainfall and
rainfall time distribution is perturbed. To this end, the global radiation data (see above). Mean values of yearly
number of rainfall events and the amount of each event perevaporation (Seno-1999: 223 mm/y; Hombori-2000: 220
decade are stochastically modified in such a way that thismm/y) are higher than yearly transpiration ones (Seno-1999:
new distribution follows the average statistics obtained from 71 mm/y; Hombori-2000: 108 mm/y). As a result, the relative
our rainfall databaseJdrlan et al., 2003 Moreover, the accuracies on yearly evaporation are lower than those of
global radiation from th&lorel (1992)atlas is contaminated  yearly transpiration: 8.1% and 28.1% for Seno-1999; 11.8%
by a 30% white noise (uniform distribution around atlas and 24.1% for Hombori-2000. The standard deviation of
value), which is the typical noise level that can be expectedevapotranspiration (about 15 mm/y for both Seno-1999 and
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and the Hombori-2000 cases after noising rainfall, global radiation and rainfall+global radiation, respectively. Herbaceous mass measalso@ottea

(-). Mean, standard deviation (in kg DM/ha) and variation coefficient (standard deviation/mean) are equal to 1723, 268, 15.5%; 1901, 2361,125%%; 169
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Evaporation Transpiration Evapotranspiration
60 60 60
(a) (b) (c)
50 50 50
(o)
gg 40 40 40
Y
w 30 30 30
Q5
W = 20 20 20
-
5 10 10 10
S o 0 0
e 0 100 200 300 0 100 200 0 200 400
6 60 60 60
(d) (f)
§ T 50 50 50
N g 40 40 40
e
% > 30 30 30
g 20 20 20
:Q: 10 10 10
0 0 0
0 100 200 300 0 100 200 0 200 400

Fig. 7. Rainfall and global radiation uncertainties propagated on simulated yearly water fluxes. Panels (a—c) and (d—f) shows Seno-1999-a08MHombori

WATER FLUXES (mm/year)

distributions of evaporation, transpiration and evapotranspiration, respectively. Mean, standard deviation (in mm/year) and varigitn(staeifiard

deviation/mean) are equal to 220, 26, 11.8%; 108, 26, 24.1%; 328, 15, 4.6%; 223, 18, 8.1%; 71, 20, 28.1% and 294, 15, 5.1% for panels (a—f), respectively
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Hombori-2000) is lower than both those of evaporation and a stochastic approach. The uncertainty ranges between 139
transpiration. An interesting feature is that the monomodaland 268 kg DM/ha for the herbaceous mass. This work shows
herbaceous mass distributiof$y( 6(c)) leads to a bimodal that the accuracy of the rainfall data strongly conditions the
yearly transpiration distributior-ig. 7(b)) for Seno-1999.  uncertainty level associated with the simulated herbaceous
This bimodality highlights the non linear behaviour of the mass after WSC data assimilation. Nevertheless, the assim-
STEP model. After analysis, the left mode of yearly ilation of WSC data appears to be well suited to control the
transpiration distribution (low transpiration rates) appears tocarbon budget of our land surface model. Concerning the
be associated with low herbaceous mass development andiater fluxes uncertainties, the estimates are less robust (in
high evaporation rate. In fact, the assimilation algorithm particular, on yearly transpiration) and must be improved in a
chooses higher yearly evaporation rate to compensate for lowext study by using additional information from satellite
yearly transpiration so that the total evaporation remainsremote sensing at different wavelengths. Furthermore, water
more or less constant. This in turn modifies the partition fluxes measurements by eddy correlation techniques are
between the simulated soil evaporation and plant transpiraalready planned within the frame of the AMMA project
tion (via the land surface model) and can change theduring the 2004 growing season and will allow for a further
atmospheric dynamics when coupled to a mesoscale atmosralidation of the approach.
pheric dynamical model. This underdetermination illustrates
the danger of using only one data set during the assimilation
process for controlling a model characterized by nonlinearAppendix A. Main equations of the STEP model
equations such as the STEP model.
The STEP model is composed of two submodels: carbon
budget submodel (vegetation growth) that simulates the main
5. Conclusion and perspectives processes of the vegetation development (photosynthesis,
allocation, respiration and senescence) and the water budget
The objective of this study is to correct the simulated submodel that simulates the soil water dynamic (runoff,
herbaceous mass, soil moisture and water fluxes derived fronpercolation and drainage) and the exchanges of water with the
a simple land surface model through the assimilation of atmosphere (water lost by soil evaporation and by plant
coarse remote sensing radar data over Sahel. Thanks to manspiration). Modifications from the previous version
stochastic sensitivity study, the parameters of the land surfacéMougin et al., 199pare detailed below.
model that can be determined with remote sensing observa-
tions are identified. The assimilation scheme relies on anA.1. Carbon budget
evolution strategies algorithm (a semistochastic parameter
identification method). This kind of approach is particularly ~ The dynamics of the green above-ground niggsind
well suited for this complex (nonlinear) inverse problem. The green mass rooB, are described using a set of two
resulting time variation of the herbaceous mass is analyzedlifferential equations:
and compared to ground measurements performed on four
Sahelian sites over four years. The time variations of thedBy

simulated standing herbaceous mass after remote sensingit 4 a P§ & By Al
data assimilation exhibit a 187 kg DM/ha error which
compares well with a previous study &IHrlan et al. (2003) @ 1 p B A2
based on the inversion of the radiative transfer model. dt & a PSS a B

In contrast, with a repetitivity of 1.8 data/decade, the
assimilation of wind scatterometer data does not significantlyPS Py R A3

affect the short time scale dynamics of the upper soil
moisture. The effects of data assimilation on water fluxeswhere PgJ is the net photosynthesis calculated as the
are analyzed and compared with available measurement§lifference between gross photosynth&jsnd respiration
made by various authors on the same kind of ecosystemlossesR;, a; are empirical parametera;dBy and a,dB,
Because of a lack of direct observations of water fluxes on thefepresent losses of above ground and root mass, respec-
considered study sites, only the time behaviour and absolutdively, due to vegetation senescence, anthe fraction of
value consistency are checked. After the data assimilationallocated above-ground part, is calculated such that:
the simulated water fluxes time variations exhibit a higher
day-to-day variability and higher values close to the potential& 12 Ad
evapotranspiration. This behaviour after WSC assimilationisBg 2 001 By
in better agreement with those previous ground campaigns.

Finally, uncertainties on the herbaceous mass and water 1he growth photosynthesis is expressed as
fluxes resulting from uncertainties on climatic forcing
variables (rainfall and global radiation) are estimated usinng PAR & ecmax f CI f Tl AS
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Photosynthesis depends on the intercepted photosynfour layers. The soil water content of layierH,(i), is
thetic active radiation PARa maximum energy-conversion simulated following this set of differential equations:
efficiency, ena, oOne function of leaf water potential
expressing the effect of water limitatid(Cl), and one  dHy 1

; . L P R E D A8
function expressing the effect of temperature limitation dt
f(Tl). PARde=PAR is the photosynthetically active radia- ]
tion (part of the incoming global radiation between 400 and dHy i Di, E Tr D A9

700 Am). that is intercepted by plants, is linked to dt
herbaceous mass leaf area index (area of leaftuyf soil).
e andecmax Vary between 0 and 1.

The green LA{ is computed from the green herbaceous

and if WINFCD; D1 FG K

massB, through the specific leaf area Sy#hich depends ~ €/S€Di 0 Al0

on the value at plant emergence SLAO and on the slope of o
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