Mercury exposure and lifestyle of native Amerindian communities living along the Beni River (Bolivia)
Eric Bénéfice, S.J. Luna Monrroy, R.W. Lopez

To cite this version:

HAL Id: ird-00398939
http://hal.ird.fr/ird-00398939
Submitted on 26 Jun 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mercury exposure and lifestyle of native Amerindian communities living along the Beni River

Eric Bénédicte, MD PhD (IRD, Laos)
Selma Luna-Monrroy (Msc, SELADIS-UMSA, Bolivia)
Ronald Lopez (Msc, SELADIS-UMSA, Bolivia)

ICMGP 2009, Guizhou, Guiyang China June 7th to June 12th
Context: Gold mining activity in the foot hill of the Andes

According to L Maurice Bourgoin (2000):

- Extraction of 5 ~10 kg gold/month
 - Use of 250 ~ 500 kg / year of mercury
 - 50 ~ 70 % released into the environment
Background: communities contaminated through fish ingestion

Bio concentration along the aquatic food chain
Objectives of the study

• To document mercury contamination in riverside communities
• To examine associated risk factors risk factors
 (importance of fish consumption)
• To analyze possible interaction with the nutritional status of that communities
Study context
Study area
Subjects and sampling

- Study area: Beni flood plain
- 14000 inhabitants
 - 4000 along the riverside
- 173 mothers and 458 children (<15 yo)
- Ethical clearance
Field procedures

- Informed consent
- Dietary survey

Clinical examination

Anthropometry

Iron deficiency anemia

Parasitological examination

Hair strand cut
Mercury content analysis

Rinsing: EDTA 0.01% and H2O Milli Q

Weighing

Mineralization

Measurement with atomic absorption spectrometry (PERKIN ELMER 3110)

End of digestion

Digestion
Results
Health characteristics: general

- 70% of mothers gave birth without medical assistance
- High mortality rate
- Anemia prevalence (women): 42%
- Chronic malnutrition (preschoolers): 41%
- Intestinal parasitism (children): 85%
- Acute infections: 30%
Hair mercury content H-Hg (µg/g)

<table>
<thead>
<tr>
<th>Group</th>
<th>Median (IC 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall sample (n=556)</td>
<td>4.0 (3.6 ~4.4)</td>
</tr>
<tr>
<td>Children (n=393)</td>
<td>3.9 (3.4 ~4.4)</td>
</tr>
<tr>
<td>Mothers (n=163)</td>
<td>4.4 (3.5 ~5.4)</td>
</tr>
<tr>
<td>Pregnant (n=18)</td>
<td>3.3 (1.3 ~3.9)</td>
</tr>
<tr>
<td>Lactating (n=57)</td>
<td>5.5 (4.4 ~6.4)</td>
</tr>
<tr>
<td>Non-pregnant non-lactating women (n=93)</td>
<td>4.1 (3.0 ~5.4)</td>
</tr>
</tbody>
</table>
H-Hg and community characteristics (1)

Cumulative distribution of H-Hg according to ethnicity

p<0.01)
H-Hg and community characteristics (2)

Cumulative distribution of H-Hg according to village accessibility

$p<0.001$
H-Hg and community characteristics (3)

Cumulative distribution of H-Hg according to fish consumption

p<0.001)
H-Hg and community characteristics (4)

Cumulative distribution of H-Hg according to economic activity

\(p < 0.001 \)
Multivariate analysis

• Village accessibility
• Fish consumption

• Ethnicity
• Subsistence activity

Significant predictive effect

No significant effect

Significant interactions between:
• Accessibility * Fish consumption
• Subsistence * Fish consumption
Nature of fish consumed

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Feeding Behavior</th>
<th>Consumption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prochilodus nigricans</td>
<td>Sábalo</td>
<td>herbivorous</td>
<td>43.5</td>
</tr>
<tr>
<td>Leiarius marcocatus</td>
<td>Tujuno</td>
<td>piscivorous</td>
<td>11.7</td>
</tr>
<tr>
<td>Colossoma brachypomum</td>
<td>Pacú</td>
<td></td>
<td>9.1</td>
</tr>
<tr>
<td>Pseudoplataystoma fasciatum</td>
<td>Pintado</td>
<td></td>
<td>9.1</td>
</tr>
<tr>
<td>Astronotus ocellatus o Pygocentrus nattereni</td>
<td>Palometa</td>
<td>carnivorous</td>
<td>6.4</td>
</tr>
<tr>
<td>Schizodon fasciatum</td>
<td>Ruta</td>
<td></td>
<td>3.9</td>
</tr>
<tr>
<td>Plagioscian squamosissimus</td>
<td>Curbina</td>
<td></td>
<td>3.9</td>
</tr>
<tr>
<td>Mylossoma duriventre</td>
<td>Jatara</td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>Brachyplatystoma filamentosum</td>
<td>Dorado</td>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>Hoplias malabaricus</td>
<td>Benton</td>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>Pimelodus maculatus blochii</td>
<td>Griso</td>
<td>omnivorous</td>
<td>1.3</td>
</tr>
<tr>
<td>Serubim lima</td>
<td>Tahuaya</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Hoplerythrinus unitaeniatus</td>
<td>Yayu</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Brycom s.p.</td>
<td>Mamuri</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Tripostheus sp o Markiana nigripinis</td>
<td>Sardina</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Serrasalmus spp</td>
<td>Piraña</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Pseudoplastystoma tigrinum</td>
<td>Surubí</td>
<td></td>
<td>0.7</td>
</tr>
</tbody>
</table>
Fish consumed

- 63% herbivorous and omnivorous
- 37% piscivorous and carnivorous
- No differences between ethnic groups but
- **Remote communities consumed significantly more carnivorous fish than the others**
Nutritional importance of fish: percent of energy and nutrients provided by fish
Relationships between H-Hg and anthropometric indices in 5-10-year-old children

- **H-age (Z-scores)**
 - Quartile 1 vs. Quartile 4: p<0.05

- **W-age (Z-scores)**
 - Quartile 1 vs. Quartile 4: p<0.006

- **W-H (Z-scores)**
 - Quartile 1 vs. Quartile 4: P=0.06

- **BMI (kg/m²)**
 - Quartile 1 vs. Quartile 4: p<0.01
Conclusions
1) Mercury exposure

- H-Hg seems relatively low by comparison with other Amazonian areas (ex Tapajos basin): 86% of subjects < 10 µg/g
- But greater exposure of “traditional” and more vulnerable groups of population
 - Isolated
 - Less access to health and schooling facilities
 - Higher consumption of contaminated fish
2) Fish consumption

• Important for the nutritional balance of the diet
 – Macro nutrients (proteins) vitamins and micronutrients (iodine, sulfur…)

• Isolated groups consumed more carnivorous (i.e. Hg contaminated) fish than the others
3) Nutritional status

• H-Hg acts as a bio-indicator of fish consumption

• Positive effect on nutritional indices of school age children
 – Fish consumption is the intermediate link

• Public health: Does the advantage of a fish based diet overcome the risk of Hg poisoning?
Recommendations

- Mercury will not disappear and will continue to bio accumulate unless severe law enforcement is applied
- Fish consumption is very important for certain groups of population
- Advice aiming at reducing consumption of harmful fish should be cautious
- A regular assessment of the Hg content of the most frequently consumed species is required
Acknowledgements

• To the riverside communities of the Beni River
• To Carlos for his constant devotion to the team
• To the Environmental Quality Laboratory (Ing Jaime Chincheros) of La Paz University
• To our colleagues of the Biochemistry and Pharmacy faculty (Dra Sara Perez, Susana Revollo and Sonia Jimenez)
• To Marc Roulet (2006 †) who inspired and coordinated this program