

Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2

Julien Bouchez, Olivier Beyssac, Valier Galy, Jérôme Gaillardet, Christian

France-Lanord, Laurence Maurice, Patricia Moreira-Turcq

▶ To cite this version:

Julien Bouchez, Olivier Beyssac, Valier Galy, Jérôme Gaillardet, Christian France-Lanord, et al.. Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2. Geology, 2010, 38 (3), pp.255-258. 10.1130/G30608 . ird-00588739

HAL Id: ird-00588739 https://ird.hal.science/ird-00588739

Submitted on 26 Apr 2011 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Oxidation of petrogenic organic carbon in the Amazon
- $_2$ floodplain as a source of atmospheric CO₂
- 3 Julien Bouchez^{1,2}, Olivier Beyssac³, Valier Galy⁴, Jérôme Gaillardet^{1,2}, Christian France-
- 4 Lanord⁵, Laurence Maurice⁶, and Patricia Moreira-Turcq⁷
- ⁵ ¹Institut de Physique du Globe de Paris, CNRS-UMR 7154, 4, place Jussieu 75252 Paris cedex
- 6 *05, France*
- 7 ²Université Paris Diderot, 75205 Paris cedex 13
- 8 ³Laboratoire de Géologie, Ecole Normale Supérieure, CNRS-UMR 8538, 24 rue Lhomond,
- 9 75231 Paris cedex 05
- ⁴Woods Hole Oceanographic Institution, 360 Woods Hole Rd, Woods Hole, Massachusetts
- 11 02543, USA
- ⁵*Centre de Recherches Pétrographiques et Géochimiques, CNRS-UPR 2300, BP 20, 54501*
- 13 Vandoeuvre-lès-Nancy, France
- ⁶Laboratoire des Mécanismes de Tranfert en Géologie, IRD, 14 avenue Edouard Belin, 31400
- 15 Toulouse, France
- 16 ⁷*IRD-UR* 154, 93140 Bondy, France

17 ABSTRACT

- 18 The two long-term sources of atmospheric carbon are CO₂ degassing from metamorphic
- 19 and volcanic activity, and oxidation of organic carbon (OC) contained in sedimentary rocks, or
- 20 petrogenic organic carbon (OC_{petro}). The latter flux is still poorly constrained. In this study, we
- 21 report Particulate Organic Carbon (POC) content and ¹⁴C-activity measurements in Amazon
- 22 River sediments, which allow for estimates of the OC_{petro} content of these sediments. A large

23	decrease of OC_{petro} content in riverine sediments is observed from the outlet of the Andes to the
24	mouth of the large tributaries. This loss reveals oxidation of OC_{petro} during transfer of sediments
25	in the floodplain, and results in an escape of ca. 0.25 MtC/yr to the atmosphere, which is on the
26	same order of magnitude as the CO ₂ consumption by silicate weathering in the same area. Raman
27	microspectroscopy investigations show that graphite is the most stable phase with respect to this
28	oxidation process. These results emphasize the significance of OC_{petro} oxidation in large river
29	floodplains in the global C cycle.

30 INTRODUCTION

31 CO₂ degassed from Earth's interior is partly scavenged by chemical reactions occurring 32 during weathering of silicate rocks and subsequent carbonate precipitation in the ocean (Garrels 33 et al., 1976). It is also consumed by photosynthesis followed by burial of organic matter in 34 marine sediments (Hayes and Waldbauer, 2006). These two mechanisms have respectively built up the two major carbon reservoirs of Earth's surface: limestones (50 x 10⁶ GtC), and ¹⁴C-free 35 36 organic matter disseminated in sedimentary rocks, or petrogenic OC (OC_{petro}, 12.5 x 10⁶ GtC; 37 Berner, 1990). The oxidation of petrogenic OC is a source of CO_2 to the atmosphere (Berner, 2004). However, quantifying the modern rates of OC_{petro} oxidation remains a challenge for 38 39 understanding and modeling the geological carbon and oxygen cycles. Although a few studies based on soil profiles have attempted to determine rates of OC_{petro} oxidation (e.g., Keller and 40 41 Bacon ; 1998, Petsch et al., 2000), budgets of fossil organic carbon oxidation at river catchment 42 scale have not received much attention (e.g., Galy et al., 2008b; Hilton et al., 2008). 43 The dissolved and particulate load transported by rivers derive from chemical weathering

43 The dissolved and particulate load transported by rivers derive from chemical weathering 44 of rocks and physical erosion of soils and rocks. This includes organic material, which consists 45 in a mixture of recent biospheric carbon (OC_{recent}), and OC_{petro} (Blair et al., 2004 ; Komada et al.,

46	2004 ; Leithold et al., 2006). The oxidation of OC transported in rivers is thought to mostly
47	affect OC_{recent} and to have no effect on the geological budget of atmospheric CO_2 . In their study
48	on the Amazon river, Hedges et al. (1986) showed that the organic material transported by the
49	Amazon river mostly consists in OC _{recent} derived from the highly productive lowland ecosystems.
50	During fluvial transport, the oxidation of this dissolved and particulate organic matter results in
51	the escape of ca. 500 MtC/yr to the atmosphere (Richey et al., 2002). Most of this oxidation
52	derives from OC_{recent} (Mayorga et al., 2005) and has therefore no impact on the long-term
53	regulation of atmospheric CO ₂ . However, a significant fraction of particulate organic matter can
54	be of petrogenic origin. Distinguishing between OC_{petro} and OC_{recent} in rivers is thus of prime
55	importance because only the oxidation of OC_{petro} represents an input of C to the active reservoirs
56	at Earth's surface.

In this study, we report POC (Particulate Organic Carbon) and ¹⁴C activity measurements 57 58 in river sediments collected throughout the Amazon River system. Sediments were collected 59 along river depth-profiles in order to capture the whole range of granulometric spectrum of 60 erosion products. Concentrations of OC_{petro} were measured in these sediments, and coupled with 61 structural characterization of OC_{petro} by Raman microspectroscopy. This allows us to estimate the first order of carbon input to the atmosphere by OC_{petro} oxidation during transfer of sediments in 62 63 the floodplains of the Amazon Basin, and gives a lower bound on the estimate of CO₂ release to 64 the atmosphere by the oxidation of OC_{petro} in the Amazon Basin.

65 SETTING, SAMPLING AND ANALYTICAL METHODS

The Amazon is the world largest river in terms of drainage area and water discharge to
the ocean (Meybeck and Ragu, 1997). Isotopic studies (Allègre et al., 1996) have clearly shown
that most of the Amazon River sediments are derived from the Andes. There, Amazon tributaries

drain extensive outcrops of easily erodible sedimentary and meta-sedimentary rocks, such asblack shales in the Bolivian Andes.

71 We sampled the two main tributaries of the Amazon, the Solimões and the Madeira 72 rivers, at their mouth, as well as the Amazon mainstream at Obidos, in June 2005 and March 73 2006 (Fig. 1). The Beni River, which supplies most of the sediments to the Madeira River, has 74 been sampled at the outlet of the Andes, near Rurrenabaque, where it enters the Madeira floodplain, in February 2001. At each location, river water was sampled at various river depths 75 76 along vertical profiles, from channel surface to bottom, and filtered at 0.22 µm porosity; bed 77 sediments were also dredged. Within the channel of large rivers, granulometric sorting induces important variations of chemical composition of river sediments from the surface to the bottom 78 79 (Galy et al., 2008a). The sampling technique used here allows us to characterize the whole range 80 of erosion products in terms of grain size distribution and mineralogy.

81 POC content was determined using a modified Eurovector EuroEA3028-HT elemental 82 analyzer coupled to a GV Instruments IsoPrime continuous-flow isotope mass spectrometer at the CRPG, Vandoeuvre-lès-Nancy, France (Galy et al., 2007). ¹⁴C activity was determined by 83 84 Accelerator Mass Spectrometry at LMC14 National Facility, Saclay, France, after off-line 85 organic matter combustion and CO₂ cryogenic purification. Samples were decarbonated before combustion (Galy et al., 2007). ¹⁴C values are given after correction for ¹³C fractionation 86 (normalization to a δ^{13} C of -25‰), and expressed as pMC (percentage of Modern Carbon) 87 comparatively to 95% of the ¹⁴C activity of the oxalic acid standard OXI. Petrogenic carbon was 88 89 characterized by Raman microspectroscopy using a Renishaw InVia Raman micro-spectrometer 90 at the Laboratoire de Géologie, Ecole Normale Supérieure, Paris, France (Bernard et al., 2008). 91 Raman spectra were obtained directly on raw sediments, and on thin sections for bedrocks.

Publisher: GSA Journal: GEOL: Geology Article ID: G30608 RESULTS: ¹⁴C AGE OF OC_{recent} AND OC_{petro} CONTENT

92

	recent peut
93	In depth-profile sediments, ¹⁴ C content shows a wide range of variation, between 37.5
94	and 86.2% pMC (Tab. 1). A first-order positive relation between pMC and POC is observed, the
95	coarser bed sediments being the most depleted in both OC and ¹⁴ C.
96	In river sediments, OC can be interpreted as a binary mixture of OC_{petro} and OC_{recent} with
97	distinct ¹⁴ C content (e.g., Blair et al., 2004). Following the approach of Galy et al. (2008b) we
98	plot our results in a diagram of POC * pMC (or Modern C) as a function of POC (Fig. 2). Depth-
99	profiles from different sampling locations define linear trends, at 95% confidence level,
100	regardless the sampling period. These correlation indicate that samples from a given depth-
101	profile have rather constant absolute OC_{petro} concentration and ¹⁴ C activity of the OC_{recent}
102	component (see appendix for details). The values of OC_{petro} content in the samples and ¹⁴ C-age
103	of the OC _{recent} pool can be both determined from the slope and intercept of each line (Tab. 1).
104	Similar observations were made on the Ganga-Brahmaputra system (Galy et al., 2008b).
105	The highest OC_{petro} content, 0.26% (±0.11%, 2 sigma uncertainty), is obtained for the
106	Beni at Rurrenabaque. There, OC_{petro} makes up to 50% of the POC, and likely originates from
107	the large outcrops of black shales drained by this river. Lowland sampling locations (Solimões,
108	Madeira and Amazon) all display lower OC_{petro} content, between 0.02% and 0.06%, (or even
109	lower, regarding the uncertainties reported in Tab. 1). Thus, there is a large apparent decrease in
110	OC _{petro} concentration between the entry and the outlet of the Madeira floodplain.
111	Since the Beni contributes to ca. 40% of the Madeira sedimentary budget (Guyot et al.,
112	1996), potential addition of supposedly OC_{petro} -free sedimentary material by other tributaries of
113	the Madeira River could only lead to an OC_{petro} content decrease by a factor of slightly more than

114	two. Hence, the apparent 10-fold decrease in OC_{petro} content could mainly be due either to a
115	preferential burial of OC_{petro} -rich material in the floodplain, or to a loss by oxidation.
116	Burial of sedimentary material occurs in the Amazon basin between the Andean source of
117	sediments and the Amazon mouth, in particular between Rurrenabaque and the mouth of the
118	Madeira (Guyot et al., 1996). If sediment storage is the cause of the observed decrease of OC_{petro}
119	concentration reported here, it would imply the preferential sedimentation of an OC_{petro} enriched
120	component. As stated above, sampling along depth-profiles allows to take into account the whole
121	range of riverine particulate matter in size distribution and mineralogy. Our results (Fig. 2) show
122	that absolute OC_{petro} content is the same along all depth-profiles, despite expected variations in
123	particle size distribution with depth (Curtis et al., 1979). Selective burial of a given size fraction
124	should therefore not affect OC_{petro} concentration of suspended sediments. This observation
125	strongly suggests that the decrease of OC_{petro} concentration along the course of the Madeira is
126	due to OC _{petro} oxidation.
127	ESTIMATE OF THE MAGNITUDE OF THE CO ₂ SOURCE
128	Given the important amount of sediments transported in the Madeira floodplain (Guyot et

130 transfer of sediments in the floodplain should be significant. A first-order oxidation flux of

131 OC_{petro} can be estimated using previous works on sedimentary budgets in the Madeira River

132 Basin. Among the 212 Mt/yr of sediments delivered by the Beni River to the plain, ca. one half is

133 buried in the foreland basin (Guyot et al., 1996). The amount of Beni sediments actually

- 134 transiting through the plain is thus on the order of 100 Mt/yr. Hence, given the OC_{petro}
- 135 concentration reported in this study, 100 Mt/yr of sediments represent a OC_{petro} flux of 0.26
- 136 MtC/yr supplied to the plain and not buried. At the outlet, 100 Mt/yr of sediments represent a

137	OC_{petro} flux of 0.02 MtC/yr that exits the plain. The difference of ca. 0.25 MtC/yr is thus the
138	oxidation flux of OC_{petro} in the Madeira floodplain. This is a first order estimate but also a lower
139	bound of the OC_{petro} oxidation flux of the Madeira basin as we assumed that no OC_{petro} is
140	delivered to the Madeira floodplain by its two other main tributaries. In addition, this estimate
141	does not take into account the oxidation of OC_{petro} upstream Rurrenabaque and in Andean soils
142	which we are not able to address here. Moreover, we assume that no oxidation affects the
143	sediments buried in the foreland basin. The flux of 0.25 MtC/y is thus a minimum bound of the
144	OC_{petro} -derived CO_2 outgassing flux . This number is in the same order of magnitude as the net
145	CO ₂ sequestration flux in this basin associated to silicate weathering (0.8 MtC/yr; Gaillardet et
146	al., 1997).

147 OC_{petro} STRUCTURAL CHARACTERIZATION

148 OC_{petro} is derived from organic carbon initially trapped in sediments and has been 149 structurally and chemically transformed during diagenesis and metamorphism. Structural 150 characterization of OC_{petro} by Raman microspectroscopy has been performed both in riverine 151 sediments and bedrock samples. Because volcanic rocks of the high cordillera may not contain 152 any significant amount of solid OC, the main sources of OC_{petro} are most likely the sediments, 153 mainly black shales, drained by the Rio Beni. Three samples representative of the main bedrock 154 lithologies from the Tipuani, Mapiri and Coroico basin have been investigated (Fig. 1). They 155 contain two main OC_{petro} fractions (Fig. 3): one is rather disordered, exhibiting Raman spectra 156 typical of greenschist facies (Beyssac et al., 2002), in agreement with the thermal history of these 157 rocks. The second is highly graphitic and supposedly represents a detrital pool. Both fractions are 158 found in all riverine sediments either as isolated particles or as inclusions or aggregates within 159 minerals (mostly quartz, phyllosilicates or plagioclases, Fig. 3). As shown in Fig. 3, the graphitic

160 phases become dominant in samples of downstream sediment (Rio Beni and then Rio Madeira),

161 while the disordered fraction progressively disappears. Graphite thus appears to be the most

162 stable phase with respect to the oxidation process.

163 DISCUSSION AND CONCLUSION

164 This study thus shows that the oxidation of OC_{petro} during fluvial transport is a significant 165 flux for the long-term atmospheric CO₂ budget. Fluvial oxidation of OC_{petro} may counteract the 166 consumption flux of CO_2 by silicate weathering, which is conventionally thought to be the only 167 significant process, with organic carbon sequestration, to control atmospheric CO_2 at geological 168 timescales (Berner, 2004; Wallmann, 2001). The degradation of physically mobilized ancient 169 organic matter in large fluvial systems is most probably dependent on a number of factors such 170 as residence time of particles in floodplains (Blair et al., 2003), or on climatic conditions. This 171 important oxidation flux found here is probably favored by the warm and oxidative conditions that prevail in the soils of Amazonian floodplains. Whether this oxidation of OC_{petro} occurs via 172 173 biotic (Petsch et al., 2001) or abiotic (Chang and Berner, 1999) pathways, is beyond the scope of 174 the paper but would need further investigations.

175 Galy et al. (2008b) showed that 30%–50% of the OC_{petro} present in the Himalayan source 176 rocks were preserved and are still present in the marine sediments of the Bengal Fan. Our 177 estimate of the OC_{petro} preservation in the Madeira floodplain, 15%, is an upper bound of the 178 extent of OC_{petro} preservation in the Madeira basin, as it does not take into account the oxidation 179 taking place in Andean soils, downstream the sampling locations, or even in the ocean, before or after deposition. The Amazon basin is hence a better incinerator of OC_{petro} than the Himalayan 180 181 system. This is likely due to differences in the sources of OC_{petro}. Low-grade metamorphic rocks 182 with disordered OC are common in the Andes, while high-grade metamorphic rocks generating

183	highly graphitic OC are widespread in the Himalaya (Beyssac et al., 2004). Disordered OC is
184	more prone to oxidation than graphite because of its chemistry (aromatic skeleton with
185	radicalization) and structure, as micro- and nano-porosity enhance oxidation rates.
186	Over geological timescale, geodynamic (metamorphic grade, erosion intensity) settings
187	probably control the extent of preservation of OC_{petro} during the erosion-transport-sedimentation
188	cycle. Over shorter timescale (tens to hundreds kyrs), and for a given geodynamic context,
189	climate is likely to control the oxidation or preservation of OC_{petro} , through erosion, temperature,
190	and probably the nature of microbial communities (and their metabolic activity) present in the
191	floodplain.
192	We speculate that, in response to an atmospheric CO ₂ rise, increased global temperature
193	would probably enhance oxidation of petrogenic OC in large river floodplains and associated
194	CO ₂ outgassing. This mechanism possibly constitutes a new positive feedback in the
195	long-term carbon cycle.
196	ACKNOWLEDGMENTS
197	This study was funded by CNRS-INSU program Reliefs de la Terre, and realized in
198	the frame of the HyBAm project (cooperation agreement with CNPq n° 492685/2004-5). We
199	sincerely ackowledge the following Brazilian Institutions and Universities: ANA, UnB, UFF,
200	CPRM. We thank C. Guilmette for technical assistance in the stable isotopes laboratory and
201	R. Hilton for improving the quality of the text. This is IPGP contribution N°2564.
202	APPENDIX: OC _{petro} AND ¹⁴ C AGE OF OC _{recent} CALCULATION
203	We use a method described in Galy et al., 2008b. Briefly, we describe the OC pool as a binary
204	mixture of OC_{petro} , derived from the rocks, and OC_{recent} derived from the biosphere (vegetation,
205	soils and autotrophic production in the river). These two component have distinct ¹⁴ C activity,

206	Article ID: G30608 OC _{petro} being ¹⁴ C-free (pMC _{petro} = 0). For each sample, the absolute content of Modern C (POC x
207	pMC – "Modern" referring here to a present 14 C standard) can thus be written as:
208	$Modern C = POC x pMC_{recent} - MOC_{petro} x pMC_{recent}$
209	where pMC _{recent} is the ¹⁴ C activity of OC _{recent} and OC _{petro} is the absolute content of OC _{petro} . In a
210	%Modern C vs. POC plot, samples having the same pMC_{recent} and the same $\%OC_{petro}$ define a
211	single straight line. The pMC_{recent} is given by the slope of the line and allows the calculation of
212	the age of the recent component. Moreover, the absolute content of OC_{petro} is given by the
213	opposite of the intercept/slope ratio.
214	Despite the auto-correlated nature of the two plotted variables, and as shown in Tab. 1, the
215	relationships we obtain are more significantly correlated than in the case of randomly distributed
216	POC and pMC (either assuming an uniform or normal distribution, within boundaries defined by
217	the ranges covered by the values measured in our samples).
218	Uncertainties on the determined slope and intercept (and thus on %OC _{petro} and pMC _{recent}) are
010	-
219	yielded by a full inversion method (Tarantola and Valette, 1982). Relatively low uncertainties on
219	yielded by a full inversion method (Tarantola and Valette, 1982). Relatively low uncertainties on pMC _{recent} (i.e. on the slope) stem from the good alignment of data points.
220	pMC _{recent} (i.e. on the slope) stem from the good alignment of data points.
220 221	pMC _{recent} (i.e. on the slope) stem from the good alignment of data points. REFERENCES CITED
220 221 222	pMC _{recent} (i.e. on the slope) stem from the good alignment of data points. REFERENCES CITED Allègre, C.J., Dupré, B., Négrel, P., and Gaillardet, J., 1996, Sr-Nd-Pb isotope systematics in

- scanning systems: geological applications: Applied Spectroscopy, v. 62, p. 1180–1188.
- 227 Berner, R.A., 2004, The Phanerozoic carbon cycle, Oxford University Press, 150 pp.

- 228 Berner, R.A., 1990, Atmospheric carbon dioxide levels over Phanerozoic time: Science, v. 249,
- 229 p. 1382–1386, doi: 10.1126/science.249.4975.1382.
- 230 Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J.-N., 2002, Raman spectra of carbonaceous
- 231 material in metasediments: a new geothermometer: Journal of Metamorphic Geology, v. 20,
- 232 no. 9, p. 859–871, doi: 10.1046/j.1525-1314.2002.00408.x.
- 233 Beyssac, O., Bollinger, L., Avouac, J.-P., and Goff, È., B., 2004, Thermal metamorphism in the
- 234 Lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material:
- Earth and Planetary Science Letters, v. 225, p. 233–241.
- Blair, N.E., Leithold, E.L., Ford, S.T., Peeler, K.A., Holmes, J.C., and Perkey, D.W., 2003, The
- 237 persistence of memory: the fate of ancient sedimentary organic carbon in a modern
- 238 sedimentary system: Geochimica et Cosmochimica Acta, v. 67, no. 1, p. 63–73, doi:
- 239 10.1016/S0016-7037(02)01043-8.
- 240 Blair, N.E., Leithold, E.L., and Aller, R.C., 2004, From bedrock to burial: the evolution of
- 241 particulate organic carbon across coupled watershed-continental margin systems: Marine
- 242 Chemistry, v. 92, p. 141–156, doi: 10.1016/j.marchem.2004.06.023.
- 243 Chang, S., and Berner, R.A., 1999, Coal weathering and the geochemical carbon cycle:
- Geochimica et Cosmochimica Acta, v. 63, no. 19/20, p. 3301–3310, doi: 10.1016/S00167037(99)00252-5.
- 246 Curtis, W.F., Meade, R.H., Nordin, C.F., Price, N.B., and Sholkovitz, E.R., 1979, Non-uniform
- vertical distribution of fine sediment in the Amazon River: Nature, v. 280, p. 381–383, doi:
 10.1038/280381a0.

249	Gaillardet, J., Dupré, B., Allègre, C.J., and Négrel, P., 1997, Chemical and physical denudation
250	in the Amazon River Basin: Chemical Geology, v. 142, p. 141-173, doi: 10.1016/S0009-
251	2541(97)00074-0.
252	Galy, V., Bouchez, J., and France-Lanord, C., 2007, Determination of Total Organic Carbon
253	content and ¹³ C in carbonate-rich detrital sediments: Geostandards and Geoanalytical
254	Research, v. 31, no. 3, p. 199–207, doi: 10.1111/j.1751-908X.2007.00864.x.
255	Galy, V., France-Lanord, C., and Lartiges, B., 2008a, Loading and fate of particulate organic
256	carbon from the Himalaya to the Ganga-Brahmaputra delta: Geochimica et Cosmochimica
257	Acta, v. 72, no. 7, p. 1767–1787, doi: 10.1016/j.gca.2008.01.027.
258	Galy, V., Beyssac, O., France-Lanord, C., and Eglinton, T.I., 2008b, Recycling of graphite
259	during Himalayan erosion: a geological stabilization of carbon in the crust: Science, v. 322,
260	no. 5903, p. 943–945, doi: 10.1126/science.1161408.
261	Garrels, R.M., Lerman, A., and Mackenzie, F.T., 1976, Controls of atmospheric O_2 and CO_2 –
262	past, present and future: American Scientist, v. 63, p. 306-315.
263	Guyot, JL., Filizola, N., Quintanilla, J., and Cortez, J., 1996, Dissolved solids and suspended
264	sediment yields in the Rio Madeira basin, from the Bolivian Andes to the Amazon: IAHS
265	Publication, v. 236, p. 55–63.
266	Hayes, J.M., and Waldbauer, J.R., 2006, The carbon cycle and associated redox processes
267	through time: Philosophical Transactions of the Royal Society, v. 361, no. 1470, p. 931–950,
268	doi: 10.1098/rstb.2006.1840.
269	Hedges, J.I., Quay, P.D., Grootes, P.M., Richey, J.E., Devol, A.H., Farwell, G.W., Schmidt,
270	F.W., and Salati, E., 1986, Carbon-14 in the Amazon River System: Science, v. 231,
271	p. 1129–1131, doi: 10.1126/science.231.4742.1129.

- 272 Hilton, R.H., Galy, A., Hovius, N., Chen, M.-C., Horng, M.-J., and Chen, H., 2008, Tropical-
- 273 cyclone-driven erosion of the terrestrial biosphere from mountains: Nature Geosciences,
- v. 1, p. 759–762, doi: 10.1038/ngeo333.
- 275 Keller, C.K., and Bacon, D.H., 1998, Soil respiration and georespiration distinguished by
- transport analyses of vadose CO_2 , ¹³ CO_2 and ¹⁴ CO_2 : Global Biogeochemical Cycles, v. 12,
- 277 no. 2, p. 361–372, doi: 10.1029/98GB00742.
- 278 Komada, T., Druffel, E.R.M., and Trumbore, S.E., 2004, Oceanic export of relict carbon by
- small mountainous rivers: Geophysical Research Letters, v. 31, p. L07504, doi:
- 280 10.1029/2004GL019512.
- Leithold, E.L., Bair, N.E., and Perkey, D.W., 2006, Geomorphic controls on the age of
- 282 particulate organic carbon from small mountainous and upland rivers: Global
- 283 Biogeochemical Cycles, v. 20, p. GB3022, doi: 10.1029/2005GB002677.
- 284 Mayorga, E., Aufdenkampe, A.K., Masiello, C.A., Krusche, A.V., Hedges, J.I., Quay, P.D.,
- Richey, J.E., and Brown, T.A., 2005, Young organic matter as a source of carbon dioxide
- 286 outgassing from Amazonian rivers: Nature, v. 436, no. 28, p. 538–541, doi:
- 287 10.1038/nature03880.
- Meybeck, M., and Ragu, A., 1997, River discharges to the oceans: an assessment of suspended
 solids, major ions and nutrients, UNEP, WHO.
- 290 Petsch, S.T., Berner, R.A., and Eglinton, T.I., 2000, A field study of chemical weathering of
- ancient sedimentary organic matter: Organic Geochemistry, v. 31, p. 475–487, doi:
- 292 10.1016/S0146-6380(00)00014-0.

- 293 Petsch, S.T., Eglinton, T.I., and Edwards, K.J., 2001, ¹⁴C-dead living biomass: evidence for
- 294 microbial assimilation of ancient organic carbon during shale weathering: Science, v. 292,
- 295 p. 1127–1131, doi: 10.1126/science.1058332.
- 296 Richey, J.E., Melack, J.M., Aufdenkampe, A.K., Ballester, V.M., and Hess, L.L., 2002,
- 297 Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric
- 298 CO₂: Nature, v. 416, p. 617–620, doi: 10.1038/416617a.
- 299 Tarantola, A., and Valette, B., 1982, Generalized nonlinear inverse problems solved using the
- 300 least squares criterion: Reviews of Geophysics and Space Physics, v. 20, no. 2, p. 219–232,
- 301 doi: 10.1029/RG020i002p00219.
- 302 Wallmann, K., 2001, Controls on the Cretaceous and Cenozoic evolution of seawater
- 303 composition, atmospheric CO_2 and climate: Geochimica et Cosmochimica Acta, v. 65,
- 304 p. 3005–3025, doi: 10.1016/S0016-7037(01)00638-X.

305 FIGURE CAPTIONS

- 306 Figure 1. Map of the Amazon basin and sampling sites.
- 307 Figure 2. Modern C content (POC*pMC, expressed in weight % of the whole sample) vs. POC
- 308 for sediments collected along a depth profile in different rivers of the Amazon basin. The linear
- 309 regression solution for each sampling location is also shown. Open symbols stand for bedload
- 310 sediments, closed symbols for suspended load sediments. Samples are plotted regardless of their
- 311 position in the hydrological cycle.
- 312 Figure 3. Representative Raman spectra of riverine and bedrock material, with the location of the
- main graphite G band, and the D1, D2 and D3 defect bands. Minerals associated with C are also
- 314 indicated. Fossil organic matter was found as free particles, inclusions in minerals such as quartz
- or rutiles, or aggregates with phyllosilicates. Free particles were as large as 20 µm in diameter.

TABLE 1. SAMPLE LIST AND RESULTS: ANALYTICAL ABSOLUTE UNCERTAINTIES (20) ARE 0.5 M FOR SAMPLING DEPTH. 0.3% FOR PMC AND 0.02% FOR POC

FOR SAMPLING DEPTH, 0.3% FOR PMC AND 0.02% FOR POC							
Sample	River	Water	Depth	pMC	POC	pMC _{recent}	OCpetro
		stage	(m)	(%)	(%)	(%)	(%)
AM-05-35	Amazon	Falling	58	78.6	0.65	84	0.06
AM-05-37		Falling	30	78.4	0.92	± 0.04	± 0.05
AM-05-39		Falling	2	81.4	1.22	(r ² =0.995)	
AM-06-64		Rising	20	76.9	0.93		
AM-06-66		Rising	Bedload	77.3	0.65		
AM-05-04	Solimões	High	28	86.2	0.79	87	0.03
AM-05-08		High	2	83.3	1.13	± 0.03	± 0.02
AM-05-10		High	Bedload	37.5	0.06	(r ² =0.998)	
AM-06-10		Rising	22	82.7	0.95		
AM-06-36	Madeira	High	15	70.6	0.62	71	0.02
AM-06-38		High	0	68.3	0.65	± 0.04	± 0.03
AM-06-44		High	Bedload	45.5	0.05	(r ² =0.999)	
AM-01-14-a	Beni	High	1	44.1	0.51	96	0.26
AM-01-14-b		High	3	55.1	0.61	± 0.13	± 0.11
AM-01-14-c		High	5	42.0	0.45	(r ² =0.986)	
AM-01-14-d		High	7	41.0	0.47		

317