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Abstract: Multi-temporal images acquired at high spatial and temporal resolution are an 

important tool for detecting change and analyzing trends, especially in agricultural 

applications. However, to insure a reliable use of this kind of data, a rigorous radiometric 

normalization step is required. Normalization can be addressed by performing an 

atmospheric correction of each image in the time series. The main problem is the difficulty 

of obtaining an atmospheric characterization at a given acquisition date. In this paper, we 

investigate whether relative radiometric normalization can substitute for atmospheric 

correction. We develop an automatic method for relative radiometric normalization based 

on calculating linear regressions between unnormalized and reference images. Regressions 

are obtained using the reflectances of automatically selected invariant targets. We compare 

this method with an atmospheric correction method that uses the 6S model. The 

performances of both methods are compared using 18 images from of a SPOT 5 time series 

acquired over Reunion Island. Results obtained for a set of manually selected invariant 

targets show excellent agreement between the two methods in all spectral bands: values of 

the coefficient of determination (r²) exceed 0.960, and bias magnitude values are less than 
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2.65. There is also a strong correlation between normalized NDVI values of sugarcane 

fields (r² = 0.959). Despite a relative error of 12.66% between values, very comparable 

NDVI patterns are observed. 

Keywords: Radiometric normalization; Atmospheric correction; SPOT 5; Time series; 

Sugarcane. 

 

1. Introduction 

Time series of remotely sensed imagery acquired at high spatial and temporal resolution provide a 

potentially ideal source for detecting change and analyzing trends [1-3]. The dynamics of the 

radiometric signals and the vegetation indices are particularly interesting for crop monitoring, 

especially for mapping cropping operations (sowing, harvest, irrigation, etc.), for detecting growth 

anomalies, and for predicting yield. 

Since multi-temporal images are often acquired by different sensors under variable atmospheric 

conditions, solar illumination and view angles, radiometric normalization is required to remove 

radiometric distortions and make the images comparable. Effects of artifacts, surface directionality and 

atmosphere can be corrected in an absolute or a relative way. 

Several operational algorithms for absolute radiometric correction (atmospheric correction) have 

been developed, including Modtran2, 5S, SMAC (based on 5S) and 6S [4-7]. The major issue of these 

codes is how to retrieve the Top Of Canopy (TOC) reflectance from the Top Of Atmosphere (TOA) 

reflectance, which is derived from the radiance measured by the sensor. For this, information about 

both the sensor spectral profile and the atmospheric properties at the acquisition time is required to 

estimate atmospheric scattering and absorption effects. Other methods based on Dark Object 

Subtraction (DOS) have also been developed [8-10]; these methods avoid the need for atmospheric 

measurements but require radiative transfer codes to make absolute radiometric correction. 

In order to eliminate the need for both radiative transfer codes and atmospheric optical properties 

that are difficult to acquire particularly for historic satellite data, many investigators have resorted to 

relative radiometric normalization. Proposed methods all proceed under the assumption that the 

relationship between the TOA radiances recorded at two different times from regions of constant 

reflectance is spatially homogeneous and can be approximated by a linear function. The normalization 

process can then be reduced to a linear regression calculation for each spectral band [11-17]. The main 

difficulty of relative normalization methods is determining the landscape features whose reflectances 

are nearly constant over time. 

It is effective to manually select invariant targets, usually urban features, as presented by [17] and 

[15], but this approach is time-consuming and could result in subjective radiometric normalization. 

[18] developed a procedure that automatically select invariant pixels using scattergrams of the near-

infrared data from images to normalize. This procedure is effective [19], but it is only applicable to 

images acquired under similar solar illumination geometries and similar phenological conditions. 

Another method to automatically determine invariant pixels was presented by [20]; the Multivariate 

Alteration Detection (MAD) method they proposed uses traditional canonical correlation analysis 
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(CCA) to find linear combinations between two groups of variables (i.e., the spectral bands of the 

subject and reference images) ordered by correlation, or similarity between pairs. The main drawbacks 

of this method are the noisy aspect of the MAD variates, the long computing time, and the need for 

huge computing resources when applied to images with high spatial resolution. More recent extensions 

of this method were developed to improve its performances but the time and resource consumption 

problem remains [21, 22]. Based on the foregoing, there is a need to develop and evaluate autonomous, 

fast and objective radiometric normalization methods that are able to deal with multi-temporal images 

acquired under different atmospheric and geometric conditions and in different seasons. 

In this paper, we propose a novel automatic method for relative radiometric normalization of 

SPOT 5 time series. This method is based on linear regressions derived from the reflectances of 

automatically selected invariant targets (IT). We also present an atmospheric correction method that 

uses the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) model [7] and serves as 

comparison reference. The performances of the two methods are compared. Furthermore, since the 

SPOT 5 time series will be used for sugarcane crop monitoring, we assess the impact of each method 

on sugarcane field spectral properties. 

2. Material and Methods 

2.1. Study area 

The study site is Reunion Island. It is a small territory (ca. 2512 km2) located in the Indian Ocean 

(21°7' to 19°40' S, 55°13' to 61°13' E), north-east of Madagascar (Figure 1). As it is located in a 

tropical zone, the year is divided into two seasons: a hot rainy season from November to April and a 

cool dry season from May to October. The island is highly mountainous. There are smooth slopes in 

the coastal zones, which steepen quickly toward the centre of the island. The centre is made of three 

cirques, which give very sharp relief. 

Sugarcane is the main crop in Reunion Island. It is cultivated along the coast over 26,500 ha 

(Source: DDAF 2004). Most of the growers are smallholders, and the average size of a sugarcane field 

is about 0.8 ha. In the wet north-eastern part of the island, sugarcane is rainfed, while in the drier 

south-western part, it is irrigated. 

Figure 1. The location of Reunion Island in the Indian Ocean. 
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2.2. Data set 

The data set used in this study consists of 18 Spot 5 images over Reunion Island (Figure 2). Both 

Spot 5 instruments HRG1 and HRG2 acquire radiation in four spectral bands with high spatial 

resolution: 10 m in the Green, Red and Near Infra-Red (NIR) bands (B1, B2 and B3 respectively), and 

20 m in the Short Wave Infra-Red (SWIR) band (B4) (Figure 3). 

Figure 2. Example of image of KALIDEOS-ISLE REUNION database. False color 
composite (Red: band-4; Green: band-3; Blue: band-1) of the SPOT 5 image acquired 
on May 13th, 2004.  

 

 

Figure 3. SPOT 5 spectral bands and gaseous transmissions for atmospheric model 
US62 with a water vapor amount of 1.424 g.cm-2 and ozone amount 0.344 cm.atm. (B1 
= Green band; B2 = Red band; B3 = NIR band; B4 = SWIR band). 
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The images belong to the KALIDEOS-ISLE REUNION database set up by the CNES1 [23, 24]. All 

images are ortho-rectified and co-registered to the UTM coordinate system (zone 40 South) with a root 

mean square error less than 0.5 pixels per image. Table 1 shows the characteristics of the images in the 

time series, as well as the atmospheric data estimated at the acquisition dates. The geometric 

conditions of acquisition and the atmospheric components vary significantly between images. 

A cloud mask was available for each image, a as well as a saturation mask that defines the positions 

of pixels that are saturated in at least one of the four spectral bands. A Digital Elevation Model (DEM) 

was provided by the IGN (BD TOPO®) at 25 m resolution to determine the elevation of each pixel. A 

map of sugarcane-cultivated fields was also available. 

Table 1. Characteristics of the imaging and atmospheric conditions of the time series. 

Imaging (geometric) parameters stem from image metadata. Atmospheric parameter 

estimation is described in Section 2.5. 

Dates SPOT 5 

Instrument 

Incidence 

angle2 

(in degree) 

(Right = -) 

Solar 
elevation3 

(in degree) 

Phase 
angle4 

(in degree) 

Pressure5 

(mbar) 

H2Oatm
6 

(g.cm-2) 

Ozone7 

(cm.atm) 

τ550
8
 

01/10/2003 HRG 2 -04.65 64.10 21.28 1014 2.783 0.264 0.538 

02/26/2003 HRG 1 -11.94 58.54 22.07 1013 5.469 0.259 0.322 

04/24/2003 HRG 1 -04.39 48.02 40.23 1017 4.24 0.253 0.246 

05/04/2003 HRG 1 10.90 46.80 47.99 1015 2.649 0.252 0.262 

07/21/2003 HRG 1 10.58 41.20 53.13 1022 2.332 0.263 0.112 

08/21/2003 HRG 1 18.17 48.90 51.00 1024 2.151 0.272 0.273 

09/01/2003 HRG 1 -04.42 50.63 37.31 1026 1.954 0.276 0.277 

10/08/2003 HRG 1 -25.95 60.40 19.75 1018 2.671 0.297 0.432 

12/19/2003 HRG 1 -02.90 67.20 19.90 1017 3.093 0.272 0.357 

03/17/2004 HRG 2 -19.10 54.2 25.24 1014 2.761 0.255 0.176 

04/11/2004 HRG 1 +17.95 52.45 48.41 1014 4.793 0.252 0.26 

05/13/2004 HRG 1 -11.80 42.90 43.86 1018 1.986 0.246 0.22 

06/18/2004 HRG 2 +03.25 39.10 51.95 1024 2.357 0.237 0.11 

07/09/2004 HRG 1 -04.73 38.83 49.70 1020 2.674 0.242 0.221 

08/19/2004 HRG 1 +17.96 48.50 51.24 1027 2.126 0.254 0.197 

10/26/2004 HRG 2 +03.30 67.90 24.94 1018 2.946 0.275 0.329 

11/06/2004 HRG 1 -19.16 66.63 09.07 1021 2.541 0.286 0.351 

12/07/2004 HRG 1 -12.28 66.65 11.19 1021 1.962 0.276 0.355 

                                                 
1 Centre National d’Etudes Spatiales (France) 
2 The angle defined by the direction of the satellite and the vertical to the surface. 
3 The angle defined by the direction of the sun and the horizon. 
4 The angle defined by the projections of the sun direction and the satellite direction on the horizontal plane. 
5 Atmospheric pressure 
6 Water vapor amount 
7 Ozone amount 
8 Aerosol optical thickness at 550 nm 
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2.3. Calculation of TOA reflectance 

The images are delivered as raw numerical counts that are simply equalized (corrected for the 

individual behavior of each pixel detector) and corrected for digital dynamic stretching. Thus, the first 

step in the radiometric correction process was to compute the reflectances at the Top Of the 

Atmosphere (TOA) for each image. This phase takes into account a) the calibration parameters for the 

acquisition date, which are absolute coefficients and the analog gain values, b) the solar zenith angle 

and c) the normalized solar irradiance. In order to obtain physical measurements independent of the 

radiometer characteristics, we converted the numerical counts to radiances. The radiance Lk
TOA at the 

TOA is linked to the measured count Xk by the following relation: 

k
mk

k
k
TOA .GA

X
L =

 
(1) 

where: 

• Ak is the absolute calibration coefficient for band k, estimated for the date of image acquisition. 

This coefficient was provided by the CNES [25] for each image, and takes into account sensor 

degradation over time. 

• 
k
mG  is the analog gain of the on-board amplifier for band k [25]. 

k
TOAL  was then normalized by the exo-atmospheric solar incident flux in order to obtain the surface 

TOA reflectance 
k
TOAρ . This was calculated by: 

( )2
0S

k
S

k
TOAk

TOA
dd..cosE

.L

θ
πρ =  (2) 

where: 

• 
k
SE  is the mean exo-atmospheric solar irradiance for each band provided by the 6S radiative 

transfer code [7].  

• θS is the solar zenith angle that stems from auxiliary data. 

• d0/d is the ratio of the Sun-Earth distance at the acquisition date to the mean Sun-Earth 

distance, calculated for the acquisition date by a simple ephemerid equation from 6S code [7]. 

To consider the effects of surface slope, cos(θS) in eq. 2 was replaced by: 

)cos()sin()sin()cos()cos( nSnSnSS ϕϕθθθθβ −⋅⋅+⋅=  (3) 

where θn is the surface zenith angle (slope), ϕS is the solar azimuth angle and ϕn the surface azimuth 

angle (aspect). 

2.4. Relative radiometric normalization 

We developed a simplified method for relative radiometric normalization of TOA images. This 

method does not require atmospheric data and attempts to uniformly minimize the effects of changing 

atmospheric and solar conditions relative to a reference image. The process is based on calculating 

linear regressions between images to be normalized and a reference one. Three main steps are 

identified: the choice of a reference image, the invariant targets (IT) selection, and the calculation of 

the linear regressions. 
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2.4.1. Reference image 

One of the images of the time series must be chosen as a reference to which all other scenes will be 

related. This image must be the least cloud-contaminated, time-wise adequate for the application, and 

must have a good spectral dynamic range. The reference image that we chose for our normalization is 

that acquired on May 13th, 2004 (Figure 2). 

2.4.2. Automatic selection of IT 

We developed an automatic technique for IT selection, because we wanted to make the selection 

process objective and obtain a sufficient number of IT covering a large spectral range. 

The flowchart of the automatic IT selection technique is shown in Figure 4. For each image in the 

time series, we first calculate a multi-band difference image (MDI) by a pixel-based subtraction from 

the reference image. Then we apply to each MDI a set of masks in order to discard as many changing 

pixels as possible. By using cloud and saturation masks, we flag pixels related to cloud and/or affected 

by radiometric saturation. After this, we flag the maximum number of pixels related to changing 

vegetation areas using available agricultural maps; the agricultural map available for this study only 

defines the sugarcane-cultivated fields which constitute more than 60% of cultivated areas in Reunion 

Island. Next, since we are not interested in having IT in the ocean, we use the land boundaries to flag 

ocean pixels. We then select IT for each date using the histograms of unflagged pixels in the four MDI 

bands. 

The histogram shape of each MDI band depends on the types of changes that happen between the 

unnormalized image date and the reference date. Each spectral band is sensitive to different sorts of 

change, therefore a land cover change could cause a significant modification of pixel values in one 

spectral band but not in the others. In all MDI bands, the pixels with relatively slight changes will be 

clustered around the modes of the histograms. This means that the majority of unflagged pixels are 

considered targets with no or nearly no change. The difference values corresponding to these pixels 

differ from zero because of the change in imaging conditions from one date to another. The centre of 

these clusters does not necessarily correspond to histogram-band mean positions because the 

frequencies of changes with equal magnitudes and different signs are unequal.  The rest of the 

histogram belongs to pixels with real land changes. These pixels may have been affected by different 

imaging conditions, but their effect compared to real change is negligible. 

For each date, histograms in the four MDI bands are shifted so that the difference values assigned to 

the majorities (modes) are brought back to zero. Finally, pixels in each MDI with near null values in 

all four bands are considered IT. The “near null” expression was translated by 7% of the standard 

deviation around the histogram mode. This threshold value was chosen after several tests; it allows the 

selection of an optimal number of IT. We are not concerned about selecting biased invariant targets as 

we use selection criteria in all four bands simultaneously. The selected invariant targets represent an 

average of 0.044 % (10928 pixels) of the island pixels and include a wide diversity of features: pixels 

of large buildings, bare soils, roads, dense forests, volcanic lava, lakes, etc. 
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2.4.3. Regression coefficient calculations 

For selected IT, we extract mean reflectance values in the four spectral bands from the TOA 

images. Using these values, we established linear regressions for each band of the form: 

baxy +=  (4) 

where y is the reference image and x the other images in turn. The regressions were then applied to the 

images to perform relative radiometric normalization. By applying this method we obtained a 

corrected time series with relatively normalized TOA reflectances. 

2.4.4. Manual selection of IT for validating the automatic selection technique 

In order to validate the technique of automatic IT selection, we built up a set of manually selected 

IT (MSIT). This was done by photo-interpretation based on area knowledge. The MSIT set consists of 

70 features of dimensions 20 m x 20 m spread over the whole island surface. It comprises large 

buildings, dense forests, volcanic lavas, bare soils, airport tracks, and more. MSIT were chosen so as to 

cover a large spectral range in each of the four SPOT 5 spectral bands. 

First, we assessed the temporal stability of the MSIT by evaluating for each the standard deviation 

of its reflectances over all the TOA images. The mean standard deviation values of the MSIT 

reflectances were less than 4% in the four bands, so the set was considered acceptable. 

A subset M of the MSIT was used to establish for each date a new set of linear regressions 

according to eq. 4, where, as before, y is the reference image (acquired on May 13th, 2004) and x the 

other images in turn. This set of regressions and that obtained by the automatic selection technique 

were used to separately normalize the reflectances of the targets in another subset N of the MSIT. The 

goal is, as mentioned before, to assess the validity of the automatically selected IT. Results are shown 

in section 3.1, based on linear regression analysis and the evaluation of the RMSE (root mean square 

error) and the bias given by: 

∑ −= 2)(
1

AutMann
RMSE ρρ  (5) 

)(
1

AutMann
Bias ρρ∑ −=  (6) 

where n is the number of MSIT in N, and Manρ  and Autρ  are the relatively normalized reflectances of 

the MSIT obtained by the automatic and manual selection sets, respectively. 

 

2.5. Atmospheric correction 

The reflectance at the top of canopy (TOC) (the ground reflectance) is calculated using simulations 

of the 6S atmospheric correction model [7]. This code predicts the satellite signal from 0.25 to 4.0 

micrometers assuming a cloud-free atmosphere. The 6S radiometric correction scheme requires a) the 

atmospheric pressure, which is correlated to the molecular scattering radiance, b) the gas amounts 

(water vapor, carbon dioxide, oxygen and ozone) for atmospheric transmittance due molecule 

absorption and c) the aerosols characteristics (type and concentration). 
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Figure 4. Flowchart of the automatic selection technique of IT. 

 

 

2.5.1. Atmospheric data 

Gas amount and atmospheric pressure 

SPOT 5 spectral bands are variably “affected” by atmospheric gas absorption and scattering (Figure 

3). Stratospheric ozone absorption, with a maximum around 0.6 µm and extending from approximately 

0.4 to 0.8 µm, affects bands B1 and B2. Oxygen presents strong absorption at 0.69 µm and 0.763 µm, 
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and affects band B2 and a little band B3. Water vapor presents an absorption spectrum above 0.6 µm 

with more or less important absorption lines, and mainly affects band B3 and, to a lesser extend, band 

B2. The spectral sensitivity of band B4 to gaseous absorptions (carbonic gas, methane or water vapor) 

is very weak. For stable gas, such as oxygen, carbonic gas and methane, the simulations use a standard 

vertical profile. This profile is obtained by model US62 included in the 6S code. For more fluctuating 

gas, daily values are necessary. The water vapor amount, integrated over the atmospheric column, is 

obtained from meteorological information. We used NCEP (National Center for Environment 

Prediction) models to determine this parameter; the ozone amount is accessible from satellite data such 

as TOMS and TOAST. 

The molecular radiance, resulting from light scattering by molecules, prevails for short wavelength 

bands (B1 and B2). Molecular radiance depends on the molecular optical thickness. This latter is well 

known for standard atmospheric pressure (1013 mb) and must balanced by the real pressure 

corresponding to the SPOT 5 acquisition date. Atmospheric pressure is also accessible from NCEP.  
 
Aerosol characteristics 

Tropospheric aerosols are the most difficult atmospheric components to characterize. The 

atmospheric correction code requires the aerosol optical thickness at 550 nm and a description of the 

particle type to derive their spectral properties. 

As Reunion Island is located in the Indian Ocean, it is strongly influenced by oceanic conditions. 

Both L3 Standard Mapped Image of SeaWIFs products, measured over sea surrounding the island, and 

meteorological information from NCEP models, give the required information to characterize aerosols. 

SeaWIFs products give the aerosol optical thickness for a wavelength of 865 nm, while NCEP data 

provide the relative humidity of air. Assuming a maritime model for aerosols, we used the Shettle and 

Fenn model [26] to calculate the optical thickness at 550 nm from the relative humidity of the air and 

the optical thickness at 865 nm. 
 
Ground elevation correction 

Due to its volcanic origin, the topography of Reunion Island is strongly heterogeneous with high 

slopes and an elevation from sea level to more than 3000 m over only 2500 km2. Since the atmospheric 

optical thickness fits the relief, ground elevation must be taken into account in the atmospheric 

correction process. 

As atmospheric parameters are specified for a given altitude zref, their values V must be adjusted for 

the simulated elevations zi. The concentrations of atmospheric components are adjusted by using scale 

height H applied to their vertical profiles: 

( ) ( ) 






 −
−∗=

H

zz
zVzV refi

refi exp  (7) 

The elevation correction V(zi) (eq. 7) is applied to atmospheric pressure, aerosol optical thickness 

and total amount of water vapor integrated over the vertical column. The atmospheric pressure is 

correlated to the molecular density with a scale height of 8 km. Water vapor and aerosols are mostly 

concentrated in the low troposphere. Although their profiles are strongly variable, we can roughly 

approximate them by assuming an exponential decrease of concentration with a scale height of 2 km. 
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2.5.2. Calculation of TOC reflectance 

TOC reflectance is deduced, pixel by pixel, by comparing measured reflectance at TOA to 6S 

simulations for a range of TOC reflectance using geometric and atmospheric conditions corresponding 

to each SPOT 5 acquisition.  

The principle is based on calculating Look-Up Tables (LUTs) that give couples of TOC and 

corresponding TOA reflectances (one table by spectral band). The 6S code has been adapted to allow 

internal loops over the different TOC reflectances and, therefore, to easily calculate one LUT by 

spectral band. TOC reflectance varies from black ground with null reflectance to bright surface with 

reflectance of 0.8, with a predefined step of 0.01. From calculated TOA reflectance, we perform an 

interpolation in the LUTs to obtain the TOC reflectance corresponding to the measured TOA 

reflectance for each pixel of the image.  

In order to take elevation into account, we used the DEM that gives the real elevation z for each 

pixel. From 6S LUTs simulated for elevations zi and zi+1 surrounding z, new LUTs (TOC reflectance / 

TOA reflectance) are calculated for altitude z by linear interpolation. Once these new LUTs are 

available for the current pixel of altitude z, we use it to inverse the TOC reflectance corresponding to 

the measured TOA reflectance. 

3. Results and Discussion 

3.1. Validation of the automatic selection technique of IT 

First, we present the results of validation of the IT automatic selection technique. Figure 5 shows 

the regressions obtained between the relatively normalized reflectances of MSIT in N (see Section 

2.4.4) in the four spectral bands. The correlation between the normalization resulting from the two IT 

selection approaches is very strong: r² exceeds 0.98 in all spectral bands. Moreover, RMSE values 

range from 0.843 to 1.205, with a bias typically between -0.081 and 0.285 (very small) (RMSE and 

bias unit: percent of reflectance). Consequently, we consider that the proposed automatic selection 

technique of IT is successful and is an excellent alternative to time-consuming manual IT selection. 

3.2. Comparison of relative normalization and atmospheric correction performances 

The comparison between the relative normalization and atmospheric correction methods was 

carried out by evaluating the impact of each method on reflectances of MSIT. 

For each MSIT, we extracted the mean values of atmospherically corrected reflectances (TOC 

reflectances) at each date. For each date, we also calculated the relatively normalized reflectances of 

each MSIT using relatively normalized images obtained using the automatic IT selection technique. 

Figure 6 shows the relatively normalized reflectances of MSIT as a function of its TOC reflectances, 

for all spectral bands. An excellent correlation is found in all bands: r² is equal to 0.992, 0.994, 0.983 

and 0.960 in B1, B2, B3 and B4, respectively. The RMSE and bias values are small. The former ranges 

from 1.544 to 3.221, and the latter varies between -2.649 and 1.302. 

We were also interested in evaluating the impact of each method on the temporal behavior of the 

MSIT reflectances. For this, we calculated the standard deviation of the profile of each MSIT over the 

18 acquisition dates a) before normalization (TOA reflectances), b) after relative normalization, and c) 
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after atmospheric correction (TOC reflectances). Table 2 shows the average and maximum values of 

the standard deviation obtained at each level and in each band. When looking at the average standard 

deviations, we notice that both the relative and the atmospheric correction methods smooth the 

temporal profiles of MSIT reflectance in the four spectral bands. However, the relative radiometric 

normalization better smoothes these profiles, and also decreases the maximum value of the standard 

deviations (not the case for atmospheric correction). This might be due to the fact that the relative 

normalization corrects not only a part of atmospheric effects but also a part of surface directionality 

effects. Consequently, we consider that both methods reduce the radiometric distortion of the time 

series, but that relative normalization corrects it better. 

Figure 5. Regressions obtained in each band for the validation of the automatic 

selection technique of IT: the x-axis corresponds to the normalized values obtained by 

automatic selection, and the y-axis to the normalized values obtained by manual 

selection. 
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3.3. Impact on the spectral properties of sugarcane fields 

Since the final goal of this project is monitoring sugarcane crop using multi-temporal images of 

SPOT 5, it was necessary to assess the impact of each method on the NDVI values calculated at the 

sugarcane field scale. The NDVI is computed by: 

redNIR

redNIRNDVI
ρρ
ρρ

+
−=  (8) 

where NIRρ  and redρ  are the reflectances in the NIR band (B3) and Red band (B2) respectively. The 

NDVI temporal profile is actually a very good tool for sugarcane yield prediction and harvest detection 

[27-29]. 
 

Figure 6. Comparison between MSIT reflectances corrected by 6S (TOC reflectance) 
and those corrected by relative radiometric normalization. 

 

  

  

Twenty fields were chosen for the comparison. We calculated for each field the mean NDVI values 

at each date using relatively normalized images and TOC images. 

Figure 7 shows the regression obtained between the relatively normalized NDVI and the TOC 

NDVI values obtained for all dates and fields. There is a strong correlation (r² = 0.959) between the 
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two methods. However, the RMSE and bias values are non-negligible (RMSE = 0.098, Bias = 0.092). 

The relative error was estimated to be 12.66%, which is high. 

Table 2. Average and maximum values (over 18 dates) of the standard deviation (STD) 

calculated for the reflectances of manually selected IT (MSIT): before radiometric 

normalization (TOA), after relative radiometric normalization, and after atmospheric 

correction (TOC). 

 

 
TOA TOA + Relative normalization 

TOA + Atmospheric correction 

(TOC) 
 

B1 B2 B3 B4 B1 B2 B3 B4 B1 B2 B3 B4 
Average 

STD 1.34 1.59 1.80 2.08 0.88 1.10 1.25 1.25 1.23 1.46 1.69 1.98 

Maximum

STD 3.43 3.54 2.95 4.21 3.04 3.21 2.63 2.59 3.51 3.57 2.86 4.08 

 

Figure 7. Comparison between NDVI values at the sugarcane field scale calculated 
after atmospheric correction by 6S (TOC NDVI) and after relative radiometric 
normalization. 

 

 

 

Since relative radiometric normalization is not intended to absolutely correct the images but only to 

normalize them according to a reference image, it was more relevant to compare the relative evolution 

(increase or decrease) of NDVI from one date to another. Thus, we compared NDVI slope values 

calculated for each couple of consecutive dates for all fields (see Figure 8a). We notice a good 

correlation (r² = 0.898) and low RMSE and bias values (0.00134 and -0.00028, respectively). Only 4% 

of the points were significantly spread along the regression. This means that globally both methods 

lead to a very similar behavior of NDVI. Looking more in-depth at each field case, we see that NDVI 
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patterns obtained by the two methods are very comparable but sometime differ in a critical stage of the 

crop cycle. Figure 8b shows the temporal profile of NDVI obtained for a sugarcane field using TOA 

reflectances, relatively normalized reflectances and TOC reflectances. We can see that the relative 

normalization smoothes the NDVI profile more than atmospheric correction. For instance, the NDVI 

fluctuation that appears in May 2003 on the TOA and the TOC profiles does not appear on the 

relatively normalized one. Slight differences are also noticed in the senescence stage, i.e. the stage 

after maximum growth. These differences can lead to different interpretations of the crop state. For 

example, when looking at the TOC NDVI pattern between June and October 2004, we conclude that 

the sugarcane has dried remarkably because the NDVI decreases by 0.1, but the 0.04 decrease of the 

relatively normalized NDVI does not indicate the same. Since no ground truths are available for 

comparison, we cannot conclude one or the other. What we can say at this stage is that relatively 

normalized NDVI patterns obtained by the two methods are very comparable, but slight differences 

might have an impact on derived crop indicators that need highly accurate data. 

4. Conclusion 

In this paper, we addressed the issue of normalizing the radiometry of a SPOT 5 time series 

acquired over Reunion Island, and introduced an automatic method for relative radiometric 

normalization based on the reflectances of invariant targets. Since finding these targets is an important 

step, we developed and validated an automatic technique for IT selection. The main advantages of this 

method are its implementation simplicity, its automaticity, its applicability to images acquired in 

different seasons and the fact that it does not need atmospheric data; however, results depend of the 

selected reference image. 

We also presented an atmospheric correction method based on the 6S model and described the 

retrieval of atmospheric parameters. This method corrects absolutely the atmospheric effects on the 

radiometry whatever the date and site. Nevertheless, it is difficult to quantify atmospheric data at the 

local scale since atmospheric parameters are often provided at the global scale. Another important 

limitation is the fact that bidirectional reflectance effects are not corrected. 

We compared the performance of both methods using a set of manually selected invariant targets; 

this comparison shows very strong correlation and low error rates. Both methods reduce the 

radiometric distortion of the time series, but relative normalization gives better results. 

Impact analysis of the methods on the NDVI of sugarcane fields showed strong correlation between 

normalized values, although the observed error rate was relatively high. Very comparable NDVI 

patterns at the field scale were obtained, but slight critical differences were observed that might 

influence the computation of phenological and production indicators. 

In conclusion, we consider that the developed relative normalization method can globally be a good 

alternative to atmospheric correction when working with high spatial resolution multi-temporal 

imagery. 
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Figure 8. a) Comparison between NDVI slope values corrected by 6S (TOC) and those 
corrected by relative normalization (all dates, all fields). b) NDVI patterns calculated for 
a sugarcane field with TOA reflectances, relatively normalized reflectances and TOC 
reflectances. 

 
       a) 

 

     b) 
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