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A B S T R A C T

This work provides a description of the research conducted to assess methods for the discrimination
between irrigated and rainfed open-tree canopies using advanced spaceborne thermal emission and
re”ection radiometer (ASTER) satellite imagery and discrete anisotropic radiative transfer (DART)
radiative transfer 3D simulation model. Summer and winter ASTER images were acquired over a study
area in southern Spain during a 6-year period. A total of 1076 olive orchards were monitored in this area,
gathering the “eld location, “eld area, tree density, and whether the “eld was drip irrigated or rainfed.
Surface temperature images from ASTER were estimated using the temperature and emissivity
separation (TES) method. A panchromatic ortho-recti“ed imagery dataset collected over the entire area
at 0.5 m resolution was used to estimate orchard vegetation cover for each “eld. Results for summer
ASTER thermal images showed differences between irrigated and rainfed orchards of up to 2 K for “elds
with the same percentage cover, decreasing the differences in ASTER winter images. An approach based
on a cumulative index using temperature and the normalized difference vegetation index (NDVI)
information for the 6-year ASTER time-series was capable of detecting differences between irrigated and
rainfed open-canopy orchards, obtaining 80% success on “eld-to-“eld assessments. The method
considered that irrigated orchards with equal vegetation cover would yield lower temperature and NDVI
than rainfed orchards; an overall accuracy of 75% and a kappa ( k) of 0.34 was obtained with a supervised
classi“cation method using visible, near infrared and temperature information for the 6-year ASTER
imagery series. These experimental ASTER results were con“rmed with DART radiative transfer 3D
model used to simulate the in”uence of vegetation cover, leaf area index (LAI) and background
temperature on the irrigated and rainfed orchard temperature at the ASTER pixel size.
v � 2008 Elsevier B.V. All rights reserved.
1. Introduction

Understanding crop water relations is critical for the application
of optimum management practices to obtain maximum productiv-
ity levels. In particular, the accurate and timely detection of crop
water stress is a key factor for water management purposes and
water supply requirements ( Fereres and Soriano, 2007). In addition
to water stress detection, which is linked to the leaf water potential,
the estimation of vegetation water content from remote sensing
imagery has important implications in forestry ( Gao and Goetz,
1995), it is essential for drought assessment ( Pen� uelas et al., 1993),
* Corresponding author. Tel.: +34 957 499 280/676 954 937;
fax: +34 957 499 252.
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iew
 O

nly

and it is a major driver in predicting “re risk ( Chandler et al., 1983;
Pyne et al., 1996; Ustin et al., 1998 ).

The use of temperature to detect crop water stress ( Idso et al.,
1981; Jackson et al., 1981, 1977 ) has been widely studied, mainly
using infrared thermal sensors on herbaceous crops. Later, some
studies focused in the combination of surface temperature and
vegetation indices toaccount forcanopystructuraleffects,proposing
the water de“cit index (WDI) ( Moran et al., 1994 ) for water stress
detection, or the temperature…vegetation dryness index (TVDI)
(Sandholt et al., 2002 ) to provide information of vegetation and soil
moisture conditions at regional scale. Recently, work by Sepulcre-
Cantó et al. (2006, 2007) proved the capability of high resolution
(2 m) airborne thermal remote sensing imagery to detect water
stress in orchard canopies, assessing the potential application of
water stress detection methods to thermal advanced spaceborne
thermal emission and re”ection radiometer (ASTER) imagery. The
study demonstrated the feasibility for mapping airborne-estimated
crowntemperatureminusair temperature ( Tc � Ta)asan indicatorof
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crown stem water potential and conductance in open-canopy crops
(olive and peach trees) grown under regulated de“cit irrigation. In
particular, high-resolution thermal imagery was capable of identify-
ing individual trees under different transpiration levels, yielding up
to 5 K difference as detected by the airborne hyperspectral scanner
(AHS) thermal sensor.

These results were particularly important because the remote
detection of water stress in open canopies poses additional
complexity due to pixel-level effects from direct soil and shadow
components. In addition, orchard crops are planted in varying grid
patterns, therefore resulting in different vegetation coverage levels
that affect both vegetation indices (i.e. NDVI) and effective
temperature ( T) as a function of each scene component. In a
simulation study, Sepulcre-Cantó et al. (2007) assessed the
applicability of the method to medium-resolution sensors,
demonstrating the potential detection of water stress levels in
open canopies with ASTER thermal imagery. The issue of mixed
pixels from background and shadow components have also
important implications in empirical and single-source energy
balance ET estimation models. SEBAL (Bastiaanssen et al., 1998) or
METRIC (Allen et al., 2005 ) models use NDVI and T as inputs,
potentially leading to erroneous ET estimates due to large T � Ta

values (in the order of 15…20 K) which in fact represent only 2…3 K
Tc � Ta (crown temperature minus air temperature) differences.
These previous studies conducted with high and medium
resolution thermal imagery (airborne and satellite scales) suggest
that pure-crown temperature can be used to monitor crown
transpiration levels and, as a result, potentially useful for
discriminating irrigation management practices. Nevertheless,
previous attempts to discriminate between irrigated and rainfed
“elds for land classi“cation purposes were based on leaf area index
(LAI) (NDVI) trends ( Mo et al., 2005; Ines and Honda, 2005 ),
obtaining information at sub-pixel level from medium and low
spatial resolution imagery. Other studies have used the relation-
ship between Tc and NDVI (reviewed by Kustas and Norman
(1996) ) proving the capability of combining the thermal and the
vegetation index NDVI for evapotranspiration estimation. Never-
theless, these methods that successfully discriminated irrigated
from rainfed herbaceous crops may not be suitable for some
perennial canopies, both natural vegetation and agricultural crops,
where changes in structure as function of water availability are
very slow, not visually detectable, and the pixel is generally mixed
with scene components.

Therefore, further studies are needed to account for scene
components when monitoring non-homogeneous canopies in order
to understand the canopy architecture and soil effects. Three-
dimensional (3D) radiative transfer models enable the simulation of
tree orchards accounting for each single scene component,
separating pure vegetation, soil and shadows ( Zarco-Tejada et al.,
2004; Suárez etal., 2007).Nevertheless,such3Dmodelling approach
for open canopies is rare in the thermal domain due to limited
theoretical models available. The discrete anisotropic radiative
transfer model (DART) ( Gastellu-Etchegorry et al., 1996 ) was
developed at “rst for the short-wavedomain, being successfully
tested against re”ectance measurements ( Gastellu-Etchegorry et al.,
1999) and applied to obtain forest canopy chemistry from remote
sensing data (Gastellu-Etchegorry and Bruniquel-Pinel, 2001 ).
Current DART model capability includes the thermal domain
(Guillevic et al., 2003 ), simulating the propagation and the
interactions within the canopy three-dimensional architecture of
thermal infrared (TIR) radiation emitted by the cover components or
incoming from the atmosphere.

This manuscript makes progress on assessing methods for the
discrimination of irrigated and rainfed tree orchards, combining
vegetation indices and thermal information obtained from ASTER
imagery. A radiative transfer simulation conducted with DART
ew
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model is used to simulate open orchards scenes, assessing the
effects of the vegetation cover, crown LAI and background
temperature on the canopy temperature used for discriminating
between irrigated and rainfed orchards.

2. Materials and methods

2.1. Study site description

The experimental study was conducted in a 60 km � 60 km
area in southern Spain (37 8180N, 48420W). The climate of the area is
Mediterranean with an average annual rainfall of 447 mm,
concentrated from autumn to spring, and a reference annual
evapotranspiration (ETo) of 1246 mm. The area is located at 500 m
altitude above sea level and generally ”at. In this study area, 1076
olive orchards ( Olea europaea L.) with different planting grid
densities, and generally with bare soil between rows, were
monitored between 2000 and 2006 years. The maximum slope
observed for all “elds used in this study was 28 8, while the mean
slope for all the olive orchards was 8 8. A total of 134 olive orchards
were irrigated using drip irrigation methods, and 942 olive
orchards were non-irrigated ( Fig. 1). Detailed information from
the 1076 orchard “elds monitored between 2000 and 2006 was
obtained to conduct a large validation study, including “eld
locations, “eld area, tree density, and irrigation type for each
individual “eld over the 6-year period. An assessment conducted
to study the relationship between orchard temperature and slope
and geographical location indicated no statistic signi“cance for
such parameters, therefore not considering slope or orientation in
further analyses in this study.

2.2. ASTER imagery and auxiliary datasets

Imagery of the study area was acquired with the ASTER, one of
the 5 instruments onboard TERRA satellite launched by NASA in
1999. The sensor has 3 spectral bands in the visible near-infrared
(VNIR), 6 bands in the short-wave-infrared (SWIR), and 5 bands in
the TIR regions, with 15, 30, and 90 m ground resolution
respectively. The images acquired over the 6-year period for this
study between 2000 and 2006 years included both summer and
winter satellite acquisitions. The images were acquired at
11:30 GMT, corresponding to 13:30 and 12:30 h local time for
summer and winter, respectively. Meteorological data including
air temperature for the date and time of each image acquisition
were obtained from an automated meteorological station located
within 30 km from the study area. These data were considered
constant for all the study “elds due to the generally ”at area part of
this study.

ASTER Level-1A imagery was processed applying radiometric
and atmospheric correction methods. Radiometric coef“cients and
geolocation data were applied to obtain Level-1B imagery. At-
sensor radiance was converted into top-of-atmosphere (TOA)
re”ectance using Eq. (1) (Chander and Markham, 2003 ):

r P ¼
P Ll d2

ESUNl cosuS
(1)

where r P is the re”ectance, Ll the at-sensor spectral radiance, d the
earth-sun distance in astronomical units obtained from the
astronomical ephemeredes, ESUNl the mean solar exoatmospheric
irradiance, and uSis the solar zenith angle in degrees. ESUN l values
were obtained from the extraterrestrial solar spectrum (nekwur) of
the MODTRAN radiative transfer model ( Berstein and Roberston,
1989) “ltered for the VNIR ASTER bands. Atmospheric correction
was conducted using MODTRAN and water vapor data acquired
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Fig. 1. (a) Image of the study area (37 8180N, 48420W) acquired on 21 September
2005 with ASTER sensor. The irrigated olive “elds are in blue color and the rainfed
olive “elds in red color; (b) close up of the study area shows a “eld selection of the
experiment.

Fig. 2. Relationships obtained between land surface temperature (TES method)
from L1a images and ASTER temperature standard product (AST-08) for (a) 12
March 2001 image and (b) 22 June 2001.

G. Sepulcre-Cantóet al. / Agricultural and Forest Meteorology 149 (2009) 962…975964
from the Aerosol Robotic Network (AERONET) station located
170 km from the study area.

Thermal bands were used for the retrieval of land surface
temperature using the temperature and emissivity separation
(TES) method (Gillespie et al., 1998 ). Two ASTER Temperature
Standard Products (AST-08) scenes, summer and winter, were used
to validate the retrieval of surface temperature from L1a products
using the TES method for the rest of the ASTER dataset where AST-
08 data were not available ( Fig. 2). The determination coef“cients
obtained were r2 = 0.99 for 2001 image ( Fig. 2a) and r2 = 0.87 for
June 2001 image (Fig. 2b), being the standard deviations obtained
0.1 K (March 2001) and 1.4 K (June 2001). Although Ts differences
obtained between AST-08 and L1a calibration method for summer
were 1.4 K for the entire scene, the comparison conducted for both
scenes suggested a validity of the method used to estimate Ts using
the TES method from the full database of L1a ASTER imagery used
in this study.

Geographical location and identi“cation for each study “eld
were conducted by means of a vector map of the area using ArcGIS
software (Environmental Systems Research Institute, Inc. (ESRI),
USA) to extract image data for each individual orchard “eld under
study. To avoid inaccuracies due to the different spatial resolutions
for both ASTER imagery and the vector map, crop “eld attributes
were extracted only from vectors overlapping at least 70% over an
ASTER pixel. Vector intersection with the ASTER GRID dataset was
conducted, removing pixels with intersected areas lower than 70%.
This approach was conducted individually for each crop “eld,
removing a total of 300 orchards crop “elds smaller than the
90 m � 90 m ASTER pixel.

Due to the large heterogeneity found among orchards, with
different planting grids, vegetation cover and LAI for each “eld, a
criterion to compare “eld temperature among orchards was
needed. Comparison between “elds was conducted as function of
crop cover percentage levels, therefore aiming at assessing the
feasibility of detecting irrigated/rainfed “elds with comparable soil
and vegetation cover. Percentage vegetation cover was estimated
for each “eld using the 0.5 m panchromatic ortho-recti“ed
imagery collected over the entire area of study ( Junta de Andalucš́a,
2005). The Interactive Data Language software (IDL) (ITT Corpora-
tion, NY, USA) was used to conduct an isodata classi“cation ( Tou
and Gonzalez, 1974) on each single orchard, enabling the
separation between soil and pure crown pixels ( Fig. 3a…d). This
methodology enabled the correct identi“cation of pure tree crowns
for each “eld under study, despite the different planting patterns.
Fig. 3e and f shows the orthophotos acquired over the three
orchard “elds with different “eld size, soil color, planting pattern
and percentage vegetation cover, showing the ASTER 10.657 mm
band (Band 13) acquired over the same “elds.

Optical indices related to vegetation structure and condition
(Zarco-Tejada et al., 2005) (Table 1) were used to study their
potential to detect the effects of the irrigation type, including NDVI
(Rouse et al., 1974), greenness index ( G), MTVI1 (Haboudane et al.,
2004), MCARI1 (Haboudane et al., 2004 ), MTVI2 (Haboudane et al.,
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Fig. 3. Orthophotos acquired over three olive orchards with 51% (a) and 23% (b) percentage cover, showing the isodata classi“cation results (c and d) and the c orresponding
ASTER image (10.657mm band) (e and f).

Table 1
Vegetation indices used in this study.

Vegetation index Equation Reference

Normalized difference vegetation index (NDVI) NDVI = ( RNIR � Rred)/( RNIR + Rred) Rouse et al. (1974)
Modi“ed triangular vegetation index (MTVI 1) MTVI1 = 1.2 � [1.2 � (R800 � R550) � 2.5 � (R670 � R550)] Haboudane et al. (2004)

Modi“ed triangular vegetation index (MTVI 2) MTVI 2 ¼ 1:5�½1:2�ð R800 � R550 Þ� 2:5�ð R670 � R550 Þ���������������������������������������������������������
ð2� R800 þ 1Þ2 �ð 6� R800 � 5�

��������
R670

pp
Þ� 0:5

Haboudane et al. (2004)

Greenness index (G) G= R554/R677 …

Improved SAVI with self-adjustment factor L (MSAVI) MSAVI ¼ 1
2 ½2 � R800 þ 1 �

���������������������������������������������������������������������������
ð2 � R800 þ 1Þ2 � 8 � ð R800 � R670 Þ

q
� Qi et al. (1994)

Optimized soil-adjusted vegetation index (OSAVI) OSAVI = (1 + 0.16) � (R800 � R670)/( R800 + R670 + 0.16) Rondeaux et al. (1996)
Modi“ed chlorophyll absorption in re”ectance index (MCARI 1) MCARI1 = 1.2 � [2.5 � (R800 � R670) � 1.3 � (R800 � R550)] Haboudane et al. (2004)

Modi“ed chlorophyll absorption in re”ectance index (MCARI 2) MCARI2 ¼ 1:5�½2:5�ð R800 � R670 Þ� 1:3�ð R800 � R550 Þ���������������������������������������������������������
ð2� R800 þ 1Þ2 �ð 6� R800 � 5�

��������
R670

pp
Þ� 0:5

Haboudane et al. (2004)
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2004), MCARI2 (Haboudane et al., 2004 ), MSAVI (Qi et al., 1994 ),
and OSAVI (Rondeaux et al., 1996). These indices were calculated
using the visible and near-infrared ASTER bands acquired over the
same study sites in order to assess structural changes potentially
caused by the irrigation type for each orchard “eld under study.
Therefore, orchards were assessed for both surface temperature
and structural vegetation indices over the 6 years.

2.3. ASTER data analysis

The mean “eld temperature was obtained from ASTER imagery
as function of crop cover percentage intervals ranging between 15%
and 55%, assessing temperature differences for irrigated and
rainfed orchards under similar vegetation cover levels. The “eld-to-
“eld comparison considered a ••success case•• when an irrigated
orchard yielded lower temperature and higher vegetation index
(i.e. NDVI) than non-irrigated orchard under the same vegetation
cover. Therefore, the fact under study claims that drip irrigated
orchards yield lower crown temperature due to increased canopy
conductance, and normally higher LAI, assuming similar vegeta-
tion cover within the ASTER pixel and similar soil temperature. In
addition to “eld-to-“eld temperature comparisons conducted for
all “elds under the same vegetation cover level, the method was
also conducted on orchards with the same NDVI and vegetation
cover. This additional restriction was imposed to assess the
feasibility of canopy temperature to detect thermal effects
associated with “eld irrigation type independently from LAI
effects.

A time-series cumulative index comprising ASTER orchard
temperature minus air temperature ( T � Ta) and NDVI was also
assessed, adding the (T � Ta)/NDVI information for the 6-year
ASTER imagery. The ratio (T � Ta)/NDVI stresses the behavior of
T � Ta and vegetation density as function of the irrigation type (i.e.
Fig. 4. (a) Mahalanobis distance classi“cation conducted with the 6-year imagery
series obtaining two classes: irrigated class (blue) and rainfed class (orange).
Training irrigated orchards are shown in blue, and rainfed training orchards in red;
(b) zoom of a particular classi“cation image area.
w
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irrigated/rainfed). The fact under study is that ( T � Ta) is lower for
irrigated orchards, while NDVI is higher due to more leaf area
density. Combining thermal information with a vegetation index
has been used in previously studies, showing that the slope of Ts/
NDVI curve has been related to soil moisture ( Goetz, 1997),
stomatal conductance and evapotranspiration ( Nemani and
Running, 1989 ). The 6-year ASTER imagery database was used
to compute the cumulative 6-year indices for each crop “eld,
including T, NDVI and (T � Ta)/NDVI.

A supervised Mahalanobis distance classi“cation was con-
ducted using a summer ASTER image (6 July 2006), and the 6-year
temporal ASTER series, using temperature, visible and near
infrared bands to obtain two classes, irrigated and rainfed “elds.
Half of the irrigated and rainfed orchards were not considered to
conduct the classi“cation procedure, being used later for the
validation of the results ( Fig. 4), obtaining the confusion matrix.
The same number of training and validation orchards was chosen
for each vegetation cover.

The confusion matrix analysis enables the assessment of the
accuracy as: (i) producer•s accuracy, 1-(omission error), where
omission error is the probability that the correct assignment is
omitted for a particular pixel; (ii) user•s accuracy, the number of
pixels correctly mapped as this class in the image, including class
overmapping due to commission errors (the probability that a
particular class is assigned to the wrong pixel); and (iii) overall
accuracy which is the number of pixels classi“ed correctly dividing
by the total number of pixels. The kappa coef“cient ( k), gives an
overall accuracy assessment for the classi“cation based on all
classes commission and omission errors ( Richards, 1994). The
kappa coef“cients generally range between +1 and � 1. A value of 1
indicates perfect agreement, a value of 0 indicates agreement
purely by chance, and negatively values indicate less agreement
than expected by chance alone.
ly

Fig. 5. 3D scene simulation of an olive grove using DART model: (a) front view and
(b) nadir view.
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2.4. Simulation with DART radiative transfer model in the thermal
domain

The radiative transfer model DART was used to simulate 3D
scenes of olive groves to study the effects of different components
(soil, vegetation and shadows) on the effective (pixel) temperature.
DART can operate simulating re”ectance or temperature, combin-
ing the ray tracing and the discrete ordinate methods. DART is
designed to simulate different landscapes, comprising forest
scenes with different tree types and scene components. DART
uses a 3D matrix of cells containing the turbid material for
simulating vegetation, and the opaque material for simulating
surfaces such as ground, urban elements or trunks.

The inputs required for thermal DART simulations in this study
were: (i) viewing geometry input parameters, including the azimuth
and zenith solar angles; (ii) re”ectance, maximum and minimum
temperature of the different scene components (leaf, truck and soil)
and leaf optical properties; (iii) structural parameters: cell and scene
dimensions, number of trees in the scene, architecture of the trunk
and the crown, and the spatial distribution of the trees. The output of
 vie

Fig. 6. Thermal images simulated with DART model for an olive orchard used in the study
obtained with the airborne AHS sensor at (b) 7:30 GMT, (d) 9:30 GMT, and (f) 12:30 GMT
the model is a 3D brightness temperature image. Fig. 5 shows an
exampleofa 3Dscene simulatinganorchard witha typicalpattern of
an irrigated olive grove.

An assessment of DART model for simulating scenes of open
tree orchards was conducted using diurnal airborne imagery
acquired as part of the 2005 airborne campaign with the AHS
(Sepulcre-Cantó et al., 2006; Sobrino et al., 2006 ). The AHS thermal
imagery was acquired at 7:30, 9:30 and 12:30 GMT on 25 July 2005
over an olive orchard under different irrigation treatments applied
in blocks of 12 trees where three drip irrigation treatments were
randomly applied covering: (i) 100% ET (well irrigated treatment,
R); (ii) 25% ET (de“cit treatment, S1); and (iii) 25% ET applied
intermittently, with 43% ET from 14 June to 5 July and from 6
September to 19 October, stopping irrigation from 5 July to 6
September (de“cit treatment, S2) (detailed information about the
irrigation methods, and “eld and airborne data collection can be
found in Sepulcre-Cantó et al. (2006) . At each airborne ”ight time,
air temperature, shaded and sunlit soil temperature, as well as
pure crown temperature for trees under different irrigation
treatments were monitored with a ground based Vaisala Weather

w
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simulating: (a) 7:30 GMT, (c) 9:30 GMT, and (e) 12:30 GMT. Thermal images
on 25 July 2005.
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Fig. 7. Relationships obtained between DART-simulated temperature and thermal
imagery acquired with the AHS sensor aggregated for the treatment blocks of the
orchard used in the study at (a) 7:30 GMT; (b) 9:30 GMT, and (c) 12:30 GMT on 25
July 2005.

Fig. 8. Thermal images simulated with DART model for an olive orchard with (a)
15%, (b) 35%, and (c) 55% percentage cover.
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Transmitter (model WXT510, Vaisala Oyj, Helsinki, Finland) and
IRTS infrared thermal sensors (model IRTS-P, Apogee, UT, USA).
DART scenes for each AHS airborne overpass in the solar plane
were computed, simulating the orchard temperature correspond-
ing to each irrigation treatment block using model inputs from
“eld IRTS instruments ( Fig. 6). Azimuth and solar zenith angles for
the ”ight times 7:30, 9:30 and 12:30 GMT on 25 July 2005 were
used, as well as LAI and structural olive orchard measurements
conducted in the “eld. Leaf optical parameters were set to those
reported in Zarco-Tejada et al. (2004) . Temperature of each scene
component (sunlit soil, shadows and vegetation) obtained with the
IRT sensors at each ”ight time was used. DART brightness
temperature was obtained in monospectral mode for the default
band comprising from 10 to 10.2 mm, running the model without
atmospheric simulation. AHS brightness temperature was
obtained for the 75 band (9.8…10.2 mm), applying atmospheric
correction to at-sensor information obtaining brightness surface
temperature. Fig. 7 shows the relationship obtained between
irrigation treatment block temperatures (effective temperature
including crowns soil and shadows) simulated with DART model
from external inputs acquired in the “eld, and those obtained with
the AHS sensor for the three over”ight times, obtaining RMSE
values of 0.4, 0.9 and 0.9 K at 7:30, 9:30 and 12:30 GMT,
respectively. The external inputs were mean values of leave
temperatures, sunlit and shadow soil temperatures, tree LAI and
tree volume. These results demonstrated the capability of DART
model to aggregate scene components in open-canopy crops, a
critical objective required for this study. A sensitivity analysis was
conducted to assess the effects of scene components on the pixel
temperature for different canopies. The effects of DART inputs on
the potential differences expected between rainfed and irrigated
olive orchards were assessed. The modelling study consisted on
simulating orchards with varying percentage vegetation cover,
crown LAI and soil temperatures, assessing the effects of crown
temperature changes as a function of irrigation type on the
aggregated pixel temperature that would be acquired by ASTER.
Temperature differences between rainfed and irrigated leaves
(Tlr � Tli ) were varied from 3 to 5 K; those values were based on the
observed datasets acquired over the 2 years with IRTS-P thermal
sensors installed over olive trees. Different vegetation cover levels
were obtained on these series of examples, varying the number of
trees in the scene and the inter-distance between trees (grid
pattern). Fig. 8 shows simulated nadir thermal images for an olive
orchard with LAI = 3 and 15% ( Fig. 8a), 35% (Fig. 8b) and 55%
(Fig. 8c) percentage cover. Azimuth and solar zenith angles for the
ASTER overpass time (11:30 GMT) on 6 July 2006 were used. Trunk
temperature was “xed as the air temperature, and the mean soil
and leaf temperature were set to the one measured on the same
day in the experimental study described earlier. Leaf temperatures
were assumed constant for each crown, and re”ectance and
transmittance were assumed those given by the model for thermal
domain. The DART model was run in monospectral mode with a
single band from 10 to 10.2 mm obtaining image brightness



Table 2
Nominal values and range of parameters used for the olive grove DART simulation
study.

Direction input parameters Nominal values and range

Sun zenit angle ( 8) 165.4
Sun azimut angle ( 8) 184.7

Scattering properties and temperatures
Trunk re”ectance 0.03
Trunk Tmin (K) 305
Trunk Tmax (K) 305
Soil re”ectance 0.05
Soil Tmin (K) 212…324
Soil Tmax (K) 322…334
Leaf dimension (m) 0.01
Leaf adaxial re”ectance 0.01
Leaf abaxial re”ectance 0.01
Leaf transmitance 0.01
Leaf Tmin (K) 306…311
Leaf Tmax (K) 306…311

Structural parameters
Cell dimensions ( x, y, z) (m) 0.5
Scene dimensions (x, y) (m) 90
Number of trees 64…224
Mean trunk height below crown (m) 1
Trunk height within crown (m) 1
Trunk diameter within the tree crown (m) 1
Mean trunk diameter below crown (m) 1
Crown height (m) 5
LAI 1…6
Inter-trees distance (d x) (m) 8…11
Inter-trees distance (d y) (m) 8…11
Crown ellipsoid “rst axis (m) 5
Crown ellipsoid second axis (m) 5
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temperature as output. Table 2 shows the nominal values used for
different inputs required to build the 3D scenes with DART
simulations, as well as the range interval for the parameters used
in the analysis conducted in this study.

Finally, a simulation study was conducted to assess the
relationships between crown temperature and pixel temperature
in summer and winter. The objective was to assess the offset found
between pixel temperature (aggregated information from vegeta-
tion and shaded/sunlit soil) and crown temperature (pure crowns)
as function of percentage cover. Crown temperature minus air
temperature ( Tc � Ta) was varied between 1 and 5 K in summer,
and between � 2 and 2 K in winter, as observed on datasets
acquired over 2 years with IRTS-P thermal sensors installed over
olive trees. Soil temperature minus air temperature ( Tsoil � Ta) was
obtained at 11:30 GMT (time of ASTER overpass) from the study
site where thermal sensors were permanently installed. Table 3
shows the nominal values and range used in the simulation study.

3. Results

3.1. ASTER temperature analysis for discriminating irrigated and
rainfed orchards

Mean orchard temperature for different crop cover percentage
intervals showed differences between irrigated and rainfed “elds
(Fig. 9). The assessment was conducted for winter and summer
images to study the crop temperature differences at the time of
maximum and minimum seasonal water availability. Irrigated
orchards in summer showed lower temperature values than
rainfed orchard “elds under the same percentage cover, while
winter analysis showed smaller temperature differences poten-
tially due to equal transpiration levels. Temperature differences
between irrigated and rainfed orchards in summer yielded up to
2 K for orchards with percentage cover ranging between 20% and
30% (Fig. 9a and b). Comparable results were found in summer: on
21 September 2005 and 6 July 2006 ASTER images. Fig. 9c and d
shows that mean temperature differences almost disappear for
winter images (12 December 2000 and 2 January 2002), even
existing an inversion of relationship. This is an important “nding
considering the large effects of bare soil temperature typical of
open canopies on the ASTER pixel size. Additionally, drip irrigation
methods used in the “elds under study would not wet the soil
observed in the aggregated ASTER pixel. Consistently, “elds with
view

Fig. 9. Mean ASTER temperature as function of percentage cover for irrigated olive orchards (
(b) 6 July 2006 image, (c) 12 December 2000 image and (d) 2 January 2002 image.
lower percentage cover in summer showed higher temperature
values for both irrigated and rainfed orchards due to the soil
in”uence. Differences between soil and olive tree temperature
yielded up to 20 K ( Sepulcre-Cantó et al., 2006), therefore causing
large effects on canopy temperature for pixels with a low
percentage cover.

As described, irrigated orchards generally showed lower
temperatures than rainfed orchard “elds for the same percentage
cover except in winter. However, the same percentage cover could
lead to differences in vegetation densities, as it would be expected
on irrigated orchards that generally yield higher leaf area densities
 O
nly

grey line) and rainfed olive orchards (black line) on (a) 21 Sept ember 2005 image,



Table 3
Nominal values and range of parameters used for the comparison between Tc and
Tpixel DART simulation study.

Direction input parameters Nominal values and range

Summer
simulation

Winter
simulation

Sun zenit angle ( 8) 165.4 119
Sun azimut angle ( 8) 184.7 168

Scattering properties and temperatures
Trunk re”ectance 0.03 0.03
Trunk Tmin (K) 301.45 287.75
Trunk Tmax (K) 301.45 287.75
Soil re”ectance 0.05 0.05
Soil Tmin (K) 320.45 283.55
Soil Tmax (K) 330.45 293.55
Leaf dimension (m) 0.01 0.01
Leaf adaxial re”ectance 0.01 0.01
Leaf abaxial re”ectance 0.01 0.01
Leaf transmitance 0.01 0.01
Leaf Tmin (K) 302.45…306.45 285.75…289.75
Leaf Tmax (K) 302.45…306.45 285.75…289.75

Structural parameters
Cell dimensions ( x, y, z) (m) 0.5 0.5
Scene dimensions (x, y) (m) 90 90
Number of trees 64…186 64…186
Mean trunk height below

crown (m)
1 1

Trunk height within crown (m) 1 1
Trunk diameter within the tree

crown (m)
1 1

Mean trunk diameter below crown (m) 1 1
Crown height (m) 5 5
LAI 2 2
Inter-trees distance (d x) (m) 8…11 8…11
Inter-trees distance (d y) (m) 8…11 8…11
Crown ellipsoid “rst axis (m) 5 5
Crown ellipsoid second axis (m) 5 5
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than rainfed tree crowns. Therefore, a careful comparison of
thermal differences for “elds with similar both percentage cover
and vegetation density was needed using combined temperature,
percentage cover and NDVI indicators.

3.2. Combining temperature and vegetation indices for detecting
irrigated and rainfed orchards

The objective of this part of the study was to evaluate the
capability of temperature and vegetation indices to assess the
discrimination of irrigated and rainfed orchards. All “eld-to-“eld
comparisons between irrigated and rainfed orchards with same
percentage cover were evaluated, with a total of more than 2000
“eld-to-“eld comparisons. The number of cases yielding successor
fail for the hypothesis that irrigated orchards yield lower
temperature and higher vegetation index than rainfed orchards
with same percentage cover was counted. Table 4 shows the
percentage of success for temperature and for the different
vegetation indices proposed in this study. All the proposed indices
were capable of detecting consistent differences between rainfed
and irrigated olive orchards. MTVI 2 and MCARI2 indices, which are
more resistant to soil in”uence, obtained lightly better results than
the rest of vegetation indices ( Table 4).

A further restriction was applied to minimize the effects caused
by different vegetation densities (LAI) in the pixel temperature at
the ASTER resolution (especially important for open crops). Both
NDVI and the percentage cover were “xed in the test conducted to
compare irrigated and rainfed orchard temperatures ( Table 4).
Even under these restrictive conditions of orchard comparisons
under the same percentage cover and NDVI, orchard temperature
was able to detect some differences between irrigated and rainfed
orchards in summer, decreasing in winter. Fig. 10 shows an
example of two orchards with the same vegetation percentage
cover (25%) and same NDVI (0.18) and their corresponding ASTER
temperature distribution obtained on 6 July 2006. In such example,
mean temperature difference between these two orchards yielded
 iew
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Fig. 10. Orthophotos acquired for an irrigated olive orchard (a) and a rainfed orchard (c) with same vegetation percentage cover (25%) and same NDVI (0.18), sh owing their
corresponding ASTER temperature images (b and d).



For PeFig. 11. Variation of mean canopy temperature (a), mean NDVI (b), and mean
(T � Ta)/NDVI (c) values over the study period for the irrigated and (grey line)
rainfed (black line) orchards with percentage covers between 24% and 25%.

Fig. 12. (a) Irrigated (blue) and rainfed (red) orchards over the study area acquired
on 21 September 2005 with ASTER sensor; (b) normalized cumulative ( T � Ta)/NDVI
value calculated for each “eld over the entire study period.
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2 K, differences that could be associated with irrigated ( Fig. 10a
and b) and non-irrigated ( Fig. 10c and d) condition.

The variation of temperature, NDVI and ( T � Ta)/NDVI for the
entire ASTER time-series (Fig. 11), shows the mean values of the
irrigated and rainfed orchards with percentage cover ranges
between 24% and 25% (29 orchards, 9 of them irrigated). It can be
 evTable 4
Success percentages for the fact that irrigated orchards have lower temperature and higher v
rainfed orchards with the same percentage cover.

Parameter Success percentage (%)

05/07/2000 12/12/2000 22/06/2001 02/01/2002

MTVI1 66 47 71 52
MTVI2 68 47 72 54
G 62 49 62 61
MSAVI 65 47 73 49
OSAVI 64 47 73 52
MCARI1 66 47 71 52
MCARI2 68 47 72 54
T (NDVI “xed) 57 38 65 41
NDVI 62 47 72 58
T � Ta 52 48 55 39
(T � Ta)/NDVI 65 45 72 41
seen that rainfed orchards had higher temperature values than
irrigated orchards for spring and summer images yielding 2 K
differences, while these differences disappeared in winter.
Consistently, the NDVI for the irrigated orchards obtained higher
values than rainfed “elds for all the study period. Results indicate
that the combined ( T � Ta)/NDVI index strengthen the properties of
both temperature and NDVI to assess differences between irrigated
and rainfed orchards.

Cumulative values for the full period comprising 6 years of
temperature, NDVI and ( T � Ta)/NDVI from ASTER imagery were
obtained ( Table 4). The cumulative ( T � Ta)/NDVI was the best
indicator to detect differences between irrigated and non-irrigated
orchards, yielding a 78% ofsuccesspercentage in agreement with the
iew
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egetation index than rainfed orchards for all compariso ns between irrigated and

25/04/2003 21/09/2005 06/07/2006 Cumulative value

66 78 76
67 78 77
63 67 68
66 78 74
67 78 76
66 78 76
67 78 77

65 65 62
72 76 76 68
58 60 58 61
68 77 74 78
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Fig. 13. DART simulations obtained for rainfed minus irrigated orchard temperature as function of percentage cover for different Trainfed � Tirrigated leaf gradients ( Tlr � Tli ) (a);
effects of crown LAI for different Trainfed � Tirrigated leaf gradients (b), effects of percentage cover for different crown LAIs (c), and effects of percentage cover for different
Trainfed � Tirrigated soil gradients ( Tsr � Tsi) (d).
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fact that irrigated orchards would have lower combined ( T � Ta)/
NDVI ratio than rainfed orchards. Moreover, results shown in Table 4
demonstrate the improvement obtained to discriminate between
irrigated and rainfed orchards using an ASTER time-series instead of
information provided from a single ASTER image. Fig. 12 shows an
ASTER image over an area with irrigated and rainfed orchards
(Fig. 12a) and their corresponding normalized ( T � Ta)/NDVI
cumulative value ( Fig. 12b) for the entire ASTER time-series period.
The cumulative index was normalized between 0 and 1, showing
that orchards with lower cumulative values corresponded to irrigate
orchards. However, careful use of this parameter is needed to
identify irrigated and rainfed orchards, requiring making the
comparisons under the same levels of vegetation percentage cover.
evi

Table 6
Confusion matrix for the Mahalanobis distance classi“cation using the 6-year ASTER imag

Mahalanobis distance classi“cation Ground-truth

Class Irrigated Rainfed

Irrigated 6375 9,839
Rainfed 3359 32,324

Total 9734 42,163

Producer•s accuracy (%) 65.49 76.66

Table 5
Confusion matrix for the Mahalanobis distance classi“cation using the ASTER image on 6

Mahalanobis distance classi“cation Ground-truth

Class Irrigated Rainfed

Irrigated 4964 12,896
Rainfed 4667 29,058

Total 9631 41,954

Producer•s accuracy (%) 51.54 69.26
Tables 5 and 6 show the confusion matrix resulting from the
supervised classi“cation method conducted using the visible, near
infrared and temperature information for one summer image
(Table 5) and for the complete 6-year series of ASTER imagery
(Table 6). Accuracies for identi“ed irrigated and rainfed olive
orchards using one summer image (6 July 2006) are shown in
Table 5, obtaining 51% for irrigated and 69% for rainfed class in
producer•s accuracy, and 28% for irrigated and 86% for rainfed in
user•s accuracy. The kappa obtained was 0.16 with an overall
accuracy of 66%. These single-image classi“cation results were
improvedusing the entire 6-year ASTER imageryseries ( Table 6).The
results obtained for the entire ASTER series were 65% and 76% in
producer•s accuracy for irrigated and rainfed classes respectively,
ew
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ery series.

Total Users accuracy (%)

16,214 39.32
35,683 90.59

51,897

Overall accuracy = 74.57%; kappa k = 0.34

July 2006.

Total Users accuracy (%)

17,860 27.79
33,725 86.16

51,585

Overall accuracy = 65.95%; kappa k = 0.16
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Fig. 14. Relationships between olive grove pixel temperature and canopy
temperature for different vegetation percentage covers: (a) for summer and (b)
for winter period.
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and 39% for irrigated and 91% for the rainfed class in user•s accuracy.
In this case, kappa was 0.34 with an overall accuracy of 75%.

3.3. Simulating canopy temperature with DART on open canopies

The previous results obtained with ASTERthermal imagery under
different percentage cover, LAI and soil conditions were compared
with simulations conducted with DART radiative transfer model in
the thermal domain. The simulation study conducted with DART
was focused on assessing the thermal effects of vegetation
percentage cover, LAI and soil temperature on ASTER pixel
temperature ( Fig. 13). In particular, simulations assessed the
potential thermal differences between rainfed and irrigated
orchards as function of the mentioned canopy and soil character-
istics. Fig. 13a shows the variation of the differences between rainfed
and irrigated orchard temperature as function of the vegetation
percentage cover, assuming leaf temperature differences between
irrigated and rainfed cases ranging between 3 and 5 K. Consistently,
it can be noticed that differences between rainfed and irrigated
orchard temperature increases with the vegetation cover level. This
is due to lower soil effects on pixel temperature at larger percentage
cover. Differences between rainfed and irrigated pixels varied
between 0.5 K (15% percentage cover) and 1.5 K (55% percentage
cover) for leaf thermal differences (between rainfed and irrigated) of
3 K, and between 0.8 K (15% percentage cover) and 2.5 K (55%
percentage cover) for leaf thermal differences of 5 K. These results
obtained through DART simulation agreed with those observed in
the experimental study with ASTER imagery on 6 July 2006 ( Fig. 9b),
in which differences between irrigated and rainfed crop “elds were
0.6 K for 15% percentage cover, and 1.1 K for 45% percentage cover.

To study the LAI effects on the temperature difference between
rainfed and irrigated orchards at ASTER resolution, the assessment
consisted on ranging crown LAI between 1 and 6, and leaf
temperature differences between 3 and 5 K ( Fig. 13b). Tempera-
ture differences were assessed as well as function of percentage
cover ranging between 15% and 55% for different crown LAI values
(Fig. 13c). The differences found between rainfed and irrigated
simulated temperatures were hardly dependent on LAI. For leaf
temperature differences of 3 K, Trainfed � Tirrigated difference ranged
between 0.69 K (LAI = 1) and 0.80 K (LAI = 6) for percentage cover
of 25%. Nevertheless, LAI in”uenced Trainfed � Tirrigated for larger
vegetation cover pixels ( Fig. 13c). For low LAI pixels, differences
between Trainfed and Tirrigated were smaller (under 1 K for all the
vegetation cover levels), due to larger effects caused by soil
temperature on the aggregated ASTER pixel, diminishing the
vegetation thermal differences. For all LAI cases, differences
between irrigated and rainfed pixels become almost negligible
for percentage covers lower than 15%. Fig. 13d shows the simulated
Trainfed � Tirrigated as function of vegetation cover for differences
between rainfed and irrigated soil temperatures ranging between
� 6 and +6 K. This simulation assessment was conducted in order to
evaluate the effects of different soil temperature levels on rainfed
and irrigated orchards as a function of vegetation cover. As
expected, soil temperature affects very much the difference
between Trainfed and Tirrigated on low percentage cover pixels.
Differences yielded 5.4 K for 15% percentage cover, while 4.7 K
were obtained for 55% percentage cover when the difference
between rainfed and irrigated soil was 6 K. On the other hand,
results were � 4.5 K (15% percentage cover) and � 1.4 K (55%
percentage cover) when the difference between rainfed and
irrigated soil was � 6 K. It can be noticed the trend converging
at high percentage cover ( Fig. 13d), although still showing large
soil effects on pixel temperature as function of the soil
temperature. For a 50% vegetation cover, differences between
canopy Trainfed and Tirrigated became undetectable when Tsoil

rainfed � Tsoil irrigated � � 3 K.
 O
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The simulation to assess the aggregated temperature as
function of crown temperature for different soil and tree densities
in open canopies was conducted for different vegetation percen-
tage cover levels ( Fig. 14), considering both summer ( Fig. 14a) and
winter ( Fig. 14b) cases. Results obtained for summer simulation
yielded temperature differences between crown and effective pixel
of 13 K for 45% vegetation percentage cover, increasing up to 20 K
for 15% vegetation percentage cover due to the soil in”uence. These
summer results demonstrate a canopy temperature overestima-
tion caused when assuming aggregated-pixel temperature as
vegetation temperature for open-tree canopies. Winter simulation
results suggest smaller differences between crown and pixel
temperature due to lower soil temperatures found. The large
differences found between crown and aggregated pixel tempera-
ture for summer (ranging between 10 and 20 K depending on
percentage cover) have important implications for ET estimations
that rely on effective pixel instead of crop temperature as input for
the energy balance equation in these open canopies.

4. Conclusions

Experimental results with 6-year ASTER imagery and 1076
ground-truth orchard information demonstrate that thermal
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ASTER imagery may detect temperature differences found as
function of irrigation type (rainfed/irrigated) in open canopies.
Thermal differences of up to 2 K between irrigated and rainfed
“elds with the same percentage cover were detected in summer,
disappearing in winter ASTER imagery. A careful comparison of
thermal differences for “elds with similar percentage cover and
vegetation density was conducted, using combined temperature,
percentage cover and NDVI indicators. Field-to-“eld comparisons
between irrigated and rainfed orchards under the same percentage
cover showed that ( T � Ta)/NDVI index was capable of detecting
consistent differences as function of the irrigation type.

A cumulative ( T � Ta)/NDVI index for the 6-year ASTER time-
series was the best indicator to discriminate between irrigated and
rainfed orchards, yielding a 78% agreement with the fact that
irrigated orchards have lower ( T � Ta)/NDVI ratio than rainfed
orchards for the same vegetation cover. Even when vegetation
index comparisons were made under “xed NDVI intervals, T
seemed capable of detecting differences between irrigated and
rainfed orchards, yielding 65% success. These results suggest that
temperature contributes with additional information to NDVI for
discriminating between irrigated and rainfed orchards.

Results obtained using a supervised classi“cation method to
visible, near infrared and temperature information for the 6-year
ASTER imagery yielded an overall accuracy of 75% and a kappa
coef“cient ( k) of 0.34, suggesting a reasonable identi“cation of
irrigated and rainfed olive orchards. These results suggest the
capability of ASTER sensor to discriminate among irrigated and
rainfed “elds in open tree crops when percentage cover ranges
between 15% and 55%.

DART radiative transfer model in the thermal region was used
to simulate different open canopy scenarios, accounting for pixel
temperature as function of soil, percentage cover and LAI. A
validation with high resolution AHS airborne imagery showed a
good agreement between DART canopy simulation and AHS
imagery when resampled to ASTER spatial resolution. Root mean
square errors of 0.4, 0.8 and 0.6 K between DART-simulated scenes
and airborne AHS imagery were obtained for 7:30, 9:30 and
12:30 GMT, respectively. Model simulations demonstrated con-
sistency of ASTER thermal data as function of irrigation (irrigated
and rainfed) and percentage cover. The sensitivity analysis
conducted with DART enabled the assessment of inputs on the
ASTER-aggregated pixel temperature differences. As expected, the
in”uence of LAI on aggregated pixels for discriminating rainfed and
irrigated orchards showed to be small ( Trainfed � Tirrigated ranging
between 0.69 and 0.80 for LAI = 1 and LAI = 5, respectively, for leaf
differences of 3 K), but soil temperature highly in”uenced the
differences between rainfed and irrigated orchards (yielding 4.7 K
pixel temperature difference between rainfed and irrigated
orchards with a soil temperature difference of 6 K for 55%
percentage cover). These results demonstrate the importance of
accounting for soil information data in open canopies. Under
similar soil conditions, temperature differences between rainfed
and irrigated orchards became almost negligible for percentages
cover values lower than 15%. Results suggest that the proposed
methodology should be used for orchards with higher percentage
cover values than 15% and for soil thermal differences (gradient
irrigated � rainfed) below 1 K. In canopies with 50% cover, soil
thermal differences around 3 K between irrigated and rainfed soils
would remove the detectable differences between rainfed and
irrigated “elds at pixel level.

The offset between pixel and crown temperature due to
background effects was studied using DART model. Temperature
differences obtained between pure crown and aggregated pixel
yielded 13 K for 45% percentage cover, and 20 K for 15% percentage
cover in summer. These large differences between crown and pixel
temperature, mainly driven by soil effects, may be critical for
eview
 O

nly

accurate ET estimated in open canopies. This occurs when thermal
remote sensing data from open canopies are inputs for single
source evapotranspiration models based on the energy balance
equation, conducting to erroneous sensible heat (H) estimates. This
manuscript demonstrates the need for radiative transfer models
working in the thermal domain to account for scene components
on aggregated pixels.
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