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A B S T R A C T

Ambiguity between forest types on remote-sensing imagery is a major cause of errors found in accuracy
assessments of forest inventory maps. This paper presents a methodology, based on forest plot inventory,
ground measurements and simulated imagery, for systematically quantifying these ambiguities in the
sense of the minimum distance (MD), maximum likelihood (ML), and frequency-based (FB) classi“ers.
The method is tested with multi-spectral IKONOS images acquired on areas containing six major
communities (oak, pine, “r, primary and secondary high tropical forests, and avocado plantation) of the
National Forest Inventory (NFI) map in Mexico. A structural record of the canopy and optical
measurements (leaf area index and soil re”ectance) were performed on one plot of each class. Intra-class
signal variation was modelled using the Discrete Anisotropic Radiative Transfer (DART) simulator of
remote-sensing images. Atmospheric conditions were inferred from ground measurements on reference
surfaces and leaf optical properties of each forest type were derived from the IKONOS forest signal. Next,
all forest types were simulated, using a common environmental con“guration, in order to quantify
similarity among all forest types, according to MD, ML and FB classi“ers. Classes were considered
ambiguous when their dissimilarity was smaller than intra-class signal variation.

DART proved useful in approximating the pixel value distribution and the ambiguity pattern
measured on real forest imagery. In the case study, the oak forest and the secondary tropical forest were
both distinguishable from all other classes using an MD classi“er in a 25 m window size, whereas pine
and primary tropical forests were ambiguous with three other classes using MD. By contrast, only two
pairs of classes were found ambiguous for the ML classi“er and only one for the FB classi“er in that same
window size. The avocado plantation was confounded with the primary tropical forest for all classi“ers,
presumably because the re”ectance of both types of forest is governed by a deep canopy and a similar
shadow area. We confronted the results of this study with the confusion matrix from the accuracy
assessment of the NFI map. An asset of this model-based method is its applicability to a variety of sensor
types, eco-zones and class de“nitions.

� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The classi“cation of remote-sensing images for forest carto-
graphy is essential to regional biodiversity mapping. Yet, because
of the heterogeneity of forest settings, the distinction between
forest types remains a dif“cult challenge. The application of
common automatic classi“ers (e.g. ISODATA, K-means) and visual
labelling of the resulting unsupervised clusters still seem, at least
until recently, a widely used strategy in operational forest mapping
programs at regional scale (i.e., Benjamin et al., 1996; Vogelmann
et al., 2001; Wulder et al., 2003 ). Comprehensive or partial
accuracy assessments of these maps were achieved ( Laba et al.,
2002; Wickham et al., 2004; Remmel et al., 2005 ). At high
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taxonomic resolution, con“dence levels reported for many forest
classes were lower than those reported in other studies on the
same type of imagery with more sophisticated classi“ers (e.g.
Magnussen et al., 2004; Salovaara et al., 2005; Lu et al., 2003 ).
However, the latter studies occurred in more con“ned, more
homogeneous geographical areas and concerned a smaller number
of classes. In some of these case studies, classi“ers with ancillary
information on forest stand structure yield better accuracy than
the one obtained with classi“ers that do not incorporate such
information. For example, Spectral Mixture Analysis (SMA) uses
spectral end-members (shadow or sunlit fractions) that contain
sub-pixel structural information, and SMA yielded accuracy
improvements for the classi“cation of successional stages of the
Amazonian tropical forest ( Lu et al., 2003). Moreover, Lu (2005)
found that a more detailed structural information (the measure-
ment of tree height distribution on the ground) was highly
correlated with a combination of Landsat TM bands; a linear
regression of these quantities further improved the accuracy of the
classi“cation. A drawback of these approaches, however, is again
their limited transferability to broader scales, other forest
communities, or other remote-sensing con“gurations. Indeed,
the relationships that linked forest stand structural information to
the re”ectance data were empirically derived and only valid for the
environment close to the image at hand ( Lu, 2005). From these
observations, a set of questions may be posed by the forest map
producer in a highly biodiverse region: Would any more
sophisticated classi“er perform better than the common automatic
classi“ers at regional or national scales, for a wider set of forest
classes? Or: For which set of forest classes is it worthwhile to look
for better, more sophisticated, algorithms instead of settling for the
commonly used (or available) classi“ers?

Considering the above-mentioned improvements in accuracy,
one way to address these questions could be to refer to an expert
system, based on the description of the structure of forest stands,
capable of estimating a priori ambiguities among classes for a given
classi“er. Indeed, high ambiguity between two forest types for a
few conventional classi“ers would encourage the forest map
producer to look for a more sophisticated classi“er. Such result
could even pose the question of whether it is suitable to classify
these forest types via automatic classi“cation or if it is preferable to
use visual classi“cation instead, a strategy employed for example
in the case of the National Forest Inventory (NFI) in Mexico ( Mas
et al., 2002; Mas and Ramš́rez, 1996). Conversely, low ambiguity
between two forest types for a given classi“cation method would
ensure the appropriateness of the classi“cation method and stop
the quest for a better classi“er (e.g. Baban and Kamaruzaman,
2001, in a sub-tropical setting). It is recently argued indeed
(Wilkinson, 2005 ) that more research efforts should be dedicated
to improving other areas of the map production process ( Fassnacht
et al., 2006) rather than mainly focusing on better classi“cation
algorithms.

In this research, we propose a framework based on forest plot
inventory, ground measurements and simulated imagery, in order
to test a few classi“ers• a priori performance on pairs of classes
among a given set of forest types and for any given remote-sensing
platform. This framework is applied to the case of 6 forest types
pertaining to classes at community level ( Palacio-Prieto et al.,
2000) of the Mexican NFI map (see Mas et al., 2002), namely oak,
pine, “r, primary and secondary high tropical forests, and avocado
plantation.

2. Background

3D modeling of forest plots offers various advantages to
foresters. For example, it allows tree mapping based on plot
eview
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inventory, which enables the precise estimation of key structural
indices of the forest such as canopy gap distribution ( Silbernagel
and Moeur, 2001 ). Additionally, radiative transfer coupled with 3D
modeling has permitted the evaluation of radiation budgets of
forest parcels and intercepted radiation by tree crowns (e.g.
Gastellu-Etchegorry and Trichon, 1998; Courbaud et al., 2003 ). In
terms of bi-directional re”ectance, the comparison between
simulated and real imagery of forests is a dif“cult task. At scales
well above tree crown, the average signal is dominated by the
macroscopic properties of illuminated and shadowed crown and
ground components. In this case, the average re”ectance of
homogeneous stands is simulated with forward models of canopy
scattering (e.g. Goel and Thompson, 2000; North, 1996; Pinty and
Verstraete, 1991; Strahler, 1996 ). This approach has been
successfully assessed against real imagery in mainly coniferous
stands made of repeated individuals of one or two species
(Gemmel and Varjo, 1999; Courbaud et al., 2003; Disney et al.,
2006). No such exercise was achieved for scales approaching crown
size and with a ”exible scheme integrating a greater diversity of
tree species and heterogeneous understory spectral signatures.

The 3D Discrete Anisotropic Radiative Transfer (DART 4) ray-
tracing model ( Gastellu-Etchegorry et al., 2004 ) simulates remote-
sensing images of heterogeneous natural and urban landscapes,
using 3D generic representations of these landscapes. This
simulator has been successfully tested against re”ectance results
of other radiative transfer models ( Pinty et al., 2004 ). Gastellu-
Etchegorry and Trichon (1998) stress the dif“culty in accurately
positioning a simulated plot on a 25 m resolution imagery.
Simulating remote-sensing imagery and not only average re”ec-
tance allows to work at resolutions close to crown scales. At very
high (1…5 m) resolution, more recently available, forest plots are
more easily identi“able on the image, and the amount of ground
measurements necessary for statistically meaningful comparisons
between simulated and real pixel sets is at least 5 2 = 25 times less
extensive than for 25 m resolution imagery, in which a one hectare
plot contains only 16 pixels. Multi-spectral IKONOS imagery (4 m
resolution) has recently been used for the classi“cation of
taxonomically close forests (e.g. Wang et al., 2004; Thenkabail
et al., 2004).

We used the DART model to simulate the inherent hetero-
geneity of forest stands and the associated IKONOS multi-spectral
remote-sensing images. This paper describes an approach that is
essentially generic, and examines the utility of a 3D structural
model with general assumptions on the canopy, in order to test the
correspondence of such general model with the structural
information given by 4 m multi-spectral imagery of a large variety
of forest types. Our goal was to study ambiguities among these
forest types on remote-sensing imagery in a systematic manner.
For this purpose, a set of parameters, measurable in the “eld and in
the laboratory, was handled as variables, while environmental
heterogeneity exterior to the forest setting (viewing and illumina-
tion con“gurations, sensor response and atmospheric scattering)
was controlled and “xed.

Clusters from commonly available unsupervised classi“ers
such as ISODATA orK-means are organized around the minimum
distance (MD) principle. Another conventional parametric method
is the maximum likelihood (ML) classi“er. MD and ML principles
were selected for the ambiguity estimate concerning relatively
common classi“ers. Among more sophisticated methods, the
frequency-based (FB) classi“ers have been successfully used for
contextual image classi“cation of very high resolution imagery
(Lira and Maletti, 2002; Xu et al., 2003 ). The “rst order FB classi“er

http://www.cesbio.cnes.fr/
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is built on the quantitative comparison of histograms … or density
functions … of pixel neighbourhoods ( Maletti et al., 2002 ). A
classi“er was considered to perform well at distinguishing a pair of
classes if the spectral dissimilarity between images of simulated
plots of these classes (or •inter-class variation•) was higher than the
spectral dissimilarity among simulated plots within a given class
(or •intra-class variation•). In the opposite case, i.e., if inter-class
variation was lower than intra-class variation, the classes were
considered ambiguous for this classi“er. The spectral distance
characterizing each classi“er is de“ned in the section on classi“ers•
dissimilarity measures. For example, the Euclidian distance
between mean spectral values de“nes spectral dissimilarity for
the MD criterion.

In this work, a botanic inventory, including a structural record
of the canopy, was performed on 6 forest plots (one per forest type)
appearing on 3 IKONOS scenes (multi-spectral and panchromatic).
Optically based measurements were conducted in order to
estimate the Leaf Area Index (LAI) and the re”ectance of the
understory in each plot. These measurements and environmental
parameters matching conditions of the IKONOS overpasses served
as inputs to the DART model for the simulation of the forest plots.
The comparison of each simulated image against its corresponding
IKONOS scene allowed us to account for atmospheric effects and to
compute the leaf optical properties of each forest type through an
imagery calibration process, as indicated in the section on satellite
imagery. In order to test the potential of DART for simulating the
4 m-resolution real IKONOS imagery of the forest plots, the
histograms of simulated and real imagery were compared.

In a second step, for ambiguity assessments, all forest plots
were simulated under the acquisition and environmental condi-
tions of one IKONOS scene. The variability of measurements within
a given forest type was assessed on the ground and images of plots
of the same forest type were generated from simulations
incorporating this variability. Inter-class and intra-class variations
were derived and pair-wise comparisons were made for all
combinations of the 6 forest types. The aim of this exercise was to
enlist, for each of the three classifying methods and for a speci“c
Fig. 1. Location of forest plots on multi-spectral IKONOS imagery in the Tancš t́aro site. T
green).
view
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window size, pairs of classes that are a priori ambiguous and pairs
of classes that are a priori separable. Finally, in the last part of the
paper, we discuss the results of this study in the context of the
confusions recorded among the same classes, in a previous
accuracy assessment of the NFI map.

3. Study areas

An extensive coverage of both temperate and tropical types of
forests is reported by the NFI map of mega-diverse Mexico ( Mas
et al., 2002). Much spatial intricacy occurs among polygons of
forest classes at community level, even between patches of
temperate and tropical forests (see for example the NFI map of the
state of Chiapas), the distinction of which is an important task for
biodiversity mapping. We focused on three sites that contain a
variety of forest types included in the classi“cation system of the
NFI and where IKONOS imagery was available. Two sites, labelled
•Tancš́taro• and •Cuitzeo•, are located on the transversal volcanic
chain and contiguous altiplano in central western Mexico (see
Figs. 1 and 2). The •Tancš́taro• site is included in the communal
lands of San Juan Parangaricutiro, Michoacá n state, near to the
natural reserve of the Tancš t́aro volcano peak. This site is about
2200 m above sea level and the climate is close to temperate sub-
humid. The •Cuitzeo• site is located in the ejidal lands of El Cerro,
Michoacán state, close to the Cuitzeo lake. This site is about 2050 m
above sea level and the climate is intermediate between tropical
dry and temperate sub-humid. Another site, labelled •Los Tuxtlas•,
is situated near to the coast of the Gulf of Mexico (see Fig. 2), on the
”anks of the San Martin volcano at about 900 m above sea level.
This site is included in the communal lands of La Perla de San
Martin, Veracruz state, within the biosphere reserve of Los Tuxtlas.
The climate is mainly characterized by tropical humid conditions.

We focused on six forest plots (listed in Table 1) among these
three sites. One plot pertains to an oak forest dominated by Quercus
deserticola in the Cuitzeo site; one plot of pine forest dominated by
Pinus montezumae, one plot of “r forest dominated by Abies
religiosa and one plot of avocado plantation ( Persea americana)
y

he black and white scenes are derived from the RGB composite of bands (red, NIR,



Fig. 2. Location of forest plots on multi-spectral IKONOS imagery in the Cuitzeo and Los Tuxtlas sites. The black and white scenes are derived from the RGB comp osite of bands
(red, NIR, green).

able 1
tructural parameters of forest plots and stands

orest stand Site Number
of species

Plot
size (m)

Crown
Cover in plot (%)

Crown Cover in
forest stand (%)

LAI in
plot

LAI in forest stand

Min Max

ak Cuitzeo 12 50 � 50 64 54…72 2.5 2.0 3.2
ine Tancš́taro 3 50 � 50 87 75…94 3.5 2.9 4.1
ir Tancš́taro 6 50 � 50 75 59…86 3.9 2.6 5.8
vocado Tancš́taro 1 50 � 50 77 72…85 6.1 5.6 6.4
rop. Second. Tuxtlas 21 40 � 40 96 92…98 5.1 4.5 6.1
rop. high Tuxtlas 31 40 � 40 97 92…100 7.9 7.0 8.9
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were selected in the managed forests of Tancš t́aro; one plot of
mature, well-preserved high tropical forest (•primary• tropical
forest) and one plot of secondary tropical forest were selected in
the Los Tuxtlas site. The secondary forest was regenerating
vegetation on a site where primary forest had been depleted by
a 1998 “re episode. All plots are lying on relatively ”at terrain.
Thereafter, we denominate •forest stand• as being a larger portion
of forest of the same type, on relatively ”at terrain, that includes
the forest plot.

4. Ground measurements

For each forest class, we proceeded to the survey of one plot and
“ve reference parcels within the same forest stand. The data
collected in the reference parcels were used to model the intra-
class variation of the signal. A structural record of the canopy
(including the detailed position of individual crowns, see below)
was measured in the forest plot. Crown coverage (CC) estimation,
LAI measurements and soil re”ectance evaluation (see Section 4.2)
were performed in the plot as well as in the reference parcels.

4.1. Forest stand structure

The square-shaped forest plots (see dimensions on Table 1)
were marked with metric tapes to register the relative position of
trees. All trees larger than 10 cm diameter at breast height (DBH)
evie

were inventoried in the plot of primary tropical forest, and larger
than 5 cm DBH in all other plots. Species were identi“ed (the
number of species is mentioned in Table 1) and crown dimensions
were measured assuming an ellipsoidal envelope, the axes of
which are aligned to the orientation of the parcel: the extreme
horizontal coordinates of the ellipsoidal envelope were visually
evaluated on the metric tape using compasses. Vertical dimensions
were assessed by the local foresters guiding the team in the “eld,
using reference trees whose height was estimated with a
clinometer. In some cases, more than one ellipsoid was required
to approximate the crown. Trees with stems outside the plot but
whose crown infringed in the plot were also measured and
included in the simulation. With the aid of two metric tapes placed
perpendicularly across the entire plot (or reference parcel), CC was
measured (see Table 1) as the fraction of the tapes that intersected
the projected crowns on the ground.

These measurements were synthesized into an ASCII “le, which
was converted by the DART model into a 3D representation based
on turbid or empty cubic cells for the canopy, and opaque surfaces
for tree trunks ( Fig. 3; see Gastellu-Etchegorry et al., 2004 ). The
volume of the ellipsoids was •“lled• with turbid cells (simulating
leaves) or air cells (simulating holes in the canopy) according to a
probability of presence or “lling index (see Gastellu-Etchegorry,
2006). In a preliminary step, a set of “lling indices was tested for
the simulation of large trees in each forest setting. The “lling index
which visually approximated the texture appearance of these large
w
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Fig. 3. DART representation of the landscape- atmosphere-sensor system. Taken from Martin (2006) .
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trees on the real 1 m panchromatic IKONOS was retained. The 3D
structure and vertical pro“le of the canopy are illustrated with the
JAVA 3D interface of the DART model in Figs. 4…9(a and b). The
satellite imagery was simulated by the DART model, using 3D
representations that comprised all measured trees (i.e., an area
larger than the plot itself). However, data processing was
conducted on the sub-images corresponding to the forest plots.
This procedure was adopted to avoid any arti“cial shadow created
by the absence of tree crowns at the border of the plots.

4.2. Optical measurements

We conducted a series of 16 LAI estimates in the plot and 10 LAI
estimates in each reference parcel, using the SUNSCAN Canopy
Analysis System (Delta-T Devices Ltd, Cambridge, UK). A linear
probe containing 64 photodiodes measures the radiation inter-
cepted by the canopy while at the same time, sensors with and
without shade placed in a clearing read diffuse and direct sun
radiations. The effective LAI is automatically derived according to
the principles and assumptions detailed in Potter et al. (1996) . The
 e

Fig. 4. Oak forest plot in the Cuitzeo site: simulated 3D structure (a) and vertical 2D pro“le at 50
plot. The DART panchromatic image is derived from a fusion of DART multi-spectral imag
measurements with the apparatus were made along two 20 m-
long perpendicular transects within the plot and reference parcels.
They were subsequently averaged. These average values are
displayed in columns 7 and 8 of Table 1, respectively.

The measurement campaign occurred in March…April 2005, the
season corresponding to the satellite overpass on Cuitzeo, the only
site where forest LAI is strongly seasonally dependent. Since
hemispherical photography (a technique which suffers less depen-
dence on sun zenith angle for gap fraction estimation: Jonckheere
et al., 2004, p. 31) was unavailable for our campaign, the emphasis of
the study, rather than aim precise absolute LAI values, was to
measure coherent LAI values among plots and sites. Therefore, we
always realizedmeasurements ata time of the daywhen the sun was
at 35…408 zenith angle, markedly away from noon but within the
domain of LAI retrieval by the SUNSCAN software. The LAI estimates
in forest plots and in reference parcels (extreme values) are shown in
columns 7 and 8 of Table 1, respectively.

Bare soil, rock and soil covered with different types of litter
represented the ground conditions of all forest plots. In the
presence of forest plots with sparse canopy or low LAI, an optical
view
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cm resolution (b). Panchromatic IKONOS (c) and DART (d) imag es of the forest
es.



 
Fig. 5. Pine forest plot in the Tancš t́aro site: simulated 3D structure (a) and vertical 2D pro“le at 1 m resolution (b). Panchromatic IKONOS (c) and DART (d) images of the forest
plot. The DART panchromatic image is derived from a fusion of DART multi-spectral images.
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characterization of the understory was necessary ( Pinty et al.,
1998). The direct appraisal of the optical properties in the “eld was
hindered by the heterogeneous ground conditions. Therefore, we
“rst proceeded to a visual description of the understory in terms of
quantitative fractions of biophysical constituents present on the
ground over the whole forest plot. The biophysical constituents
encountered in the “eld were then spectrally related to a reduced
set of seven most frequent, conspicuous constituents: a type of
humus-rich bare soil, a type of basaltic rock, litter of yellow dried
grass, orange-brown leaf litter, dark brown leaf litter, grey
(decomposed) leaf and branch litter, and brownish needle litter.
These seven constituents were collected in the “eld and then
arranged in the laboratory as opaque surfaces to reproduce
spatially homogeneous understory scenarios.

Optical properties (i.e., directional re”ectance) of homogeneous
understory scenarios were measured in laboratory with illumina-
tion zenith angle similar to the ones of the IKONOS overpasses. For
this purpose, a series of bi-directional measurements of the
ground•s upwelling radiance was taken using a 512-channel hand-
 view
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ig. 6. Fir forest plot in the Tancš t́aro site: simulated 3D structure (a) and vertical 2D pro“le at 1 m resolution (b). Panchromatic IKONOS (c) and DART (d) images of the forest
F

plot. The DART panchromatic image is derived from a fusion of DART multi-spectral imag
R
e

held spectro-radiometer (Geophysical and Environmental
Research Group [GER] 1500) operating at 3 nm FWHM over the
range of wavelengths from 300 nm to 1050 nm. The instrument
was held 1 m above the targeted area. Mean re”ectance spectra of
homogeneous understories were computed after a normalization
to the radiance response of a Labsphere Te”on reference panel,
which diffusely re”ects incident radiation over all angles.

In a second step, the re”ectance of each •real• understory was
computed as a linear combination of the homogeneous understory
spectra, with weights being the fractions observed in the “eld. This
computation relies on a linear simplifying hypothesis that was
successfully tested with “eld measurements of understories made
of conspicuous patches of two constituents. In order to estimate
the variability of soil re”ectance in the surrounding forest, we
similarly characterized the understory of the 5 reference parcels.
The directional re”ectance values, convolved to each IKONOS
multi-spectral band, were inserted in the Hapke module ( Gastellu-
Etchegorry, 2006 ) of the DART model in order to obtain the
coef“cients of the Hapke (1993) soil model that “ts them. These
es.
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Fig. 7. Avocado plantation plot in the Tancš t́aro site: simulated 3D structure (a) and vertical 2D pro“le at 1 m resolution (b). Panchromatic IKONOS (c) and DART (d) images of
the plantation plot. The DART panchromatic image is derived from a fusion of DART multi-spectral images.

Fig. 8. Plot of the secondary tropical forest in the Los Tuxtlas site: simulated 3D structure (a) and vertical 2D pro“le at 50 cm resolution (b). Panchromatic I KONOS (c) and
DART (d) images of the forest plot. The DART panchromatic image is derived from a fusion of DART multi-spectral images.

Fig. 9. Plot of the primary tropical forest in the Los Tuxtlas site: simulated 3D structure (a) and vertical 2D pro“le at 1 m resolution (b). Panchromatic IKONO S (c and e) and
DART (d and f) images of the forest plot. The DART panchromatic image is derived from a fusion of DART multi-spectral images. Emergent crowns are highli ghted on (e and f).

S. Couturier et al. / Forest Ecology and Management 257 (2009) 23…37 29
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Table 2
Acquisition parameters of IKONOS imagery

Site Geometric coordinates Date Local time us (8) ws (8) uv (8) wv (8)

Latitude ( 8) Longitude ( 8)

Cuitzeo 20.0 � 101.1 04/03/2003 10:36 33.2 141.5 14.7 358.9
Tancš́taro 19.4 � 102.2 20/11/2002 10:47 40.9 162.9 21.9 290.4
LosTuxtlas 18.5 � 95.1 29/11/2004 10:04 43.1 157.6 21.8 33.3

us and wv refer to Sun zenith angle and viewer azimuth angle, respectively. Local time is GMT-7:00.
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coef“cients were used as descriptors of the understory optical
properties in the simulation.

5. Satellite imagery

5.1. Image preparation

We acquired panchromatic and multi-spectral IKONOS scenes
for each of the three sites ( Figs. 1 and 2; Table 2). The scenes were
provided in •Standard Geometrically Corrected• mode by Space
Imaging. They were subsequently geometrically corrected using
GPS measurements.

In a “rst step, the panchromatic image was corrected via
identi“able landmarks. We used a GARMIN 1 GPS unit (WAAS
mode) to record tracks around crowns of isolated trees in clearings
and along clearing borders/access trails in the vicinity of the forest
plots. We then matched the IKONOS imagery to the GPS positions
at less than 4 m RMS (1 pixel of the multi-spectral image), using a
2nd degree polynomial transformation. Forest plots were then
located in the image through visual identi“cation of pre-eminent
trees or gaps in the panchromatic image. Alternatively, we used the
average of repeated GPS readings inside the plot, using climbing
equipment on trees when necessary, until getting less than 3 m
location accuracy. Figs. 4…9(c) illustrate portions of the panchro-
matic IKONOS image where the forest plots are located. In a second
step, the geometry of the multi-spectral images was corrected
using the corresponding panchromatic image as a reference.

The multi-spectral IKONOS raw digital numbers were con-
verted to top-of-atmosphere (TOA) re”ectance using the standard
solar irradiance formula provided by Space Imaging. No atmo-
sphere measurement was available at IKONOS overpass. Besides,
the limited equipment available for this study and the great
diversity of leaves/needles present in the forest plots hindered the
measurement of their optical properties. In the absence of
available re”ectance databases, we used measurements on
homogeneous surfaces and in reference parcels of each IKONOS
scene in order to infer atmospheric and leaf optical parameters
from auxiliary simulations, as explained below.

5.2. Image calibration

Bi-directional measurements were acquired with the GER-1500
spectro-radiometer in at least two recognizable reference surfaces
per IKONOS scene: large crossings of asphalted and dry dirt roads
in Los Tuxtlas, gravel and asphalt roads in Tancš t́aro, crossing of
asphalt roads and a small quarry site in Cuitzeo. The aerosol optical
depth (AOD), and total transmittance of the vapour column ( TH2O),
two major atmospheric parameters in the spectral bands of
interest, were computed with the help of the simulated TOA
re”ectance of the two reference surfaces, assuming a tropical rural
atmospheric model with 23 km visibility ( Berk et al., 1989 ).

In order to calibrate the Leaf Optical Properties (LOP) of each
forest plot, we considered IKONOS pixels associated with large LAI
values in the reference parcels. These pixels were identi“ed in the
panchromatic IKONOS image as 8 m � 8 m parcels with lit crowns,
view
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100% CC, and high signal with respect to the surroundings in the
co-registered near infrared (NIR) IKONOS scene. The crown
structure (average height and thickness of crown) of the trees
was estimated in this 8 m � 8 m area. An inversion procedure led
to LOP values such that the TOA re”ectance value of the simulated
lit crowns was equal to the observed IKONOS re”ectance values. In
this approach, leaf re”ectance (both sides) and transmittance
values were assumed equal. Moreover, LOP was given a unique
spectral value for all trees in the forest plot. These two simplifying
assumptions were adopted because they already led to a robust
approach for biophysical parameter inversion from very high
resolution imagery ( Gascon et al., 2004). The shape of tree crowns
was assumed ellipsoidal and leaf angle distribution was assumed
spherical. Optical properties of tree trunks were taken from the
ASTER database (ASTER, 2003).

6. Methods

6.1. Classi“ers• dissimilarity measures

Three classi“ers were selected for the performance test, namely
the Minimum Distance (MD), the Maximum Likelihood (ML) and a
“rst order Frequency-Based (FB) classi“er. A key algorithmic step
among these parametric classi“ers is the minimization of the
spectral distance in a window size of interest.

The Euclidian distance ED ij = jmi � mjj, where mi is a vector
containing the mean spectral value of pixels in forest plot i, measures
the spectral separation between classes i and j for the MD classi“er.
Because of the high variability of the signal in hyper-spatial imagery
of forests ( Gascon et al., 2004), we observed that MD discriminated
classes with greater success for larger window sizes. Consequently,
mean values taken for ED distance calculations were extracted from
a 25 m � 25 m “xed sized subplot (for reference to the high
resolution of typically available sensors) of the forest plot.

The Bhattacharyya distance expresses the dissimilarity
between two clusters of pixels for the ML classi“er ( Landgrebe,
2000). Here, The Bhattacharyya distance BD ij between forest plots i
and j seen on multi-spectral IKONOS imagery was calculated
according to Landgrebe (2000) :

BDi j ¼
1
8

½mi � mj �
T S i þ S j

2

� � � 1

½mi � mj �

þ
1
2

ln
ð1=2Þ½S i þ S j �

�
�

�
�

������������������
jS i jjS j j

q (1)

where mi contains the mean spectral value of all pixels in forest
plot i, and S i is the covariance matrix of the vectors corresponding
to all pixel values in forest plot i.

Finally, the Frequency-Based Distance (FBD) is the dissimilarity
measure for the FB classi“er. FBD operates, as well as BD, on all
individual multi-spectral pixel values inside a forest plot. These
multi-spectral values were “rst grouped in bins to form a multi-
spectral histogram. The bin size was set as the sum of the IKONOS
and DART noise levels, in each spectral band. The DART noise level
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was assessed as the standard deviation of the differences of
re”ectance values simulated with DART and with a Monte Carlo
model, included in the DART model package. The Monte Carlo
model is assumed to be exact, but very computer extensive which
explains why it is not commonly used. Martin (2006) showed that
DART relative accuracy with respect to the Monte Carlo model is
better than 2%. FBDij between forest plots i and j seen on multi-
spectral IKONOS imagery was calculated according to Maletti et al.
(2002, p. 702) :

FBDi j ¼
1

2B

XB

b¼1

XQ

n¼1

hi½b; n� � h j½b; n�
�
�

�
� (2)

where B is the number of spectral bands, hi is the per band
normalized histogram of the pixels in forest plot i, and Q is the
number of quantization bins.

6.2. Intra-class and inter-class studies

ED, BD and FBD were “rst computed between DART-simulated
and IKONOS images of the six forest plots, yielding the •DART-
IKONOS dissimilarities•. Next, the six forest plots were simulated
with varying CC, LAI, and r u (understory re”ectance) values in
order to account for the variation measured in the reference
parcels. For this purpose, we selected for each forest setting the
minimum and maximum CC, LAI and r u values that were measured
in the associated set of reference parcels. As a result, a set of eight
simulations SðCC; LAI; r uÞper forest setting was computed, with
these three parameters equal to either the minimum or the
maximum measured value. For example, SðCCmin ; LAImax ; r u min Þis
one of these simulations. Distances were computed between all
pairs of these eight simulations. The maximum of these distances
expressed the •intra-class dissimilarity• of a forest setting. This
de“nition of intra-class dissimilarity was viewed as a trade off.
Indeed, the calculated distances tend to overestimate intra-class
variability because the impact of the CC, LAI and r u extreme values
on intra-class variability may be overestimated. On the other hand,
they underestimate intra-class variability because the variation of
other parameters such as leaf optical properties, that could not be
measured were not taken into account. Confronting the DART-
IKONOS dissimilarity value with the intra-class dissimilarity was a
means of testing DART as a proxy for pixel value distribution of
real, very high resolution IKONOS imagery.
Table 3
Spectral dissimilarity DD,I between DART and IKONOS signals, and DART intra-class di

Band Oak Pine Fir

DD,I sD DD,I sD DD,I sD

MD All bands 0.3 1.3 0.3 1.5 0.4 1.3
NIR 0.2 3.0 0.3 2.4 0.4 1.8
Red 0.1 1.0 0.0 0.8 0.4 0.
Green 0.4 1.0 0.5 2.8 0.1 1.4
Blue 0.4 1.4 0.5 1.2 0.8 1.1

ML All bands 0.104 0.328 0.097 0.132 0.058 0.1
NIR 1.7E� 04 3.4E� 05 5.7E� 05 6.4E� 04 2.3E� 05 9.1
Red 3.8E� 06 1.3E� 04 3.8E� 05 2.3E� 04 1.2E� 04 6.0
Green 1.1E� 05 4.2E� 03 1.2E� 04 4.3E� 04 5.8E� 06 1.8
Blue 3.4E� 05 4.7E� 03 5.3E� 03 9.2E� 03 1.1E� 03 1.7

FB All bands 0.26 0.41 0.31 0.44 0.27 0.4
NIR 0.35 0.33 0.25 0.37 0.28 0.3
Red 0.28 0.36 0.39 0.42 0.20 0.2
Green 0.27 0.55 0.31 0.42 0.15 0.5
Blue 0.14 0.60 0.27 0.56 0.44 0.5

Values are for each forest class and for 3 classi“ers: ••Minimum Distance (MD)••, with
Bhattacharyya distance, and ••Frequency-Based (FB)••, with Density function-based distan
view
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As a second step, the same forest plots were simulated, setting
viewing orientation, sun position, and atmospheric conditions to
the values found in the Tancš t́aro area. Dissimilarities between
pairs of classes, as well as intra-class dissimilarities, were
calculated for each forest type, the comparison of which was
aimed at determining whether forest classes were ambiguous, or
separable.

7. Results

7.1. Intra-class study with simulated imagery

Figs. 4…9(d) illustrate results of 1 m-resolution DART simula-
tions of all forest plots. Table 3 reports the computed dissim-
ilarities corresponding to the MD, ML and FB classi“ers, for the
DART-IKONOS comparison of every forest type, as well as for the
intra-class studies. The dissimilarities were computed for all four
bands (line denominated •all•) and for each mono-spectral band. In
all forests, the DART-IKONOS dissimilarity according to MD is
lower than intra-class dissimilarity, indicating a good agreement
(within intra-class variation) of mean values between IKONOS
imagery and DART-derived imagery. Intra-class variations of mean
re”ectance are uneven across spectral bands: The NIR band and, to
a lesser extent, the green band, generally record larger variations
within a forest type than the red and blue band. This observation
falls in accordance with the magnitude of absolute re”ectance
value of green vegetation in those spectral domains.

The similarity of pixel value distributions in DART imagery with
respect to IKONOS imagery can be appreciated in Fig. 10(a…f),
where histograms of corresponding scenes in the NIR band (the
spectral band with the strongest dynamic range) are displayed. The
DART-IKONOS dissimilarity in terms of pixel value distribution in
the four-dimensional space (all four bands) was also found less
than intra-class variability, as attested by the results of ML and FB
classi“ers in Table 3.

7.2. Ambiguity pattern in real IKONOS imagery

We further tested DART-simulated signals against real IKONOS
signals by investigating ambiguity patterns among the three forest
classes present in the Tancš́taro setting. These patterns were
studied using an •ambiguity matrix•, displayed in Table 4. Diagonal
data (within outlined rectangles) represent the intra-class
ssimilarity sD

Avocado Tropical secondary Tropical primary

DD,I sD DD,I sD DD,I sD

0.2 1.6 0.4 1.8 0.5 1.6
0.0 2.2 0.3 3.2 0.3 4.2

8 0.4 0.8 0.3 0.5 0.1 0.5
0.4 2.0 0.7 2.7 0.6 1.7
0.1 1.2 0.2 0.9 0.8 1.0

38 0.048 0.081 0.129 0.257 0.223 0.259
E� 04 3.6E� 05 2.2E� 05 2.5E� 04 2.0E� 04 5.2E� 05 7.8E� 06
E� 04 1.0E� 04 6.6E� 05 1.0E� 05 4.2E� 04 4.0E� 05 1.3E� 03
E� 03 1.5E� 06 2.0E� 03 1.2E� 03 8.4E� 03 4.3E� 04 7.6E� 03
E� 03 5.5E� 05 4.1E� 04 2.6E� 04 5.6E� 04 1.4E� 04 1.3E� 03

0 0.23 0.45 0.17 0.33 0.37 0.44
8 0.35 0.34 0.35 0.31 0.44 0.40
9 0.23 0.39 0.04 0.29 0.41 0.47
5 0.13 0.65 0.23 0.57 0.25 0.62
8 0.21 0.55 0.07 0.23 0.37 0.42

Euclidian distance in percent re”ectance, ••Maximum Likeliho od (ML)•• with
ce.
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eviewFig. 10. Distribution of pixel values in the IKONOS (thin line) and DART (thick lines) near infrared images of oak (a), pine (b), “r (c), avocado (d), secondary t ropical (e) and

primary tropical (f) forests. Histogram mean and standard deviation are shown in the top part of each graph.
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dissimilarity for each forest type (information contained in
Table 3). Off-diagonal data give, for all classi“ers, dissimilarity
values between pairs of classes, computed from the real IKONOS
imagery (upper right part of the matrix) or from the DART-
simulated imagery (bottom left part of the matrix). Dissimilarity
values from DART-derived information (bottom left part) were
found highly correlated with dissimilarity values computed from
the real IKONOS imagery (upper right part), with the highest
correlations recorded when all bands are considered ( r2 = 0.98 for
MD, r2 = 0.99 for ML and r2 = 0.94 for FB).
 O
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Off-diagonal (inter-class) dissimilarities, when compared to
intra-class dissimilarities on the diagonal of Table 4, provide the
information of whether the forest types are ambiguous or
separable. For example, pine was found ambiguous with “r and
avocado forests using MD on all bands, whereas only pine and “r
forests were ambiguous with ML. Indeed, MD and ML dissim-
ilarities (all bands) for •pine…“r• are 0.3 and 0.121 (bottom left part
of the matrix), or 0.6 and 0.074 (upper right part of the matrix),
superior to “r intra-class dissimilarities 1.3 (MD) and 0.138 (ML),
respectively. Conversely, the “r and pine forests were separable (as
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Table 4
Ambiguity matrix for the pine, “r and avocado classes in the IKONOS Tancš t́aro image

The a priori performance of the three classi“ers (MD, ML, FB), mentioned in Table 3, is represented for real and DART-simulated IKONOS imagery. The diagonal of the matrix
(outlined rectangles) gives intra-class distances. The upper right part of the matrix gives dissimilarities between classes in the actual IKONOS im agery. The bottom left part of
the matrix gives dissimilarities between forest classes in the corresponding DART-simulated imagery.
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well as the other classes) for the FB classi“er, since off-diagonal
“gures 0.51 or 0.48 are larger than diagonal “gures 0.44 (pine
intra-class) and 0.40 (“r intra-class). BD expresses a distance
between multidimensional distributions assuming a Gaussian
shape (Kailath, 1967 ) while FBD, based on the density function,
relies on the actual values of the distribution, thereby re”ecting
dissimilarities with more robustness. Altogether, the same
ambiguity pattern was found, using all bands, among the three
classes present on the Tancš́taro image, whether using real IKONOS
or DART-derived dissimilarity values. This “nding, together with
the high correlation registered between IKONOS-based and DART-
based dissimilarities, provided some con“dence for extending the
ambiguity study among all six forest classes on a common,
simulated environment.

7.3. Ambiguities among all forest types in DART simulations

DART simulations of all forest plots were carried out in the
•Tancš́taro• setting (the natural setting of the pine, “r and avocado
classes).Table 5 shows mean re”ectance values for all simulations,
and one •ambiguity matrix• per classi“er. These matrices are
constructed the same way as Table 4, but they contain dissim-
ilarities calculated for all four bands only. Figures in shadowed
boxes indicate cases where classes are ambiguous (i.e., inter-class
dissimilarity is smaller than intra-class dissimilarity).

The oak forest and the secondary tropical forest were separable
from the other forest types by all classi“ers. In both cases, the stand
structure makes them appear clearly distinct from other forests.
The signal of the low LAI oak forest is largely in”uenced by the
understory condition, as illustrated by the mean visible and NIR
re”ectance values in Table 5, relatively distinct from values of
other forest types. Besides, a smooth canopy (see Fig. 8a) and very
high crown cover ( Table 1) characterize the secondary tropical
forest. The very reduced shadow area inferred by these character-
istics causes a bright signal compared to other forest canopies, as
illustrated, for example, by the elevated NIR mean re”ectance
(Table 5).

Most pairs involving other classes (“ve pairs in total), however,
are ambiguous for MD. In the four spectral bands considered, the
MD discrimination power in a 25 m window size appears to be
view
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limited to oak and secondary tropical forests. Instead, pine and
primary tropical forests are confounded with three other classes
each. The poor discrimination power of MD on quite distinct
forests is not surprising. Indeed, most studies focussed on forest
classi“cation do not rely on minimum distance between mean
pixel values, but instead on maximum likelihood (e.g. Wang et al.,
2004) or more sophisticated strategies (e.g. Magnussen et al.,
2004).

Neither MD nor ML could separate “r from pine forest. Besides
being both conifer forests for which no successful attempt of
classi“cation was found in the literature, the present pine and “r
forest stands possess close structural characteristics (relatively
similar CC and LAI; see Table 1). Moreover, “r and pine forest
stands are characterized by low to moderate LAI, which implies
that the understory, partially covered with brownish needle litter
in both cases, has a strong in”uence on the canopy re”ectance.
However, FB, due to its better sensitivity to forest stand structure,
could separate “r from pine forest. Finally, the avocado plantation
is confounded with the primary tropical forest for all classi“ers,
presumably because the re”ectance of both types of forest is
governed by a deep canopy and a similar shadow area.

7.4. Relating ambiguities to confusions in the NFI map assessment

With the purpose of understanding the role of an ambiguity
study in the context of real map production, we confronted the
ambiguity pattern with confusion estimates of the NFI map from a
previous study. Table 6 contains a confusion matrix extracted from
the accuracy assessment of the NFI map at community level over
three large areas (8306 km 2 in total, see Couturier et al., in press )
containing the 3 sites of this paper. Each forest stand in our
ambiguity study is included in a class of that matrix (for example,
the avocado plantation is included in the •Perennial Crop• class).

According to Table 6, major confusions did occur between pine
and perennial crop: the confused area summed up to 47.3 km 2

versus 100.9 km 2 of pine forests effectively mapped as pine. The
confusion was entirely observed in the Tancš t́aro area where 90% of
perennial crop is avocado plantation. This confusion actually
corresponds to an ambiguity between pine and avocado plantation
for MD ( Table 5). However, Table 5 also indicates that this pair of
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Table 5
Matrix of classi“er•s theoretical performance for all forest classes

This matrix is derived from DART images simulated with environmental parameters of the Tancš t́aro site. The matrix diagonal (bold) gives intra-class distances. The matrix
bottom left gives dissimilarities between DART and IKONOS forest classes, for the Tancš t́aro environmental conditions. Shadowed boxes represent cases where classes are
ambiguous (i.e., where inter-class dissimilarity value is smaller than intra-class dissimilarity value).

S. Couturier et al. / Forest Ecology and Management 257 (2009) 23…3734
Peer 

classes is separable using ML and FB on 4 m-IKONOS imagery. This
result could constitute an incentive towards diminishing NFI map
confusions using “ner resolution, eventually with ML or FB
classi“ers. According to Table 6, “r forests were somewhat
confounded with pine forests (1.2 km 2 confused area versus
11.2 km 2 of “r forest mapped as “r). The two classes were also
reported ambiguous using MD. The ambiguity is probably more
pronounced than the previous case since this time, only the FB
classi“er (and not ML) could separate the pair of class at 4 m-
resolution. The latter information might be interesting in the
perspective of improving the accuracy of the map on the reduced
area where “r forests occur.

Next, 9.4 km 2 of land was subject to a confusion between
secondary and primary tropical forest, against 55.7 km 2 of
correctly mapped secondary tropical forest. However, this pair
of classes seemed to cause no separability problem on the IKONOS
data (no ambiguity for any of the classi“ers). The structure of the
secondary forest stand studied in this paper has age-speci“c,
Table 6
NFI confusion matrix of six forest classes over three zones containing the study sites

Oak Pine Fir

Oak 86.04
Pine 1.89 100.88
Fir 0 1.16 11.17
Perennial crop 0.06 47.27 0
Tropical Secondary 0 0 0
Tropical primary 0 0.06 0

This matrix is derived from a confusion matrix ( Couturier et al., in press ) computed for
elements are given in km 2. Diagonal “gures aii show the total area of correctly mapped class
mapped as class j and where class j was wrongly mapped as class i.
eview

homogeneous characteristics compared to the variety of common
secondary forests patches, the most mature of which are certainly
more dif“cult to distinguish from primary forest. A limitation of
this method is therefore the correct representation of the diversity
within a class. For example, forest plots of various age successions
would be necessary to calculate secondary forest intra-class
variation. Besides, no confusion was recorded between secondary
tropical forests and other classes, coinciding with the null
ambiguity in our study, although anyways little interface existed
between secondary forest and those classes on the large area
where the map had been assessed.

Only a small confusion pattern was detected ( Table 6) between
perennial crop and primary tropical forest (11.8 km 2 of confused
area versus 337.2 km 2 of correctly mapped primary tropical
forest), whereas avocado plantation was systematically confused
with primary tropical forest in our experiment. Indeed, the NFI
confusion occurred in the region of Los Tuxtlas and concerned
shaded coffee or mango plantations and not avocado, so the results
 O
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Perennial crop Tropical secondary Tropical primary

348.04
0 55.69

11.84 9.35 337.19

an area (8306 km 2) that includes the study sites and contains 26 classes. Matrix
i. Off-diagonal “gures aij correspond to the sum of areas where class i was wrongly
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of our experiment cannot be applied to the Los Tuxtlas region, and
further work should concern shaded coffee or mango plantations.

A small confusion pattern was also detected between oak and
pine forests (1.9 km 2 confusion area versus 86.0 km 2 of oak forests)
whereas pine and oak forests are clearly separated in the ambiguity
study. In reality, oak forests, dominated by Q. deserticola, may occur
close to pine forests in the fringe between sub-humid temperate
and tropical dry climate zones. However, the interface between oak
and pine forests is certainly more abundant within the temperate
zone of the state of Michoaca´n, where the structure of oak forests
(taller and rounder crowns) and species dominance are very
distinct to the ones of the forest studied in this work, and probably
more prone to ambiguities with pine forests. Thus, the non-
ambiguity results from this study should not be generalized to the
entire •oak• forest type in the NFI classi“cation system; instead, this
experiment ought to be extended to oak stands situated in sub-
humid temperate conditions before concluding on a priori
classi“cation ambiguities of the forest inventory in that eco-zone.
The oak forest had very little interface with the remaining set of
classes on the map, resulting in null or almost null confusion with
these other classes.

A step further into the exploration of ambiguity patterns, also
possible with this methodology, would consist in modelling mixed
forests, characterized by the physiognomic dominance of both
conifers and broadleaf species, because mixed forest is also a major
forest class in the sub-humid temperate eco-zone.

8. Discussion

8.1. The database on forest ambiguities

This work aims at contributing to the following research
question: given a set of forest classes, which remote sensor and
automatic classi“cation technique are optimal to generate a
reasonably accurate map? The usual approach for forest mapping
with remote-sensing imagery is to directly apprehend inter-class
and intra-class signals from an image of the sensor at hand, and
test various classifying techniques using a set of reference “eld
data. A drawback of this approach is that any updating of the map
based on a new image involves repeating the tests and updating
the “eld data for veri“cation, because the new image is
characterized by new environmental conditions, or was taken
by a new sensor.

It is argued in this work that a database containing structural
properties of forests at plot scale could yield a systematic a priori
estimation of ambiguities between pairs of classes. This database
could constitute a useful management tool for forest mapping/
monitoring. Indeed, once validated, the modelling approach offers
predictive capabilities on new remote-sensing supports and
environmental conditions. However, for calibration purposes, this
method requires several optical measurements on the ground
(reference sites, soil and eventually leaf optical properties).
Commercial radio-spectrometers are usually available in the
visible…mid infrared spectral range, meaning that this method is
readily applicable only for this spectral range.

8.2. Field data collection and resolution issues

Due to the highly heterogeneous nature of forests, the 3D-
modelling approach we propose demands at “rst a wealth of
ground measurements, but then no repetition of such “eld data
should be needed to update results to future conditions. Typically,
high resolution (20…30 m) resolution imagery is widely used for
forest mapping. However, at such a resolution, an enormous
amount of crown-scale “eld data would have been needed, per
view
 O
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forest type, to directly compare simulated to real imagery in a
statistically meaningful way (for example, 50 Landsat pixels would
require the detailed survey of 4.5 ha!). Taking advantage of the
availability of very high resolution imagery (1…5 m resolution), this
work proposes to model re”ectance distribution of forests with
“eld data gathered from plot sizes typical of forest inventory
surveys (40 m � 40 m or 50 m � 50 m). Additionally, in the
estimation of intra-class variation, the modelling approach is
useful to minimize the collection of “eld data. For example, only CC
and LAI were measured on the reference parcels and no additional
detailed inventory was needed. Still, a limitation of the method
may be the reduced number of points from typical forest plot sizes,
for the construction of a histogram the suf“ciently representative
of a class. Indeed, the calculations of BD and FBD are based on the
intersection of histograms, e.g. the count of coinciding bins in the
feature space. If the histograms are constructed with a small
number of points (few “lled bins in the feature space), the
intersection of histograms may be underestimated. This limitation
is more sensitive for the construction of multidimensional
histograms, which requires more bins than a one-dimensional
histogram. Theoretically, the method could be applicable to
hyperspectral data with hyperspectral parametric classi“cation
techniques. However, the limited number of forest plot points
hinders histogram construction in the hyperspectral space.
Therefore, a pre-processing step for reducing the spectral
dimension of the imagery (e.g. principal component analysis)
would be recommendable in this case before using classi“ers
based on BD and FBD.

Although the texture of 1 m-resolution imagery is sometimes
used as an auxiliary band to improve discrimination of forests or
forest stand structures ( Wang et al., 2004; Colombo et al., 2003 ),
only the 4 m-resolution IKONOS data was retained in this study.
Indeed, the simplifying assumptions used in the DART model for
forest canopy (e.g. crowns modelled by ellipsoids) limited the
resemblance of DART-simulated imagery with real IKONOS
imagery at 1 m resolution; this phenomenon is especially visible
for primary tropical forest (see differences in the appearance of
emergent crowns between Fig. 9(e) and (f)). In fact, preliminary
tests demonstrated notable differences between “rst order texture
channels of simulated versus real imagery, which limited the
usefulness of our modelling approach at 1 m resolution. This
problem originates from the DART module that simulates 3D forest
covers, and not from the radiative transfer module that can work
with any 3D environment. In order to solve this problem, CESBIO is
developing an interface between the DART radiative transfer
module and a 3D model dedicated to the simulation of realistic
forest covers. In spite of this limitation, a result of this study is that
DART simulation could approach the 4 m real signal (multi-
spectral IKONOS image) more accurately than intra-class signal
variation, even for tropical forest stands ( Table 3).

8.3. Structural and optical properties of the forest

Inter-class dissimilarities were measured on both simulated
and real imagery and both quantities compared favourably
(Table 4). Intra-class variation was modelled for forest stand
structure on relatively ”at terrain, which implies that the
ambiguity results of this study only apply to forest classes on
relatively ”at terrain. The intra-class variation also compared
favourably to the intra-class variation that we observed on the
reference parcels (also on ”at terrain) of the real imagery.
However, classi“cation exercises on large areas with pronounced
relief are affected by more re”ectance variability than measured in
this study (greater intra-class variation), and subject to more
ambiguities among classes. Further research is under way to model
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and study the same forest types on steep terrain, since much of the
forest outside the plots investigated occurred on micro relief or
pronounced slopes, in which case the forest stand structure was
distinct. This additional work may open the way to a priori
ambiguity measures on the entire forest mass of the IKONOS
image. In this context, the DART model is useful because it can
operate on 3D landscapes with topography.

Optical properties of leaves, not available on existing databases,
were inferred from the imagery. We did not account for the fact
that leaf optical properties display spatial variations, even within
individual tree crowns. Moreover, we did not account for
horizontal variations of leaf volume density within individual
tree crowns. The radiative transfer module of DART can account for
these 3D variations. However, we could not measure them and,
thus, use this information in the DART simulations.

8.4. Type of classi“er

In spite of forest stands taxonomically very distinct, MD
performed poorly at distinguishing various class pairs for a 25 m
window size. For smaller window sizes, we attested that MD
performed worse due to a very large intra-class signal (forest
heterogeneity); however, for bigger window sizes, intra-class
mean value variation is smaller and MD would probably have
performed equal or better, although this implies mapping at
coarser resolutions. Indeed, many forest classi“cation studies
recommend to low pass “lter the high resolution (20…30 m)
imagery prior to classi“cation; for example, in recent studies,
Salovaara et al. (2005) smoothened the Landsat image with a 5 � 5
pixel window (i.e., 150 m � 150 m), and Arroyo-Mora et al. (2005)
smoothened it with a 3 � 3 pixel window (i.e., 90 m � 90 m).
Reaching these window sizes with our approach is possible, but
requires the survey of larger plots, and the integration of scenarios
with uneven topography.

Only two cases were ambiguous using the ML classi“er versus
“ve cases using MD. This study con“rms ML, which takes into
account the pixel value distribution across bands, as a reasonably
good classi“er of forests on multi-spectral IKONOS imagery. This
was illustrated by Wang et al. (2004) on taxonomically close
forests. When the re”ectance distribution deviates too much from
normality, FB classi“er might reduce ambiguities found using ML.
An example in this study may have been the “r forest, whose NIR
re”ectance distribution tends to deviate from normality ( Fig. 10c),
and was confounded with pine forest using ML whereas the pair of
classes was separable using FB.

8.5. Scaling up to confusions in the NFI map

Some ambiguity results may have given insights on possible
causes for confusions in the NFI map, as reported in the previous
section. These insights, however, have to be placed in their context
since this study presents cases of automatic classi“cation applied
to a reduced set of spectral bands, as compared to those of the
Landsat sensor, support of the NFI map production. The
classi“cation strategy for NFI map production relied on visual
interpretation of Landsat colour composites printed at scale
1:125,000 (see Mas et al., 2002). The visual classi“cation, because
of synoptic abilities of the human eye, is certainly more successful
than MD applied to the four IKONOS bands, which only correspond
to the Blue, Green, Red and NIR Landsat bands. Another limitation
to this comparison exercise is the necessary information on other
possible sources of errors in the map such as geometric or scale-
induced.

Besides, as evident from the confrontation of ambiguity and
confusion matrices, many classes of this pilot study are not
R
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comparable to the classes at community level of the NFI map, in the
sense that they are contained in taxonomically larger classes.
Surveys need to be done in all forest stands representative of the
forest class on the map, before the ambiguity study may apply to
the entire class. In this sense, a limitation of this approach, apart
from shortcomings of the model itself in approximating real forest
imagery, is that a certain amount of sample forest stands is needed
before the database can serve as a performance test for an entire
classi“cation system.

However, the exercise can virtually be extended to any user-
de“ned forest class (whether physiognomic, taxonomic or crown
coverage-de“ned). An advantage of this method is that the
database bene“ts cumulatively from any additional input of
classes. Additional input in the database improves the accuracy of
the estimates and/or the extent of its applicability to new forest
classes, whereas the sum of previous empirically based classi“ca-
tion methods hardly tells about the outcome of a classi“cation in a
new setting with a new remote sensor.

9. Conclusion

This research sets a model-based methodology for studying
ambiguity patterns among forest types on satellite imagery. The
methodology was applied to multi-spectral IKONOS imagery on six
forest stands pertaining to community level classes of the Mexican
National Forest Inventory. First, the DART model was successfully
tested against the real IKONOS image on each forest plot in the
sense that the dissimilarity between DART and IKONOS images
was found within intra-class variation in the six forest types.
Consequently, DART was used as a proxy for IKONOS imagery in
order to estimate ambiguity among all forest classes.

As expected, a poor discrimination power was usually observed
with MD for a 25 m window size. This is coherent with the fact that
the minimum distance strategy, confronted with very high intra-
class variations, is not used for forest classi“cation but rather for
more general land cover classi“cation. Instead, in most cases, the
distinct forest types were found separable by the ML and FB
classi“ers.

Low LAI oak forests appeared very dissimilar to other forests
owing to the strong understory in”uence on the re”ectance. The
secondary tropical forest stand appeared very bright with respect
to other forests because of its smooth canopy and absence of gaps.
The plots of pine and “r forests were ambiguous for MD and ML on
real IKONOS imagery. However, the FB classi“er, probably because
it better accounts for the re”ectance value distribution, could
separate both forests. Conversely, avocado plantation and primary
tropical forest were ambiguous for all classi“ers, presumably
because their re”ectance is governed by a deep canopy and a
similar shadow area.

The confrontation of these results with the accuracy assessment
of the NFI map stressed the need to extend the approach to more
forest stands in the perspective of testing the classi“cation scheme
of the NFI. Some practical limitations of the approach are related to
the dif“culty in modelling very high resolution imagery and in
incorporating the complexity of optical properties. However,
improvements are technically feasible and under development.
The methodology described is readily applicable to multi-spectral
imagery in the visible…mid infrared range.

Considering the above, this methodology is to be extended to
other forest stands, and the results are to be compared with
classi“cation accuracy results on satellite imagery. The perspective
of this research is to predict confusions in forest maps, in function
of the type of classi“er and the taxonomic resolution of the map. In
this sense, 3D modeling could be a valuable management tool for
better assessing the expected accuracy of automatic classi“cation
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of forest types of interest, as a function of the characteristics of the
remote-sensing system and of the experimental con“guration of
the image acquisition. Consequently, it could be of help in the
decision process related to buying satellite imagery and/or
classi“cation software.
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