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. Multidimensional Disaggregation of Land Surface
: Temperature Using High-Resolution Red,

; Near-Infrared, Shortwave-Infrared,

. and Microwave-L Bands

5 Olivier Merlin, Frédéric Jacob, Jean-Pierre Wigneron, Jeffrey Walker, and Ghani Chehbouni

6 Abstract—Land surface temperature data are rarely available sible for 42% of the variability in disaggregated temperature, 38
7 at high temporal and spatial resolutions at the same locations. To fractional senescent vegetation cover for 11%, fractional opeR9
8 Il this gap, the low spatial resolution data can be disaggregated water for 20%, and soil evaporative ef ciency for 27%. 40
9 at high temporal frequency using empirical relationships between

10 remotely sensed temperature and fractional green (photosynthet-
11lically active) and senescent vegetation covers. In this paper, a
12 new disaggregation methodology is developed by physically link-
13 ing remotely sensed surface temperature to fractional green and

Index Terms—Advanced Scanning Thermal Emission and Re41
ection radiometer (ASTER), brightness temperature, disaggre-42
gation, evaporative ef ciency, land surface temperature, Moderate43
Resolution Imaging Spectroradiometer (MODIS), multispectral, 44

14 senescent vegetation covers using a radiative transfer equation.c’pen water, soil moisture, vegetation fraction. 45
15 Moreover, the methodology is implemented with two additional

16 factors related to the energy budget of irrigated areas, being the I. INTRODUCTION 46
17 fraction of open water and soil evaporative ef ciency (ratio of . .

18 actual to potential soil evaporation). The approach is tested over EMOTELY sensed land surface temperature is a signature
19a 5 km by 32 km irrigated agricultural area in Australia using of the thermodynamic equilibrium state of the surfase

20 airborne Polarimetric L-band Multibeam Radiometer brightness  skin. Consequently, it provides the potential to monitor aty-
21 temperature and spaceborne Advanced Scanning Thermal hamic information on instantaneous energy and water uxes

22 Emission and Re ection radiometer (ASTER) multispectral data. t the land f t h interf N thel thse
23 Fractional green vegetation cover, fractional senescent vegeta-a ¢ lagggsuriace—aimosphere Intepace. NSQgleless, op-

24 tion cover, fractional open water, and soil evaporative ef ciency €rational use of thermal remote sensing for hydrological =nd
25 are derived from red, near-infrared, shortwave-infrared, and mi-  water resource management studies has been limited to regnal
26 crowave-L band data. Low-resolution land surface temperature gcale applications (e.g., [1] and [2]) mainly because the spatial
271is simulated by aggregating ASTER land surface temperature to oqq|ution (larger than 1 km) of current high temporal resolution

28 1-km resolution, and the disaggregated temperature is veri ed th | is t i t the het iy of
29 against the high-resolution ASTER temperature data initially used 'efmal SENSOrS IS 100 coarse 1o represent the heterogensay o

30in the aggregation process. The error in disaggregated tempera- Man-made landscapes. For example, the Moderate Resoation
31ture is successively reduced from 1.65C to 1.16 C by includ- Imaging Spectroradiometer (MODIS) has a revisit frequestcy
32ing each of the four parameters. The correlation coefcient and of 1 or 2 times per day but a spatial resolution of only 1 lsm,
33 slope between the disaggregated and ASTER temperatures are,, hile the Advanced Scanning Thermal Emission and Re ection

34 improved from 0.79 to 0.89 and from 0.63 to 0.88, respectively. . . .
35 Moreover, the radiative transfer equation allows quanti cation of radiometer (ASTER) has a spatial resolution of 90 m bst a

36 the impact on disaggregation of the temperature at high resolution evisit time of only 16 days. 62
37 for each parameter: fractional green vegetation cover is respon-  The use of remotely sensed land surface temperaturesever

agricultural areas requires data at both high spatial and temgoral
resolutions [3]. While there is a lack of high spatial resolutsen

Manuscript received December 2, 2010; revised June 28, 2011; acce ; ; ; ;
September 11, 2011. This work was supported in part by the French prog&aﬁr%rmal data from satellite with hlgh frequency’ there is dhe
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tional de la Recherche Scienti que. The National Airborne Field Experimentsc resolution sensors having high temporal resolution taee

have been made possible through infrastructure (LE0453434 and LE05609 ; ; ; ; ;
and research (DP0557543) funding from the Australian Research Council aah aggregated using high spatial resolution ancillary data.sshe

the collaboration of a large number of scientists from throughout AustralidSt disaggregation approach of remotely sensed temperature

U.S., and Europe. Initial setup and maintenance of the study catchments war@s developed by [4] using the fractional green vegetation
funded by a research Grant (DP0343778) from the Australian Research CouBEj{/er derived from red and near-infrared re ectances. Gixen
and by the CRC for Catchment Hydrology. . . . ;
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3-P. Wigneron (e-mail: jpwigner@bordeaux.inra.fr). areas with relatively uniform soil and vegetation hydric st.a'tas.
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80 The accuracy in disaggregated temperature was improvedrgw methodology includes the variability at hectometric rese-
81taking into account fractional senescent vegetation cover lirtion of fractional open water and soil evaporative ef ciencys
82 addition to fractional green vegetation cover. With respect to other disaggregation algorithms in literatume
83 Fractional green and senescent vegetation covers, howeld, [5], the proposed technique differs in the following faun
84 are not the only factors explaining the spatial variations of landain aspects: 1) it relies on a physically based radiative tramsfer
85 surface temperature, especially over irrigated areas where cegpation rather than empirical linear regressions; 2) it takes
86 elds may have different moisture status to the surrounds. Into account the fractional open water derived from shortwaxe-
87 particular, the temperature over a ooded crop eld may b@nfrared band as required; 3) it takes into account the soil hyd&c
88 drastically different from the temperature over a mature crgpatus via microwave-derived soil evaporative ef ciency; anel
89 eld. Therefore, the fraction of open water is an importard) it allows the relative weight of each parameter usedifiar
90 variable to represent the spatial variations of land surface tedisaggregating temperature to be quanti ed. 148
91 perature. Over nonwatered land surfaces, the soil evaporativhe new disaggregation technique is compared to thei4sx-
92 ef ciency (ratio of actual to potential soil evaporation) is dsting approaches using data collected during the Natiostal
93 signature of the capacity of the soil to evaporate its watéirborne Field Experiment in 2006 (NAFE'06; [9]). The exs1
94 content in the near surface and thus to counter an increasgefimental site covers a 5 km by 32 km irrigated agricultusal
95 its thermodynamic temperature. Consequently, soil evaporataea, which included approximately 5% of ooded rice craps
96 ef ciency is also an essential variable to describe the spat@dliring NAFE'06. Disaggregation algorithms are rst testedisy
97 variations of land surface temperature. Moreover, knowledgggregating ASTER temperature at 1-km resolution andsby
98 of soil evaporative ef ciency is needed to decouple the effectomparing the disaggregated temperature to the high-resoh#éon
99 of soil and vegetation hydric status on the surface ener@fsTER temperature initially used in the aggregation process.
100 budget and hence to better represent the resultant radiafiVee application to aggregated ASTER data allows evaluatag
101 surface temperature. As an example, the crop water stress indpgroaches independently of differences between ASTER2nd
102 (CWSI) [6], [7] can be used to detect plant stress based on M®DIS products [5]. Disaggregation algorithms are then iap-
103 difference between foliage and air temperature. Neverthelegbed to MODIS data. 161
104the application of the CWSI to partially vegetated areas is
105 subjected to large uncertainties because the soil background
106 may have a different temperature to the plants [7] depending
107 on soil evaporative ef ciency. Another example is provided by The study area is a 5 km by 32 km area included in i
108 Moranet al.[8] who proposed the vegetation index/temperatui@oleambally Irrigation Area (CIA) located in the at wests4
109 (VIT) trapezoid to estimate a most probable range of plaetn plains of the Murrumbidgee catchment in southeast&sn
110 stress over partially vegetated elds. Itis a three-step procedukastralia (35 S, 146 E). The principal summer crops grovias
111in which the following steps are performed: 1) the temperaturgsthe CIA are rice, maize, and soybeans, while winter crmgs
112 of the four vertices of the VIT trapezoid are estimated using amclude wheat, barley, oats, and canola. In November, rice aeps
113 energy budget model; 2) the minimum and maximum probaldee ooded under 30 cm height of irrigation water. 169
114 vegetation temperatures are estimated from the measured coni-he NAFE'06 was conducted from October 31 1t
115 posite land surface temperature, together with the maximuiovember 20, 2006, over a 40 km by 60 km area, with maue
116 and minimum simulated soil temperatures; and 3) the minimudetailed ights over the 5 km by 32 km focus area studied
117 and maximum probable CWSIs are computed by normalizitig this paper. While a full description of the NAFE'06 datzs
118the minimum and maximum probable vegetation temperaturgst is given in [9], a brief overview of the most pertinant
119from the vegetation temperature extremes simulated by ttetails is provided here. The data used in this paperizae
120 energy budget model. The point is that this approach does womprised of airborne L-band brightness temperature; ASTER
121 allow estimating a single CWSI value because the retrievad, near-infrared, and shortwave-infrared re ectances; ASTER
122 problem is underdetermined. In particular, Morahal. [8]  land surface temperature data (resampled at 250-m resolutitan);
123noted that “with knowledge of a second point within théODIS land surface temperature data; and air temperatureldata
124 hourglass (perhaps soil temperature), it would be possibledollected by a meteorological station in the NAFE’'06 area. 180
125infer [the canopy-air temperature] difference and pinpoint the

126 CWSI value.” In the latter case, knowledge of soil temperatu'rg PLMR
127is equivalent to knowledge of soil evaporative ef ciency, which™

128 would remove the underdetermination of the VIT trapezoid. = The Polarimetric L-band Multibeam Radiometer (PLMR)Lé2
129 The objective of this paper is to develop a new disaggregan airborne instrument that measures both H and V polareza-
130tion methodology of kilometric land surface temperature usir@ns using a single receiver with polarization switching at viea

Il. EXPERIMENTAL DATA 162

181

131 hectometric multivariable ancillary data. The approach is basadgles of ,and . The accuracy of the PLMR85
1320n a radiative transfer equation that estimates differencesisnestimated to be better than 2 K and 3 K in the H ands¥
133 temperature data at hectometric resolution. Speci cally, the upelarization, respectively [10]. 187

134 of a radiative transfer equation allows the following: 1) includ- During NAFE'06, the PLMR ew on November 14 to collecss
135ing variables other than those used by previous disaggregatichand brightness temperature at 250-m resolution ovenghe
136 approaches and 2) deducing the most pertinent variables.5llkm by 32 km area in the CIA. PLMR was mounted in tive
137 addition to fractional green and senescent vegetation covers,dlaeoss-track con guration so that each pixel was observediat a
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192 given incidence angle (approximately, 21.5, or 38.5). Data B5 band (1.60-1.70 m) was extracted over the 5 km hys
193 were processed for incidence angle and beam location on 8&km study area and resampled at 50-m resolution. Fractianal
194 ground by taking into account aircraft position, attitude, anoben water was estimated using B5 band [20] based espo a
195 ground topography. threshold method. Consequently, BS data were resamplesh at
196 As the sensitivity to soil moisture is higher for H-polarized resolution ner than that (250 m) of PLMR data to classifp
197 brightness temperature than for V-polarized brightness tempepen water pixels at 50-m resolution and to obtain fractiaaal
198 ature, only the H-polarized brightness temperatureis used open water at 250-m resolution from the binary classi catizga.
199in this paper. Preprocessing of consists of the following: ASTER 90-m resolution radiometric temperature was extrazied
2001) resampling H-polarized PLMR data at 250-m resolutioover the 5 km by 32 km area and aggregated at 250-m2ges-
2010n a grid that matches in symmetry to the ight lines oveolution to match the spatial resolution and extent of PLEAR
202the 5 km by 32 km area and 2) converting the resampletservations. Aggregation was achieved by linearly averagfiag
203 to an equivalent value at 21.5ncidence angle. The in- high-resolution surface temperatures, i.e., without accoumting
204 cidence angle 21.5is chosen to minimize conversion errorsfor the nonlinear relationship between physical temperaturesnd
205 The angular conversion involves the brightness temperatuegliance. This choice was motivated by the results of [2d1],
206 collected by inner beams at approximatelyiiicidence angle which compared the temperature aggregated using diffesant
207 being multiplied by the ratio , with and scaling approaches and obtained very low differences (maxi-
208 being the mean brightness temperatures collected by them difference of 0.2C). 264
209 middle and inner beams, respectively. Similarly, the brightness

210temp<_araf[ure collecteo_l by the_outer beam_s at approxmat(éy MODIS 065
211 38.5 incidence angle is multiplied by the ratio ,

212 with being the mean brightness temperature collected byThe MODIS/Terra data were collected concurrently veigh
213the outer beams. Mean brightness temperatures , , ASTER data. MODIS of cial products consisted of the 928za1
214and are computed as the average (for all ight linesyesolution surface skin temperature (MOD11-L2) retrievecdsy
215 of the collected by the beams pointing at , the “generalized split window” algorithm [22]-[24] and rezs9
216 and , respectively. This technique was already used istered in the sinusoidal projection. The MODIS Reprojectiom
217[11] to generate  images by assuming that the impact offool was used to project MOD11-L2 data in UTM WGS 1984
218 soil moisture and biomass on the angular dependance o 55S with a sampling interval of 1 km. 272

219 negligible or small. In this paper, a slightly different approach In this paper, the disaggregation of 1-km MODIS tempera-
220is adopted to take into account the variations in aircraft attitudiere is evaluated using high-resolution ASTER data. To digtin-
221during data collection, which made the incidence angtes- guish the errors associated with the disaggregation technigue
222 cillate around 7, 21.5, and 38.5. The brightness temperatureand the errors associated with the discrepancy between M@iBIS
223 observed at the incidence anglés multiplied by the and ASTER temperature products, a comparison is made7he-
224ratio , With being the mean tween ASTER and MODIS data at 1-km resolution over e
225 brightness temperature linearly interpolated &tcidence an- 5 km by 32 km study area. The ASTER data are aggregated
226 gle from the mean data collected by the inner, middle, and outdrthe MODIS spatial resolution (1 km) by linearly averagisg
227 beams. high-resolution temperatures. The root-mean-square differsice
(RMSD), bias, correlation coef cient, and slope of the lineaz
228B. ASTER regression between MODIS and aggregated ASTER datasare
' 2.7 C, 2.3 C,0.75, and 0.52, respectively. The discrepazazy
229 The ASTER instrument was launched in 1999 aboard Terrahatween MODIS and ASTER data, which is mainly explainesl
230 sun synchronous platform with 11:00 UTC descending Equatoere by a signi cant bias and a relatively low slope of the lings
231 crossing and a 16-day revisit cycle. An ASTER scene covers@agression, is on the same order of magnitude as the osan
232 area of approximately 60 km by 60 km and consists of 14 naddifference (about 3C) reported in literature [5], [21], [25]. 288
233looking bands and one oblique-looking band to create stereo-
234based digital elevation models. The three nadir-looking bands
235in the visible and near infrared have a 15-m resolution. The six
236 bands in the shortwave-infrared have a 30-m resolution. Finally, This paper aims to compare different approaches for 29s-
237there are ve thermal infrared bands with a 90-m resolution. aggregating kilometric MODIS land surface temperature data.
238 The ASTER overpass of the NAFE'06 site was offhe study uses aggregated ASTER and real MODIS zita
239 November 16, 2006. Of cial ASTER products [12] were usednd demonstrates the disaggregation at 250-m resolution29Bhe
240 here for surface re ectance (AST_07) and radiometric tempaesolution of 250 m is chosen to match with the lowest rese-
241 ature (AST_08) with accuracies of 5% and 1.5 K, respectivelytion at which ancillary data composed of red, near-infraped,
242 [13]-[19]. They were downloaded from the Earth Observinghortwave-infrared, and microwave-L bands are availablesdn
243 System Data Gateway (EDG). this case study, the target scale is determined by the resobkgion
244 ASTER 15-m resolution red (B2) and near-infrared (B3[250 m) of airborne microwave data. 298
245bands were extracted over the 5 km by 32 km area and reAs shown in the schematic diagram of Fig. 1, the disaggpe-
246 sampled at 250-m resolution to match the spatial resolutigation algorithms are noted as , with  being the numbesoo
247 and extent of PLMR observations. The ASTER 30-m resoluti@f factors taken into account in the disaggregation. The smw

I1l. DISAGGREGATIONALGORITHMS 289



4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Using D1, the disaggregated temperature is computed a7

—@—’ Aggregation
(2)
<—@— Disaggregation

with being the fractional green vegetation cover derivegbat

< Verification high resolution, beingthe aggregated at kilometrig2o
resolution, and  being the slope of the linear regressiao
@ T between and . Note that the variables de ned ag1
NS kilometric resolution are noted with the subscript km. 332
__[_ l . . Using D2, the disaggregated temperature is computed a3
‘ High-resolution
—> T(0) ancillary data (3)

¢

=l
N
"

i with being the projected and being the slopa34
—> TG (fyi f) of the linear regression between and the projected es-335
timated at kilometric resolution . Note that the variablezss

de ned at the image scale are written in bold. The notiors3f
a “projected variable” was introduced in [26]. It is a robass
tool that strenghtens the correlation between two variablesdy
representing the dependence of these variables on otherzaddi-
tional variables. In [5], the projection technique was apptied
to fractional green vegetation cover to arti cially improve the
spatial correlation between and by taking into account43

§<_> T4 i (Fyvi Towi Fous B) 1 the dependence of on . The projected fractional greesas
s ' vegetation cover is computed as 345

Fig. 1. Schematic diagram presenting the different disaggregation algorithms
of kilometric temperature and the veri cation strategy at high (250 m)
resolution.

—s T f,

ASTER temperature at 250 m resolution

,_
1
1
1
1

(4)

302 algorithms are noted as DkDO does not use any ancillarywith being the fractional total vegetation cover derivect
3o03data, while D1 is based on a linear regression between lamdh resolution, being the  aggregated at kilomes47
304 surface temperature and fractional green (photosyntheticaliy resolution, being the temperature of wet bare sailg
305 active) vegetation cover. Fractional green vegetation cover being the temperature of dry bare soil,  being the349
306is de ned as the surface area of green vegetation per unit atemperature of full-cover green vegetation, and  being3so
307 of soil. D1 is the same as in [4]. D2 is based on D1 buhe temperature of full-cover senescent vegetation (notag&ns
3o8takes into account both fractional green and total vegetatiare summarized in Table 1). Following the interpretationsesf
309 covers. Fractional vegetation cover is de ned as the total the “triangle method” [27], , , , and 353
310 surface area of (green plus senescent) vegetation per unit a@aespond to the minimum and maximum soil and vegetatian
3110f soil. D2 is the same as in [5]. The new algorithms D temperatures within the study area, respectively. It is remizded
312D ,D ,and D (and D ) are all derived from a radiative that , Wwith and being the fractionasse
313 transfer equation. The four algorithms differ with regard to thgreen and senescent vegetation covers, respectively. 357
314 number of factors which are explicitly taken into account. D In (4), the projected fractional green vegetation cover es8-
315includes the variability of  and is thus a substitute for D1 mated at kilometric resolution is 359
316 based on radiative transfer. Dincludes the variability of both

317 and  and is thus a substitute for D2 based on radiative

318transfer. The other algorithms Dand D integrate additional

319variables. D includes the variability of , , and fractional (5)
3200pen water . D includes the variability of , ,
321 and soil evaporative ef ciency (ratio of actual_ to potgntial soiith being the mean  over the whole study area. 360
322evaporation) . D is the same as D but with a different — the ey algorithms Duse a radiative transfer equatiest
323 formulation for soil evaporative ef ciency. to model the spatial variability of disaggregated temperateze
324 DO sets the disaggregated temperature as within each 1-km resolution pixel, using ancillary data avasi
able at high resolution such as , , ,and . D is364
(1) a substitute for D1 based on radiative transfer. It exprezses
disaggregated temperature as 366
325 with being the land surface temperature observed at kilo-

326 metric resolution. (6)
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TABLE |
INTERPRETATION OF THEVERTICES IN THEGENERALIZED “T RIANGLE APPROACH

367 with being the difference between the temperatufdonwatered land surface temperature is expressed as 395

368 simulated using high-resolution and that aggregated within

369 the 1-km resolution pixel (12)
with and being the temperature of full-cover gregss

and senescent vegetations, respectively, andeing the baregs7
(7)  soil temperature. With the soil evaporative ef ciency de ness

370 with being the land surface temperature simulated t;;‘)}o] 4 399

371 a radiative transfer equation. In (7), fractional total vegetation

372 cover, fractional open water, and soil evaporative ef ciency

373are set to their values aggregated at kilometric resolution.

374 Therefore, only the variability of  is taken into account at the bare soil temperature can be expressed as 400

375 high resolution. (14)

376 D is a substitute for D2 based on radiative transfer. It

377expresses the disaggregated temperature as in (6), with #jeassuming that water temperature is close to well-wateoed

37g simulated temperature difference  written as green vegetation [27], modeled land surface temperanme
becomes 403

(8) (15)

379 D is derived from the same radiative transfer equation aM(th the nonwatered land surface temperature expressed as4
3g80includes the variability of , , and at high resolution.

381 It determines the disaggregated temperature using (6) but with

382 the simulated temperature difference  written as (16)

(13)

The temperature extremes , and are40s
) extrapolated (according to Section V) from low-resolution laoé
surface temperatures using high-resolution ancillary data [837
383 D is derived from the same radiative transfer equation and

sgaincludes the variability of , , ,and at high resolu- IV. DERIVATION OF BIOPHYSICAL VARIABLES 408
385tion. It determines the disaggregated temperature using (6) but _ . _
386 with the simulated temperature difference  written as The four variables used by the disaggregation methoubol-

ogy are the following: fractional green vegetation cover, 410

fractional total (green plus senescent) vegetation cover4ii

(10) fractional open water , and soil evaporative ef ciency . 412

All of these variables are estimated from ASTER red, nezs-

387 D is an extension of (10) to replaceby another formula- infrared, and shortwave-infrared re ectance products and f#om

38g tion of soil evaporative ef ciency noted as. the PLMR H-polarized brightness temperature converted atsn
389 The high- to low-resolution simulated temperature differendecidence angle of 21.5 416
390in (7)—(10) is computed using a linearized radiative transfer

391equation [5], [28], [29]. Modeled land surface temperaturg Fractional Green Vegetation Cover 17
392 is written as

Fractional green vegetation cover can be estimated fromithe
(11) Normalized Difference Vegetation Index (NDVI) as in [31] 419

393 with being the surface temperature of a water body and NDVI (17)
394 being the skin temperature of a nonwatered land surface.
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By inverting (18), fractional vegetation cover is expressed4as

(19)

with  being the surface albedo estimated as a weighted sumof
red and near-infrared re ectances using the coef cients givessin
[34] and validated in [35]—[38]. As stated previously, our case
study does not allow calibrating , and on a447
pixel-by-pixel basis. Consequently, the value of computedsss
from (19) may, on some occasions, be lower thanor larger449
than 1. To avoid nonphysical values, is setto  and 1 in450
the former and latter case, respectively. 451

The spatial variation of fractional senescent vegetation caszer
over the study area is shown in Fig. 2. Nats

that NAFE'06 was undertaken at the beginning of the sunwaer

agricultural season so that all irrigated crops were greensssd
healthy. 456

C. Fractional Open Water 457

The fraction of open water within each 250-m resolutiga
pixel is estimated using 50-m resolution resampled ASTEER
B5 re ectance product. Various studies have indicated thas¢he
shortwave-infrared band centered at aroundmt is highly 461
sensitive to the presence of open water [20], [39], [40]. In #his
Fig. 2. Images of fractional green vegetation cover, fractional senescent paper, a simple threshold method is ?.pplled to CIaS_SIfy at 56am
vegetation cover , fractional open water , soil evaporative  f€solution the 5 km by 32 km area in tWO cIas;es. water 4sad
efciency , and soil evaporative ef ciency . Note that 2% of the 5 km by nonwatered surface. The threshold value is estimated as 8570
32 km area is contaminated by clouds and cloud shadow. Contaminated ZS%SM one ooded crop eld in the south of the study area. Tse
resolution pixels are represented by crossed-out surfaces. . .. . .
spatial variation of fractional open water over the study areais

420 with and being the NDVI over bare shown in Fig. 2. Open water represents 5% of the study s®a
421s0il and full-cover green vegetation, respectively. NDV| i@nd is attributed to rice cropping. 469
422 computed as the difference between near-infrared and red bands

423 divided by their sum. The spatial variation of fractional greep. Soil Evaporative Efbciency 470

424 vegetation cover over the study area is shown in Fig. 2. ) . ) , )
g % g Soil evaporative ef ciency is de ned as the ratio of actualr1

to potential soil evaporation. In this paperjs estimated fronma72
425B. Fractional Total (Green Plus Senescent) Vegetation CovePLMR brightness temperatures. Two different formulatiers
are used to evaluate the coupling effects of near-surfacei=oil

426  Fractional total vegetation cover is estimated by correlatinn(_:loisture and. on microwave-derived soil evaporatives
427 with surface albedo for green vegetation and by setting f cienc b P 476
428to the maximum  for senescent vegetation. This methodol Y-

) . . . By assuming that brightness temperature is mainly sengitive
429 0gy [5] is based on two assumptions, which are generally met in i . : . :
: ) ) . to surface soil moisture [41] and that soil evaporative ef cieacy
430 agricultural areas: 1) soil albedo is generally lower than green” . : : : )
. : . IS mainly driven by surface soil moisture [42], [43], soil evapo9
431 vegetation albedo, and 2) green vegetation albedo is lower thap . i
. . . rative ef ciency can be estimated as 480
432 senescent vegetation albedo. Although a time series of red and
433 near-infrared data would be required to estimate soil albedo
434 and green vegetation albedo on a pixel-by-pixel basis [5], only
435 0ne ASTER scene is available for this study period. Therefore, ) o
436an alternate approach is adopted. Surface albedo is modetéd and being the minimum and maxs1

437as a linear mixing of vegetation and soil components (e.gTum brightness temperatures observed over the study «za,
438[32] and [33]) respectively. As brightness temperature generally decre@ases

with surface soil moisture and increases with vegetation ceszer
(18) [44], and are interpreted as the brightness
temperatures over wet bare soil and full-cover senescent vege-
439 with , , and being the albedo for bare soil, full- tation with dry soil, respectively. The spatial variation obver 487
440 cover green vegetation, and full-cover senescent vegetatitie study area is shown in Fig. 2. 488
441 respectively, and with the end-members, ,and Since brightness temperature also depends on biomass4e.g.,
442 estimated in Section V. [45]), a second formulation of soil evaporative ef ciencyis 490

(20)
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TABLE I
NDVI AND SURFACE ALBEDO END-MEMBERS

491 derived in order to decouple the effects of soil moisture,
492and on . Asin [46], the assumption is that, for a given
493 vegetated pixel, if vegetation is partially stressed (i.e.,

494 or ), then near-surface soil moisture availability is

495 zero (i.e., ). Alternatively, if that pixel does not contain Fig. 3. ASTER surface albedo plotted against ASTER fractional green

. . . vegetation cover . Three particular values of are identied: the soil
496 senescent Vegetatlor_] (e, or ), then . IS" albedo estimated as the minimum surface albedo, the green vegetation
497 computed as the ratio of the measured “wet soil” brightnes®edo estimated as the albedo corresponding to the largestand the

498 temperature difference to the “dry soil’=“wet soil” brightnesgenescent vegetation albedo  estimated as the maximum surface albedo.

499 temperature difference. Formally, one writes . o i
In this paper, the study domain included extreme condit&as

if (21) in terms of vegetation cover so that NDVI end-members cepéd

be estimated from the red and near-infrared re ectancesac-

if (22) quired over the area on a single date. In the case where extzme
conditions are not encountered in the application domaseoa

500 with and being the “dry soil” and “wet soil” different approach should be adopted, such as the use of &3me
501 brightness temperatures, respectively, both being estimatedSefies of NDVI data (instead of a single snapshot image)sthat
502 . Since green vegetation is partially transparent to mould capture the phenological stages of agricultural cregs.

503 crowaves, the “dry soil” brightness temperature is computed Als0, the determination of re ectance end-members caakd
504 a weighted sum of the brightness temperature over dry bare £l further constrained by the use of ancillary spectral data
505 (noted as ) and the brightness temperature over fullsets [47]. 535

506 cover green vegetation with dry soil (noted as )

(23) B. Albedo 536

- . A : Fig. 3 shows the space de ned by surface albedands37
507 Similarly, the “wet soil” brightness temperature is computed Fctional green vegetation cover . Pixels including opems3s

508 a weighted sum of the brightne_:ss temperature over wet bare er are removed from the scatterplot. The soil albedo 539
509 (noted as ) and the brightness temperature over fuIII-S de ned as the minimum ASTER surface albedo obsessd
510 cover green vegetation with wet soil (noted as ) within the study area by assuming that the dependencaiof
(24) on soil moisture is small compared to .the depende_ncmﬂ,mf

on vegetation cover. The green vegetation albedo is 543

511 The spatial variation of over the study area is shown in Fig. 2&stimated as the surface albedo corresponding to maxisaam
fractional green vegetation cover. The senescent vegettion

albedo is estimated as the maximum surface albed®
512 V. ESTIMATING END-MEMBERS observed within the study area. Values for , , ands47
513 A key step in the disaggregation procedure is estimating @re reported in Table II. 548

514the 14 end-members from ASTER and PLMR data. They
515are composed of the following: , , ,
516 , , , , , , ,
517 , , and . For the convenience As the range of surface conditions varies with spatial ses-
518 of the reader, the unit is degree Celsius for radiometric temp@fution, two different procedures are developed to estiraste
519 ature and kelvin for brightness temperature. temperature end-members. 552
1) When estimating temperature end-members from 2538am
resolution data, one pixel is identi ed as fully coveresh
green vegetation, one pixel as fully covered senesgsnt
521 NDVIend-members are estimated as the minimum and maxi-  vegetation, one pixel as bare dry soil, and one pixedsas
522 mum values of NDVI observed over the 5 km by 32 km areafor ~ bare wet soil. In this case, it is assumed that all extresie
523 bare soil and full-cover green vegetation, respectively. Values conditions are included at high resolution within the stagy
524 for and are reported in Table II. domain. 559

C. Land Surface Temperature 549

520A. NDVI
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TABLE Il

LAND SURFACE TEMPERATURE ANDL-BAND BRIGHTNESS

TEMPERATUREEND-MEMBERS THAT ARE ESTIMATED FROM
HIGH-RESOLUTIONASTER TEMPERATUREDATA, EXTRAPOLATED
FROM AGGREGATEDASTER TEMPERATUREDATA, AND EXTRAPOLATED
FROM MODIS TEMPERATUREDATA. FOR THE CONVENIENCE OF THE

READER, THE UNIT IS DEGREECELSIUSFORRADIOMETRIC

TEMPERATURE ANDKELVIN FOR BRIGHTNESSTEMPERATURE

560 2) When estimating temperature end-members from 1-km

561 resolution data (as in the operational scenario), none of
562 the pixels are identi ed as representative of any extreme
563 condition. Temperature end-members are extrapolated
564 from 1-km temperature data using ancillary data com-
565 posed of air temperature, soil albedo, green vegetation
566 albedo, and senescent vegetation albedo as described in
567 the following.

_ _ Fig. 4. (a) Scatterplot of ASTER temperature versus fractional green vegeta-
568 _End members_ ’ ! » and . are O_'etef tion cover and (b) versus surface albedo, (c) scatterplot of aggregated ASTER
569 mined by analyzing the consistency of the diagrams in Fig. #mperature versus aggregated fractional green vegetation cover and (d) versus

570 Fig. 4(a) shows the space de ned by ASTER land surfa@@gregated surface albedo, and (e) scatterplot of MODIS temperature versus

: ; regated fractional green vegetation cover and (f) versus aggregated surface
571 temperature and ASTER fractional green vegetation cover. edo. The vertices . , ,and obtained using high-resolution data in

572 three edges of the triangle are interpreted [27] as “bare (a) and (b) are extrapolated using low-resolution data in (c), (d), (e), and (f)
573soil” between and , “wet surface” between and , and from ancillary data composed of air temperature, soil albedo , green

574 “dry soil’ between and . Fig. 4(b) shows the space de_vegetation albedo , and senescent vegetation albedo

575 ned by ASTER land surface temperature and ASTER surface

576 albedo. An interpretation of the polygon is provided 2y vertex corresponds to wet bare soil and is locatedsat
577in [5], which is consistent with the triangle method. The four in Fig. 4(c) [Fig. 4(e)] and at in 599
578 edges are interpreted as “bare soil” betweerand , “wet Fig. 4(d) [Fig. 4(f)]. It is placed in Fig. 4(c) [Fig. 4(e}po
s79surface” between and , “full cover” between and , at the intersection between  and the vertical lingo1
580 and “dry surface” between and . The notation system for . The slope of is computed as the slofe2
se1polygon vertices , , ,and issummarizedin Table I, and of the linear regression of the data points corresponeisg
ss2the corresponding temperature values , , to the “wet surface” edge of the triangle . 604
s83and are reported in Table I1I. The off-set of is determined from . 605
584 In this paper, high-resolution temperatureis assumed to  3) \Vertex corresponds to dry bare soil and is locatedcat
585 be unavailable. Consequently, the extreme temperatures, in Fig. 4(c) [Fig. 4(e)] and at in 607
586 : , and are extrapoled from the spaces Fig. 4(d) [Fig. 4(f)]. It is placed in Fig. 4(c) [Fig. 4(e}pos
587 and dened at kilometric resolution at the intersection between  and the vertical linegog
588 (see Fig. 4(c) and (d) for aggregated ASTER temperature and . The slope of is computed as the slogao
589 Fig. 4(e) and (f) for MODIS temperature). An approach similar  of the linear regression of the data points corresponding
590t [5] is used as follows. to the “dry soil” edge of the triangle . Thes12
501 1) Vertex  corresponds to full-cover green vegetation off-set of is determined from . 613
592 and is located at in Fig. 4(c) (Fig. 4(e) for  4) Vertex corresponds to full-cover senescent vegetasion
593 MODIS temperature) and at in Fig. 4(d) and is located at in Fig. 4(d) [Fig. 4(f)].615
594 [Fig. 4(f)]. In this paper, is set to the air tem- It is placed in Fig. 4(d) [Fig. 4(f)] at the intersectiane
595 perature  measured at the time of ASTER overpass. between and the vertical line . Thee17
596 Vertex s thus placed at in Fig. 4(c) [Fig. 4(e)] line is considered as being parallel to  [5]. 618

597 and at in Fig. 4(d) [Fig. 4(f)]. Consequently, the slope of is determined frons19
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620
621
622
623
624
625
626
627
628
629

637 temperatures being 2.6C, except for

the slope of . The off-set of is determined
from . Note that the lines and might

not be strictly parallel. This may be due to a lack of
representativeness of the surface conditions captured at
250-m resolution within the study area. In that case, one
or several data points may be located above . To
circumvent this artifact, the slope of in Fig. 4(d)

[Fig. 4(f)] is increased so that all data points will be
located below the “dry surface” edge.

Table Il lists the four temperature end-members: 1) esti-
630mated from Fig. 4(a) and (b) using high-resolution ASTER

631 data; 2) extrapolated from Fig. 4(c) and (d) using aggregated
632 ASTER temperature data; and 3) extrapolated from Fig. 4(e)
633and (f) using MODIS temperature data. The values extrapo-
634 lated from aggregated ASTER and MODIS temperatures are
635 rather close to those estimated from high-resolution ASTER
636 temperature data, with the maximum difference in extrapolated

using MODIS

638 data. In the latter case, the signi cant underestimation (€38

639 of

640 mean difference
ea1and/or 2) the smaller range of (spatial dynamics) of 1-km 4)

can be explained by the following: 1) the negative
C between MODIS and ASTER data

642 resolution MODIS data in relation to 1-km aggregated ASTER
643 data [please compare Fig. 4(c) with Fig. 4(e), and Fig. 4(d) with
644 Fig. 4(f)].

645D. Brightness Temperature

646

649

650 Ve values are estimated from a generalized version [5], [9] of
651 the classical “triangle method” [27].

652

To estimate soil evaporative efciency in (20) and
647in (22), ve brightness temperature values corresponding to
648 extreme surface conditions are required: , ,

Fig. 5(a) shows the space de ned by PLMR brightnesg
653 temperature and ASTER land surface temperature. In the f
654 lowing, an original interpretation of the ve vertices visible
655in Fig. 5(a) is provided, which is consistent with both th
656 classical “triangle method” and the state-of-the-art L-band r
657 diative transfer models. Vertices are presented successively
es8the counterclockwise direction, and the correspondence withl) Vertex

, and . In this paper, thos

In

659 vegetation and soil conditions is summarized in Table I.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

1)

2)

3)

Vertex at minimum brightness temperature: L-band ra-
diative transfer models predict an increase of brightness
temperature with biomass and a decrease of brightness
temperature with surface soil moisture (e.g., [48] and
[49]). Therefore, the point at minimum brightness tem-

perature corresponds to wet bare soil. This vertex is noted3) Vertex

as in Fig. 5(a), which is consistent with Fig. 4.

Vertex at maximum land surface temperature: the triangle
method predicts a decrease of land surface temperatur
with both vegetation cover and surface soil moisture.
Therefore, the point at maximum land surface tempera-
ture corresponds to dry bare soil. This vertex is noted as

in Fig. 5(a), which is consistent with Fig. 4.
Vertex at maximum brightness temperature: being con-

) Vertex

5) Vertex

moisture, the point at maximum brightness temperataee
corresponds to full-cover vegetation with dry soil.61t7
could correspond to full-cover green vegetation. Hews
ever, the associated land surface temperature in Fig63¢a)
is much larger than that over full-cover green vegetatigm
(21 C) and rather close to the temperature over fedl
cover senescent vegetation (34). Therefore, the poirds2
at maximum brightness temperature corresponds todsdl-
cover senescent vegetation with dry soil. This vesgx
is noted as in Fig. 5(a), which is consistent witkss
Fig. 4. A prime mark indicates that corresponds to as6
dry soil, whereas does not specify soil hydric status?
Note that  does not necessarily correspond to gy
senescent vegetation since wet senescent vegetatiogscan
lead to large values of brightness temperature [509m
our case study, however, no rainfall occurred duringedie
four days preceding the ASTER overpass, which means
that senescent vegetation was completely dry. In ternssof
radiative transfer modeling, the effect of dry biomasssen
brightness temperature can be represented by large v&lsies
of roughness parameter [51]. 696
Vertices at minimum land surface temperature: two nsore
vertices are apparent in the counterclockwise directo®.
Being consistent with a decrease of land surface &a®-
perature with green vegetation, both points correspond
to full-cover green vegetation. As vegetation is partiably
transparent to the L-band emission from the soil, each
point corresponds to a different soil hydric status. 7o
vertex with a larger [noted as in Fig. 5(a)]704
corresponds to full-cover green vegetation with dry sai,
and the point with a lower [noted as in Fig. 5(a)] 706
corresponds to full-cover green vegetation with wet soil7

As high-resolution temperature is assumed to be unavaitable
in this paper, brightness temperature end-members areosot
timated from the polygon
e polygon
an interpretation of the polygon in Fig. 5(b), based on tte
onsistency with the polygon in Fig. 5(a). In particular, the s
Pertices in Fig. 5(a) can be located in Fig. 5(b) as follows. 714

in Fig. 5(a) but from710
shown in Fig. 5(b). The following ig11

corresponds to wet bare soil. It is located7sd
the minimum value of brightness temperature such that
717

2) Vertex corresponds to bare dry soil. It is not apparerg

in Fig. 5(b) because fractional green vegetation is met
suf cient information to distinguish between bare swib
and senescent vegetation. 721
corresponds to full-cover senescent vegetatizmn
with dry soil. It is located at the maximum value ©f3
brightness temperature. 724
corresponds to full-cover green vegetatikes
with dry soil. It is located at the maximum value w6
brightness temperature such that 727
corresponds to full-cover green vegetation wits
wet soil. It is located at the minimum value of brightness
temperature such that 730

sistent with an increase of vegetation emission with Based on the aforementioned interpretation of the polyzgan

biomass and a decrease of soil emission with surface soil

in Fig. 5(b), the methodology used for estimatireg
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Fig. 5. (a) Scatterplot of PLMR incidence-corrected brightness temperatureersus ASTER land surface temperature and (b) versus ASTER fractional
green vegetation cover, and (c) scatterplot of aggregatedversus aggregated ASTER temperature and (d) versus MODIS temperature. Extreme brightness

temperatures , , ,and are estimated by interpreting the bare soil, dry surface, full-cover vegetation, and wet surface

edges of the polygon in (b). The estimation of using low-resolution temperature data is illustrated with aggregated ASTER temperature in (c) and MODIS

temperature in (d).
733 , , , , and is shown in Fig. 1, the veri cation strategy consists in comparing
734 detailed in the following. disaggregation results at 250-m resolution with ASTER land
735 1) The brightness temperature over full-cover dry surfaggirface temperature. An application to MODIS data is aigo
736 and over wet bare soill are set presented. 776
737 to the maximum and minimum brightness temperatures
738 observed within the study area, respectively. y .
739 2) The brightness temperatures over full-cover green vef: APPlication to Aggregated ASTER Data r
740 etation with wet soil and over full-cover 1) End-Members Derived From High-Resolution Daféhe 778
741 green vegetation with dry soil are estimated approachis rstimplemented using the end-members estinvated
742 as the brightness temperature extrapolated at  in  from high-resolution ASTER temperature data. This alloas
743 Fig. 5(b) along the “wet soil” and the “full-cover dry testing the robustness of the model in (15) and (16) inde-
744 soil” edge, respectively. The slope of the lines pendently of the methodology used for extrapolating the mize
745 and are determined so that all of the points withend-members , , : , : , 783
746 be above and below the “wet soil” and “full- , ,and ) 784
747 cover dry soil” edges, respectively. Fig. 6 shows the output images of the eight disaggregatien
748 3) Vertex cannot be identied in the space . algorithms, which are to be compared with the reference image
749 Consequently, is set to the brightness temperaderived from ASTER land surface temperature. One obsewes
750 ture corresponding to the maximum  (see Fig. 5(c) for that the disaggregated temperature is successively impmsged
751 aggregated ASTER temperature and Fig. 5(d) for MODISy including additional factors in the disaggregation, whish
752 temperature data). indicates that the methodology is able to take into accoemt
753 Table Ill lists the ve brightness temperature end-memberseveral independent factors. Although the boxy artifact at 1zém
754 1) estimated from Fig. 5(a) using high-resolution ASTER dategsolution is successively reduced from to , itis still 792
7552) estimated from Fig. 5(b) and (c) using high-resolutioapparent for . This effect may be due to the following: 133

756 fractional green vegetation cover and aggregated ASTER teather factors that are not taken into account in the procedeue,
757 perature data; and 3) estimated from Fig. 5(b) and (d) usisgch as green vegetation water stress, wind speed, sudace
758 high-resolution fractional green vegetation cover and MODI&nissivity, surface albedo, etc.; 2) errors in estimated , 796
759 temperature data. Values estimated from low-resolution tem- , and ; and/or 3) resampling errors at 250-m resolution797
760 perature are remarkably close to those estimated from high-Table 1V lists the RMSD, correlation coef cient, and slopes
761resolution ASTER temperature data (Table Ill), except fdyetween the disaggregated and ASTER temperatures forzeach
762 with a difference of 6 K. This difference is apparentlyof the eight disaggregation algorithms. The error is successéoely
763 due to the lack of representativeness of kilometric aggregatgecreased from 1.6%C to 1.16 C, while the correlation coeBo1
764 brightness temperature and the method for estimating cient and slope are successively increased from 0.79 and €053
765 at kilometric scale. Note, however, that a 6-K difference is stilb 0.89 and 0.88, respectively. When comparing D1, D2, Bo3
766 relatively low compared to the range (190 K—280 K) covereahd D , no signi cant differences are observed betweensedl
767 by brightness temperature values. four algorithms in terms of root-mean-square error, correlagosn
coef cient, and slope. Note that, in this paper, was estimatedos

in a different way than in [5] because only one visible @od
near-infrared image was available and a FORMOSAT-like those
769 The disaggregation algorithms presented here are applgsties would be required to derive more accurately on 809
770to the NAFE’'06 data set. ASTER land surface temperaturep#xel-by-pixel basis. Nevertheless, this comparison suggasts
771aggregated at 1-km resolution, and kilometric temperaturetisat D seems to be equivalent to D1 and Bequivalent tos11l
772used as inputto DO, D1, D,D2,D ,D ,D ,and D .As D2, which justi es the use of the model. 812

768 VI. APPLICATION
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Fig. 6. Maps of the temperature disaggregated by the eight algorithms as compared with the map (right) of high-resolution ASTER temperature.

TABLE IV
RMSD, CORRELATION COEFFICIENT , AND SLOPE BETWEEN THE
DISAGGREGATED ANDASTER TEMPERATURES THE RESULTS
CORRESPOND TO THEEND-MEMBERSESTIMATED USING
HIGH-RESOLUTIONASTER TEMPERATUREDATA
(TO THE END-MEMBERS EXTRAPOLATED USING
AGGREGATEDASTER TEMPERATUREDATA)

813 The main advantage of the new approach is to take into

814account a number of additional factors, including fractional

815 open water and soil evaporative ef ciency. When comparing the

816 results obtained forD,D ,andD inTable 1V, itis observed

g17that the disaggregated temperature is signi cantly improved

818 against the classical approaches D1 and D2. Moreover, the

819 statistical results are successively improved by including

820 , and . Fig. 7 shows the improvement, especially in the

821 slope between the_‘ dlsaggreg_atgd and ASTER temperatures. IIlhe7 Aggregated ASTER temperature (1 km) is disaggregated by each of

822 good results obtained for D indicate that the performance ofinhe eight algorithms and is plotted against high-resolution ASTER temperature.

823 disaggregation algorithms is intimately related to the following:

824 1) the capability of separating the independent factors thee subjected to uncertainties in land surface temperaturezand
825impact on surface temperature and 2) the ability to integréteightness temperature end-members, the ve algorithmsare
826 them consistently into the procedure. next tested using the end-members estimated from kilogaet-
827 2) End-Members Derived From Aggregated ASTER Datdac temperature data, as presented in Section V. Aggregated
828 As disaggregation procedures DD , D , D , and D ASTER (instead of MODIS) data are used to evaluateste
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TABLE V
RMSD, CORRELATION COEFFICIENT , AND SLOPE BETWEEN THE
DISAGGREGATED ANDASTER TEMPERATURES THE RESULTS
CORRESPOND TO THEEND-MEMBERSEXTRAPOLATED
USING MODIS TEMPERATUREDATA

from 3.2 C to 3.0 C, while the correlation coef cient angbo
slope increase from 0.6 and 0.3 to 0.7 and 0.5, respectsaly.
The results obtained for Dand D in Table V indicate thage2
the disaggregated temperature is improved against the classical
approaches D1 and D2. As for the application to aggregsded
ASTER data, the statistical results are successively impresed
by including , , and . However, the improvement witkse
MODIS data is not as visible as with aggregated ASTEER
data because the difference between MODIS and ASTERsdata
(please refer to Section 1I-C) has the same order of magniemle
Fig. 8. MODIS temperature (1 km) is disaggregated by each of the eighs the subpixel variability at 250-m resolution (see RMSDsfar
algorithms and is plotted against high-resolution ASTER temperature. DO in Table V). In particular, the mean bias and the relatisaty
low slope of the linear regression between the disaggregsated

834 impact of end-members regardless of the discrepancy betweo‘% ASTER data are associated with the discrepancy at &7km

835 MODIS and_ASTER temperatures. i i resolution between the MODIS and ASTER temperature data.
836 Table IV lists the RMSD, correlation coef cient, and slope

837 between the disaggregated and ASTER temperatures for each

83gof the ve algorithms. Results are compared with those ob- VII. SENSITIVITY ANALYSIS 875
839 tained using the end-members estimated from high-resolution - )

840 ASTER temperature. In general, the error is slightly larger, T0 further assess the stability of the newallyorithms based76
s41and the correlation coef cient and slope are slightly lower u£n radiative transfer, two sensitivity analyses are condueted
842ing extrapolated end-members. Nevertheless, the disaggreg@dhe following: 1) adding a Gaussian noise on kilomegrig
843temperature is still much improved by applying Dinstead of {emperatures and h|gh_-res_olut|on brightness temperatgre_s_mnd
844D , with the correlation coef cient and slope increasing fron?) €stimating the contribution of each factor on the variabiity
8450.74 to 0.88 and from 0.72 to 0.86, respectively. Consequenf®,modeled land surface temperature. 881
846 the extrapolation of end-members from kilometric data is not

847 found to be a limiting factor in the methodology. A Uncertainty in End-Members 662

To test the stability of the method for estimating the néag
end-members ( , , , , 884
849 Disaggregation algorithms DO, D1, D2,D ,D ,D , , , and ) from low-resolutionsss
gsoand D are then applied to MODIS data. In this case, endemperature data, a Gaussian noise with a standard devéaton
851 members are derived from MODIS data. Fig. 8 shows the scaf-1 C is added to the kilometric (aggregated ASTER) lagd
852 terplot of disaggregated MODIS versus ASTER temperature feurface temperature data set, and a Gaussian noise with a&tan-
853 each algorithm separately. One observes that the new methodald deviation of 2 K is added to the high-resolution brightresss
854 0gy improves the correlation and slope of the linear regressitamperature data set. An ensemble of 100 data sets is gensgated
855 between the disaggregated and ASTER temperatures. Howesad used as input to the disaggregation algorithms. 891
856a systematic negative bias is apparent in the disaggregatedable VI reports the average and standard deviation oBex-
857 temperature. Table V lists the RMSD, correlation coef cientrapolated end-members computed within the ensemble 084900
858 and slope between the disaggregated and ASTER temperatantiscially perturbed data sets. Results indicate that the metvad
859 for each of the eight algorithms. The error slightly decreasés extrapolating end-members is stable for all end-memisess.

848 B. Application to MODIS Data
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TABLE VI
MEAN AND STANDARD DEVIATION OF LAND SURFACE TEMPERATURE
AND L-BAND BRIGHTNESSTEMPERATUREEND-MEMBERS
EXTRAPOLATED USING KILOMETRIC TEMPERATUREDATA. FOR THE
CONVENIENCE OF THEREADER, THE UNIT IS DEGREECELSIUS FOR
RADIOMETRIC TEMPERATURE ANDKELVIN FOR
BRIGHTNESSTEMPERATURE

TABLE VII
RMSD, CORRELATION COEFFICIENT , AND SLOPE BETWEEN THE
DISAGGREGATED ANDASTER TEMPERATURES FOR THEDATA
INCLUDING ALL THE 100 ARTIFICIALLY NOISED DATA SETS

Fig. 9. Asfor Fig. 7 but using all the 100 arti cially noised input data sets.

in land surface temperature is derived by computing the 9tst

partial derivative of from (15) and (16) 917
— (25)
Similarly, the rst partial derivative of is computed witho1s
896 Table VII lists the RMSD, correlation coef cient, and sloperESpeCt to 919

897 between the disaggregated and ASTER temperatures for all 100

898 data sets. Although the results are generally degraded by using

899 noisy input data sets, D is still superior to all other algorithms (26)
900 (see Fig. 9). Therefore, the integration of fractional open wateith respect to 920
901 and soil evaporative ef ciency into the disaggregation is able to

902 improve the representation of land surface temperature variabil——

903 ity despite the uncertainties in and , and the uncertainties

904 in extrapolated end-members. (27)

and with respect to 921
905 B. Weighting Variability Factors 28)
906 Results with the NAFE'06 data set have indicated that the
907new D algorithms based on radiative transfer signi cantly Table VIII lists the standard deviation of each parameter
9og improve (in relation to D1 and D2 methods) the representatiavithin the study area, the average of partial derivatives, andzhe
909 of disaggregated temperature by directly integrating the variorgdative weight of each parameter on the variability of modeled
910 input parameters of the radiative transfer equation. Another ddnd surface temperature. The relative weights of , 925
911 vantage of the proposed methodology is to quantify the weigdnhd  are estimated as the mean partial derivative timeibe
912 of these input parameters. Here, the relative weights of standard deviation. Results indicate that all parameters haze a
913 , ,and are compared, and the relative improvement inegative impact on . More interestingly,  appears to be2s
914 disaggregated temperature when including these factors in the most signi cant variability factor, with a relative weigbao
915 disaggregation is assessed. The weight ofon the variability of 42%, which is consistent with NDVI-based approaches44j.
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TABLE VIl
STANDARD DEVIATION, MEAN PARTIAL DERIVATIVE, AND IMPACT ON HIGH-RESOLUTION MODELED TEMPERATURE OFEACH OF THE
FOUR PARAMETERS. FRACTIONAL GREEN VEGETATION COVER, FRACTIONAL SENESCENTVEGETATION COVER,
FRACTIONAL OPEN WATER, AND SOIL EVAPORATIVE EFFICIENCY

931 The second and third most signi cant variability factors are sodrror in disaggregated temperature is successively reducedfimom
932 evaporative ef ciency and fractional open water, with relativé.65 C to 1.16 C by including each of the four parametesgs
933 weights of 27% and 20%, respectively. Finally, fractional seneghe correlation coef cient and slope between the disaggregated
934 cent vegetation cover represents only 11% of the variabilighd ASTER temperatures are improved from 0.79 to 0.89%aad
935in land surface temperature. The low impact of can be from 0.63to 0.88, respectively. Moreover, the radiative transfer
936 associated with the low mean partial derivative. In particulaeguation allows quantifying the impact at high resolutiorogf
937 is low because the temperature difference beach parameter on land surface temperature. In this case study,
93gtween dry bare soil and full-cover senescent vegetatioriractional green vegetation cover is responsible for 42% obghe
939 is also low in our case study. variability in disaggregated land surface temperature, fractigszal
940 The relative weights in Table VIII are now related withsenescent vegetation cover for 11%, fractional open wategstor
941the disaggregation results in Table Ill. Consequently, the po®d%, and soil evaporative ef ciency for 27%. 985
942 improvement of D2 against D1 (and Dagainst D ) can be Note that the approach presented in this paper did notdske
943 attributed to the relatively low weight of in the variability of into account the water stress of green vegetation becausesgabne
944 land surface temperature. Conversely, the signi cant improvef the considered parameters (fractional green vegetation cseer,
assments of D against D, D against D , and D1 (and D)  fractional senescent vegetation cover, fractional open wateggand
946 against DO are attributed to the large weights of , and soil evaporative ef ciency) could describe the hydric statusdof
947 , respectively. photosynthetically active (green) vegetation. The analysisoans
948 In summary, the variability of land surface temperature is reaenducted solely in a highly irrigated environment in whash
949 sonably represented by model . Moreover, the approach vegetation water stress was small. However, in most casgs,
950 allows the relative weight of each variability factor to be takethe vegetation water stress might not be negligible for natbeeal
951 into account in the disaggregation procedure. areas. In the presence of water-stressed green vegetatiosgsthe
scatterplot (temperature versus green vegetation cover) vgoelld
be transformed into a trapezoidal shape with four vertéses
rather than a triangle. In such conditions, the disaggregatien
953 A new disaggregation methodology for land surface tenproblem would be partly undetermined since the partitiorsign
954 perature has been developed to integrate the main surfaetween unstressed and stressed green vegetations woulcbmot
955 parameters involved in the surface energy budget. It is badszlrepresented. Consequently, the approaches shown hammare
956 0n a linearized radiative transfer equation, which distinguishaet expected to be representative of other less extreme envivan-
957 between soil, vegetation, and water temperature, and uses swhts than the present irrigated area. Nevertheless, one siwoald
958 evaporative ef ciency and fractional senescent vegetation codarep in mind that improving the spatial resolution of laid4
959to parameterize/estimate soil and vegetation hydric status, sefface temperature data via disaggregation is only relevarbin
960 spectively. The approach is implemented using four parantbe conditions where the spatial variability of temperatureots
ge1ters: the fraction of green vegetation cover derived from rédrge. 1007
962 and near-infrared bands, the fraction of senescent vegetatiodlthough the approach was successfully applied to airbaong
963 cover derived from red and near-infrared bands, the fractiand satellite data collected during NAFE’'06, further researahds
964 of open water derived from shortwave-infrared band, and theeded to test the disaggregation approach on a routine basis.
965 soil evaporative ef ciency derived from microwave-L bandOne may anticipate that fractional green and senescent vege-
966 It is tested over a 5 km by 32 km area of irrigated land itation covers could be derived accurately using FORMOSAT2
967 Australia, including ooded rice crops, using ASTER and Liike data. The FORMOSAT-2 instrument [52] provides shaot3
968 band airborne data. Low-resolution land surface temperatuvave data at high spatial resolution (8 m) and high tempursed
969is simulated by aggregating ASTER land surface temperaequency (potentially one image per day), which allow a 105
groture at 1-km resolution, and the disaggregated temperaturaislysis of the seasonality of canopies during the crop ayle
971 compared to high-resolution ASTER temperature. The resulf, [53], [54]. Fractional open water could be derived fran17
972 indicate that the methodology is able to separate ef ciently tHeandsat-5 data (e.qg., [20]). Although the repeat cycle of Lantizat
973independent factors that impact surface temperature and to ir{fé days) is longer than the temporal resolution needed fordara
974 grate them consistently into the disaggregation procedure. Theface temperature, the seasonal variations of water boalies

952 VIIl. SUMMARY AND CONCLUSION
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. and Microwave-L Bands

5 Olivier Merlin, Frédéric Jacob, Jean-Pierre Wigneron, Jeffrey Walker, and Ghani Chehbouni

6 Abstract—Land surface temperature data are rarely available sible for 42% of the variability in disaggregated temperature, 38
7 at high temporal and spatial resolutions at the same locations. To fractional senescent vegetation cover for 11%, fractional opeR9
8 Il this gap, the low spatial resolution data can be disaggregated water for 20%, and soil evaporative ef ciency for 27%. 40
9 at high temporal frequency using empirical relationships between

10 remotely sensed temperature and fractional green (photosynthet-
11lically active) and senescent vegetation covers. In this paper, a
12 new disaggregation methodology is developed by physically link-
13 ing remotely sensed surface temperature to fractional green and

Index Terms—Advanced Scanning Thermal Emission and Re41
ection radiometer (ASTER), brightness temperature, disaggre-42
gation, evaporative ef ciency, land surface temperature, Moderate43
Resolution Imaging Spectroradiometer (MODIS), multispectral, 44

14 senescent vegetation covers using a radiative transfer equation.c’pen water, soil moisture, vegetation fraction. 45
15 Moreover, the methodology is implemented with two additional

16 factors related to the energy budget of irrigated areas, being the I. INTRODUCTION 46
17 fraction of open water and soil evaporative ef ciency (ratio of . .

18 actual to potential soil evaporation). The approach is tested over EMOTELY sensed land surface temperature is a signature
19a 5 km by 32 km irrigated agricultural area in Australia using of the thermodynamic equilibrium state of the surfase

20 airborne Polarimetric L-band Multibeam Radiometer brightness  skin. Consequently, it provides the potential to monitor aty-
21 temperature and spaceborne Advanced Scanning Thermal hamic information on instantaneous energy and water uxes

22 Emission and Re ection radiometer (ASTER) multispectral data. t the land f t h interf N thel thse
23 Fractional green vegetation cover, fractional senescent vegeta-a ¢ lagggsuriace—aimosphere Intepace. NSQgleless, op-

24 tion cover, fractional open water, and soil evaporative ef ciency €rational use of thermal remote sensing for hydrological =nd
25 are derived from red, near-infrared, shortwave-infrared, and mi-  water resource management studies has been limited to regnal
26 crowave-L band data. Low-resolution land surface temperature gcale applications (e.g., [1] and [2]) mainly because the spatial
271is simulated by aggregating ASTER land surface temperature to oqq|ution (larger than 1 km) of current high temporal resolution

28 1-km resolution, and the disaggregated temperature is veri ed th | is t i t the het iy of
29 against the high-resolution ASTER temperature data initially used 'efmal SENSOrS IS 100 coarse 1o represent the heterogensay o

30in the aggregation process. The error in disaggregated tempera- Man-made landscapes. For example, the Moderate Resoation
31ture is successively reduced from 1.65C to 1.16 C by includ- Imaging Spectroradiometer (MODIS) has a revisit frequestcy
32ing each of the four parameters. The correlation coefcient and of 1 or 2 times per day but a spatial resolution of only 1 lsm,
33 slope between the disaggregated and ASTER temperatures are,, hile the Advanced Scanning Thermal Emission and Re ection

34 improved from 0.79 to 0.89 and from 0.63 to 0.88, respectively. . . .
35 Moreover, the radiative transfer equation allows quanti cation of radiometer (ASTER) has a spatial resolution of 90 m bst a

36 the impact on disaggregation of the temperature at high resolution evisit time of only 16 days. 62
37 for each parameter: fractional green vegetation cover is respon-  The use of remotely sensed land surface temperaturesever

agricultural areas requires data at both high spatial and temgoral
resolutions [3]. While there is a lack of high spatial resolutsen
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80 The accuracy in disaggregated temperature was improvedrgw methodology includes the variability at hectometric rese-
81taking into account fractional senescent vegetation cover lirtion of fractional open water and soil evaporative ef ciencys
82 addition to fractional green vegetation cover. With respect to other disaggregation algorithms in literatume
83 Fractional green and senescent vegetation covers, howeld, [5], the proposed technique differs in the following faun
84 are not the only factors explaining the spatial variations of landain aspects: 1) it relies on a physically based radiative tramsfer
85 surface temperature, especially over irrigated areas where cegpation rather than empirical linear regressions; 2) it takes
86 elds may have different moisture status to the surrounds. Into account the fractional open water derived from shortwaxe-
87 particular, the temperature over a ooded crop eld may b@nfrared band as required; 3) it takes into account the soil hyd&c
88 drastically different from the temperature over a mature crgpatus via microwave-derived soil evaporative ef ciency; anel
89 eld. Therefore, the fraction of open water is an importard) it allows the relative weight of each parameter usedifiar
90 variable to represent the spatial variations of land surface tedisaggregating temperature to be quanti ed. 148
91 perature. Over nonwatered land surfaces, the soil evaporativhe new disaggregation technique is compared to thei4sx-
92 ef ciency (ratio of actual to potential soil evaporation) is dsting approaches using data collected during the Natiostal
93 signature of the capacity of the soil to evaporate its watéirborne Field Experiment in 2006 (NAFE'06; [9]). The exs1
94 content in the near surface and thus to counter an increasgefimental site covers a 5 km by 32 km irrigated agricultusal
95 its thermodynamic temperature. Consequently, soil evaporataea, which included approximately 5% of ooded rice craps
96 ef ciency is also an essential variable to describe the spat@dliring NAFE'06. Disaggregation algorithms are rst testedisy
97 variations of land surface temperature. Moreover, knowledgggregating ASTER temperature at 1-km resolution andsby
98 of soil evaporative ef ciency is needed to decouple the effectomparing the disaggregated temperature to the high-resoh#éon
99 of soil and vegetation hydric status on the surface ener@fsTER temperature initially used in the aggregation process.
100 budget and hence to better represent the resultant radiafiVee application to aggregated ASTER data allows evaluatag
101 surface temperature. As an example, the crop water stress indpgroaches independently of differences between ASTER2nd
102 (CWSI) [6], [7] can be used to detect plant stress based on M®DIS products [5]. Disaggregation algorithms are then iap-
103 difference between foliage and air temperature. Neverthelegbed to MODIS data. 161
104the application of the CWSI to partially vegetated areas is
105 subjected to large uncertainties because the soil background
106 may have a different temperature to the plants [7] depending
107 on soil evaporative ef ciency. Another example is provided by The study area is a 5 km by 32 km area included in i
108 Moranet al.[8] who proposed the vegetation index/temperatui@oleambally Irrigation Area (CIA) located in the at wests4
109 (VIT) trapezoid to estimate a most probable range of plaetn plains of the Murrumbidgee catchment in southeast&sn
110 stress over partially vegetated elds. Itis a three-step procedukastralia (35 S, 146 E). The principal summer crops grovias
111in which the following steps are performed: 1) the temperaturgsthe CIA are rice, maize, and soybeans, while winter crmgs
112 of the four vertices of the VIT trapezoid are estimated using amclude wheat, barley, oats, and canola. In November, rice aeps
113 energy budget model; 2) the minimum and maximum probaldee ooded under 30 cm height of irrigation water. 169
114 vegetation temperatures are estimated from the measured coni-he NAFE'06 was conducted from October 31 1t
115 posite land surface temperature, together with the maximuiovember 20, 2006, over a 40 km by 60 km area, with maue
116 and minimum simulated soil temperatures; and 3) the minimudetailed ights over the 5 km by 32 km focus area studied
117 and maximum probable CWSIs are computed by normalizitig this paper. While a full description of the NAFE'06 datzs
118the minimum and maximum probable vegetation temperaturgst is given in [9], a brief overview of the most pertinant
119from the vegetation temperature extremes simulated by ttetails is provided here. The data used in this paperizae
120 energy budget model. The point is that this approach does womprised of airborne L-band brightness temperature; ASTER
121 allow estimating a single CWSI value because the retrievad, near-infrared, and shortwave-infrared re ectances; ASTER
122 problem is underdetermined. In particular, Morahal. [8]  land surface temperature data (resampled at 250-m resolutitan);
123noted that “with knowledge of a second point within théODIS land surface temperature data; and air temperatureldata
124 hourglass (perhaps soil temperature), it would be possibledollected by a meteorological station in the NAFE’'06 area. 180
125infer [the canopy-air temperature] difference and pinpoint the

126 CWSI value.” In the latter case, knowledge of soil temperatu'rg PLMR
127is equivalent to knowledge of soil evaporative ef ciency, which™

128 would remove the underdetermination of the VIT trapezoid. = The Polarimetric L-band Multibeam Radiometer (PLMR)Lé2
129 The objective of this paper is to develop a new disaggregan airborne instrument that measures both H and V polareza-
130tion methodology of kilometric land surface temperature usir@ns using a single receiver with polarization switching at viea

Il. EXPERIMENTAL DATA 162

181

131 hectometric multivariable ancillary data. The approach is basadgles of ,and . The accuracy of the PLMR85
1320n a radiative transfer equation that estimates differencesisnestimated to be better than 2 K and 3 K in the H ands¥
133 temperature data at hectometric resolution. Speci cally, the upelarization, respectively [10]. 187

134 of a radiative transfer equation allows the following: 1) includ- During NAFE'06, the PLMR ew on November 14 to collecss
135ing variables other than those used by previous disaggregatichand brightness temperature at 250-m resolution ovenghe
136 approaches and 2) deducing the most pertinent variables.5llkm by 32 km area in the CIA. PLMR was mounted in tive
137 addition to fractional green and senescent vegetation covers,dlaeoss-track con guration so that each pixel was observediat a



MERLIN et al: MULTIDIMENSIONAL DISAGGREGATION OF LAND SURFACE TEMPERATURE 3

192 given incidence angle (approximately, 21.5, or 38.5). Data B5 band (1.60-1.70 m) was extracted over the 5 km hys
193 were processed for incidence angle and beam location on 8&km study area and resampled at 50-m resolution. Fractianal
194 ground by taking into account aircraft position, attitude, anoben water was estimated using B5 band [20] based espo a
195 ground topography. threshold method. Consequently, BS data were resamplesh at
196 As the sensitivity to soil moisture is higher for H-polarized resolution ner than that (250 m) of PLMR data to classifp
197 brightness temperature than for V-polarized brightness tempepen water pixels at 50-m resolution and to obtain fractiaaal
198 ature, only the H-polarized brightness temperatureis used open water at 250-m resolution from the binary classi catizga.
199in this paper. Preprocessing of consists of the following: ASTER 90-m resolution radiometric temperature was extrazied
2001) resampling H-polarized PLMR data at 250-m resolutioover the 5 km by 32 km area and aggregated at 250-m2ges-
2010n a grid that matches in symmetry to the ight lines oveolution to match the spatial resolution and extent of PLEAR
202the 5 km by 32 km area and 2) converting the resampletservations. Aggregation was achieved by linearly averagfiag
203 to an equivalent value at 21.5ncidence angle. The in- high-resolution surface temperatures, i.e., without accoumting
204 cidence angle 21.5is chosen to minimize conversion errorsfor the nonlinear relationship between physical temperaturesnd
205 The angular conversion involves the brightness temperatuegliance. This choice was motivated by the results of [2d1],
206 collected by inner beams at approximatelyiiicidence angle which compared the temperature aggregated using diffesant
207 being multiplied by the ratio , with and scaling approaches and obtained very low differences (maxi-
208 being the mean brightness temperatures collected by them difference of 0.2C). 264
209 middle and inner beams, respectively. Similarly, the brightness

210temp<_araf[ure collecteo_l by the_outer beam_s at approxmat(éy MODIS 065
211 38.5 incidence angle is multiplied by the ratio ,

212 with being the mean brightness temperature collected byThe MODIS/Terra data were collected concurrently veigh
213the outer beams. Mean brightness temperatures , , ASTER data. MODIS of cial products consisted of the 928za1
214and are computed as the average (for all ight linesyesolution surface skin temperature (MOD11-L2) retrievecdsy
215 of the collected by the beams pointing at , the “generalized split window” algorithm [22]-[24] and rezs9
216 and , respectively. This technique was already used istered in the sinusoidal projection. The MODIS Reprojectiom
217[11] to generate  images by assuming that the impact offool was used to project MOD11-L2 data in UTM WGS 1984
218 soil moisture and biomass on the angular dependance o 55S with a sampling interval of 1 km. 272

219 negligible or small. In this paper, a slightly different approach In this paper, the disaggregation of 1-km MODIS tempera-
220is adopted to take into account the variations in aircraft attitudiere is evaluated using high-resolution ASTER data. To digtin-
221during data collection, which made the incidence angtes- guish the errors associated with the disaggregation technigue
222 cillate around 7, 21.5, and 38.5. The brightness temperatureand the errors associated with the discrepancy between M@iBIS
223 observed at the incidence anglés multiplied by the and ASTER temperature products, a comparison is made7he-
224ratio , With being the mean tween ASTER and MODIS data at 1-km resolution over e
225 brightness temperature linearly interpolated &tcidence an- 5 km by 32 km study area. The ASTER data are aggregated
226 gle from the mean data collected by the inner, middle, and outdrthe MODIS spatial resolution (1 km) by linearly averagisg
227 beams. high-resolution temperatures. The root-mean-square differsice
(RMSD), bias, correlation coef cient, and slope of the lineaz
228B. ASTER regression between MODIS and aggregated ASTER datasare
' 2.7 C, 2.3 C,0.75, and 0.52, respectively. The discrepazazy
229 The ASTER instrument was launched in 1999 aboard Terrahatween MODIS and ASTER data, which is mainly explainesl
230 sun synchronous platform with 11:00 UTC descending Equatoere by a signi cant bias and a relatively low slope of the lings
231 crossing and a 16-day revisit cycle. An ASTER scene covers@agression, is on the same order of magnitude as the osan
232 area of approximately 60 km by 60 km and consists of 14 naddifference (about 3C) reported in literature [5], [21], [25]. 288
233looking bands and one oblique-looking band to create stereo-
234based digital elevation models. The three nadir-looking bands
235in the visible and near infrared have a 15-m resolution. The six
236 bands in the shortwave-infrared have a 30-m resolution. Finally, This paper aims to compare different approaches for 29s-
237there are ve thermal infrared bands with a 90-m resolution. aggregating kilometric MODIS land surface temperature data.
238 The ASTER overpass of the NAFE'06 site was offhe study uses aggregated ASTER and real MODIS zita
239 November 16, 2006. Of cial ASTER products [12] were usednd demonstrates the disaggregation at 250-m resolution29Bhe
240 here for surface re ectance (AST_07) and radiometric tempaesolution of 250 m is chosen to match with the lowest rese-
241 ature (AST_08) with accuracies of 5% and 1.5 K, respectivelytion at which ancillary data composed of red, near-infraped,
242 [13]-[19]. They were downloaded from the Earth Observinghortwave-infrared, and microwave-L bands are availablesdn
243 System Data Gateway (EDG). this case study, the target scale is determined by the resobkgion
244 ASTER 15-m resolution red (B2) and near-infrared (B3[250 m) of airborne microwave data. 298
245bands were extracted over the 5 km by 32 km area and reAs shown in the schematic diagram of Fig. 1, the disaggpe-
246 sampled at 250-m resolution to match the spatial resolutigation algorithms are noted as , with  being the numbesoo
247 and extent of PLMR observations. The ASTER 30-m resoluti@f factors taken into account in the disaggregation. The smw

I1l. DISAGGREGATIONALGORITHMS 289



4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Using D1, the disaggregated temperature is computed a7
(2)

with being the fractional green vegetation cover derivegbat
high resolution, beingthe aggregated at kilometrig29
resolution, and  being the slope of the linear regressiao
between and . Note that the variables de ned as1
kilometric resolution are noted with the subscript km. 332
Using D2, the disaggregated temperature is computed a3

3)
with being the projected and being the slopa34
of the linear regression between and the projected es-335
timated at kilometric resolution . Note that the variablezss

de ned at the image scale are written in bold. The notiors3f

a “projected variable” was introduced in [26]. It is a robass
tool that strenghtens the correlation between two variablesdy
representing the dependence of these variables on otherzaddi-
tional variables. In [5], the projection technique was apptied
to fractional green vegetation cover to arti cially improve the
spatial correlation between and by taking into account43
the dependence of on . The projected fractional greem4
vegetation cover is computed as 345

Fig. 1. Schematic diagram presenting the different disaggregation algorithms

of kilometric temperature and the veri cation strategy at high (250 m)
resolution.

(4)

302 algorithms are noted as DkDO does not use any ancillarywith being the fractional total vegetation cover derivect
3o03data, while D1 is based on a linear regression between lamdh resolution, being the  aggregated at kilomes47
304 surface temperature and fractional green (photosyntheticaliy resolution, being the temperature of wet bare sais
305 active) vegetation cover. Fractional green vegetation cover being the temperature of dry bare soil,  being the349
306is de ned as the surface area of green vegetation per unit atemperature of full-cover green vegetation, and  being3so
307 of soil. D1 is the same as in [4]. D2 is based on D1 buhe temperature of full-cover senescent vegetation (notag&ns
3o8takes into account both fractional green and total vegetatiare summarized in Table 1). Following the interpretationsesf
309 covers. Fractional vegetation cover is de ned as the total the “triangle method” [27], , , , and 353
310 surface area of (green plus senescent) vegetation per unit a@aespond to the minimum and maximum soil and vegetatian
3110f soil. D2 is the same as in [5]. The new algorithms D temperatures within the study area, respectively. It is remizded
312D ,D ,and D (and D ) are all derived from a radiative that , Wwith and being the fractionasse
313 transfer equation. The four algorithms differ with regard to thgreen and senescent vegetation covers, respectively. 357
314 number of factors which are explicitly taken into account. D In (4), the projected fractional green vegetation cover es8-
315includes the variability of  and is thus a substitute for D1 mated at kilometric resolution is 359
316 based on radiative transfer. Dincludes the variability of both

317 and  and is thus a substitute for D2 based on radiative

318transfer. The other algorithms Dand D integrate additional

319variables. D includes the variability of , , and fractional (5)
3200pen water . D includes the variability of , ,
321and soil evaporative ef ciency (ratio of actual to potential soi,;;i,
322 evaporation) . D is the same as D but with a different
323 formulation for soil evaporative ef ciency.

324 DO sets the disaggregated temperature as

being the mean over the whole study area. 360
The new algorithms Duse a radiative transfer equatisst
to model the spatial variability of disaggregated temperateze
within each 1-km resolution pixel, using ancillary data avaé

able at high resolution such as , , ,and . D is364
(1) a substitute for D1 based on radiative transfer. It exprezses
disaggregated temperature as 366
325 with being the land surface temperature observed at kilo-

326 metric resolution. (6)
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TABLE |
INTERPRETATION OF THEVERTICES IN THEGENERALIZED “T RIANGLE APPROACH

367 with being the difference between the temperatufdonwatered land surface temperature is expressed as 395

368 simulated using high-resolution and that aggregated within

369 the 1-km resolution pixel (12)
with and being the temperature of full-cover gregss

and senescent vegetations, respectively, andeing the baregs7
(7)  soil temperature. With the soil evaporative ef ciency de ness

370 with being the land surface temperature simulated t;;‘)}o] 4 399

371 a radiative transfer equation. In (7), fractional total vegetation

372 cover, fractional open water, and soil evaporative ef ciency

373are set to their values aggregated at kilometric resolution.

374 Therefore, only the variability of  is taken into account at the bare soil temperature can be expressed as 400

375 high resolution. (14)

376 D is a substitute for D2 based on radiative transfer. It

377expresses the disaggregated temperature as in (6), with #jeassuming that water temperature is close to well-wateoed

37g simulated temperature difference  written as green vegetation [27], modeled land surface temperanme
becomes 403

(8) (15)

379 D is derived from the same radiative transfer equation aM(th the nonwatered land surface temperature expressed as4
3g80includes the variability of , , and at high resolution.

381 It determines the disaggregated temperature using (6) but with

382 the simulated temperature difference  written as (16)

(13)

The temperature extremes , and are40s
) extrapolated (according to Section V) from low-resolution laoé
surface temperatures using high-resolution ancillary data [837
383 D is derived from the same radiative transfer equation and

sgaincludes the variability of , , ,and at high resolu- IV. DERIVATION OF BIOPHYSICAL VARIABLES 408
385tion. It determines the disaggregated temperature using (6) but _ . _
386 with the simulated temperature difference  written as The four variables used by the disaggregation methoubol-

ogy are the following: fractional green vegetation cover, 410

fractional total (green plus senescent) vegetation cover4ii

(10) fractional open water , and soil evaporative ef ciency . 412

All of these variables are estimated from ASTER red, nezs-

387 D is an extension of (10) to replaceby another formula- infrared, and shortwave-infrared re ectance products and f#om

38g tion of soil evaporative ef ciency noted as. the PLMR H-polarized brightness temperature converted atsn
389 The high- to low-resolution simulated temperature differendecidence angle of 21.5 416
390in (7)—(10) is computed using a linearized radiative transfer

391equation [5], [28], [29]. Modeled land surface temperaturg Fractional Green Vegetation Cover 17
392 is written as

Fractional green vegetation cover can be estimated fromithe
(11) Normalized Difference Vegetation Index (NDVI) as in [31] 419

393 with being the surface temperature of a water body and NDVI (17)
394 being the skin temperature of a nonwatered land surface.
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By inverting (18), fractional vegetation cover is expressed4as

(19)

with  being the surface albedo estimated as a weighted sumof
red and near-infrared re ectances using the coef cients givessin
[34] and validated in [35]—[38]. As stated previously, our case
study does not allow calibrating , and on a447
pixel-by-pixel basis. Consequently, the value of computedsss
from (19) may, on some occasions, be lower thanor larger449
than 1. To avoid nonphysical values, is setto  and 1 in450
the former and latter case, respectively. 451

The spatial variation of fractional senescent vegetation caszer
over the study area is shown in Fig. 2. Nats

that NAFE'06 was undertaken at the beginning of the sunwaer

agricultural season so that all irrigated crops were greensssd
healthy. 456

C. Fractional Open Water 457

The fraction of open water within each 250-m resolutiga
pixel is estimated using 50-m resolution resampled ASTEER
B5 re ectance product. Various studies have indicated thas¢he
shortwave-infrared band centered at aroundmt is highly 461
sensitive to the presence of open water [20], [39], [40]. In #his
Fig. 2. Images of fractional green vegetation cover, fractional senescent paper, a simple threshold method is ?.pplled to CIaS_SIfy at 56am
vegetation cover , fractional open water , soil evaporative  f€solution the 5 km by 32 km area in tWO cIas;es. water 4sad
efciency , and soil evaporative ef ciency . Note that 2% of the 5 km by nonwatered surface. The threshold value is estimated as 8570
32 km area is contaminated by clouds and cloud shadow. Contaminated ZS%SM one ooded crop eld in the south of the study area. Tse
resolution pixels are represented by crossed-out surfaces. . .. . .
spatial variation of fractional open water over the study areais

420 with and being the NDVI over bare shown in Fig. 2. Open water represents 5% of the study s®a
421s0il and full-cover green vegetation, respectively. NDV| i@nd is attributed to rice cropping. 469
422 computed as the difference between near-infrared and red bands

423 divided by their sum. The spatial variation of fractional greep. Soil Evaporative Efbciency 470

424 vegetation cover over the study area is shown in Fig. 2. ) . ) , )
g % g Soil evaporative ef ciency is de ned as the ratio of actualr1

to potential soil evaporation. In this paperjs estimated fronma72
425B. Fractional Total (Green Plus Senescent) Vegetation CovePLMR brightness temperatures. Two different formulatiers
are used to evaluate the coupling effects of near-surfacei=oil

426  Fractional total vegetation cover is estimated by correlatinn(_:loisture and. on microwave-derived soil evaporatives
427 with surface albedo for green vegetation and by setting f cienc b P 476
428to the maximum  for senescent vegetation. This methodol Y-

) . . . By assuming that brightness temperature is mainly sengitive
429 0gy [5] is based on two assumptions, which are generally met in i . : . :
: ) ) . to surface soil moisture [41] and that soil evaporative ef cieacy
430 agricultural areas: 1) soil albedo is generally lower than green” . : : : )
. : . IS mainly driven by surface soil moisture [42], [43], soil evapo9
431 vegetation albedo, and 2) green vegetation albedo is lower thap . i
. . . rative ef ciency can be estimated as 480
432 senescent vegetation albedo. Although a time series of red and
433 near-infrared data would be required to estimate soil albedo
434 and green vegetation albedo on a pixel-by-pixel basis [5], only
435 0ne ASTER scene is available for this study period. Therefore, ) o
436an alternate approach is adopted. Surface albedo is modetéd and being the minimum and maxs1

437as a linear mixing of vegetation and soil components (e.gTum brightness temperatures observed over the study «za,
438[32] and [33]) respectively. As brightness temperature generally decre@ases

with surface soil moisture and increases with vegetation ceszer
(18) [44], and are interpreted as the brightness
temperatures over wet bare soil and full-cover senescent vege-
439 with , , and being the albedo for bare soil, full- tation with dry soil, respectively. The spatial variation obver 487
440 cover green vegetation, and full-cover senescent vegetatitie study area is shown in Fig. 2. 488
441 respectively, and with the end-members, ,and Since brightness temperature also depends on biomass4e.g.,
442 estimated in Section V. [45]), a second formulation of soil evaporative ef ciencyis 490

(20)
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TABLE I
NDVI AND SURFACE ALBEDO END-MEMBERS

491 derived in order to decouple the effects of soil moisture,
492and on . Asin [46], the assumption is that, for a given
493 vegetated pixel, if vegetation is partially stressed (i.e.,

494 or ), then near-surface soil moisture availability is

495 zero (i.e., ). Alternatively, if that pixel does not contain Fig. 3. ASTER surface albedo plotted against ASTER fractional green

. . . vegetation cover . Three particular values of are identied: the soil
496 senescent Vegetatlor_] (e, or ), then . IS" albedo estimated as the minimum surface albedo, the green vegetation
497 computed as the ratio of the measured “wet soil” brightnes®edo estimated as the albedo corresponding to the largestand the

498 temperature difference to the “dry soil’=“wet soil” brightnesgenescent vegetation albedo  estimated as the maximum surface albedo.

499 temperature difference. Formally, one writes . o i
In this paper, the study domain included extreme condit&as

if (21) in terms of vegetation cover so that NDVI end-members cepéd

be estimated from the red and near-infrared re ectancesac-

if (22) quired over the area on a single date. In the case where extzme
conditions are not encountered in the application domaseoa

500 with and being the “dry soil” and “wet soil” different approach should be adopted, such as the use of &3me
501 brightness temperatures, respectively, both being estimatedSefies of NDVI data (instead of a single snapshot image)sthat
502 . Since green vegetation is partially transparent to mould capture the phenological stages of agricultural cregs.

503 crowaves, the “dry soil” brightness temperature is computed Als0, the determination of re ectance end-members caakd
504 a weighted sum of the brightness temperature over dry bare £l further constrained by the use of ancillary spectral data
505 (noted as ) and the brightness temperature over fullsets [47]. 535

506 cover green vegetation with dry soil (noted as )

(23) B. Albedo 536

- . A : Fig. 3 shows the space de ned by surface albedands37
507 Similarly, the “wet soil” brightness temperature is computed Fctional green vegetation cover . Pixels including opems3s

508 a weighted sum of the brightne_:ss temperature over wet bare er are removed from the scatterplot. The soil albedo 539
509 (noted as ) and the brightness temperature over fuIII-S de ned as the minimum ASTER surface albedo obsessd
510 cover green vegetation with wet soil (noted as ) within the study area by assuming that the dependencaiof
(24) on soil moisture is small compared to .the depende_ncmﬂ,mf

on vegetation cover. The green vegetation albedo is 543

511 The spatial variation of over the study area is shown in Fig. 2&stimated as the surface albedo corresponding to maxisaam
fractional green vegetation cover. The senescent vegettion

albedo is estimated as the maximum surface albed®
512 V. ESTIMATING END-MEMBERS observed within the study area. Values for , , ands47
513 A key step in the disaggregation procedure is estimating @re reported in Table II. 548

514the 14 end-members from ASTER and PLMR data. They
515are composed of the following: , , ,
516 , , , , , , ,
517 , , and . For the convenience As the range of surface conditions varies with spatial ses-
518 of the reader, the unit is degree Celsius for radiometric temp@fution, two different procedures are developed to estiraste
519 ature and kelvin for brightness temperature. temperature end-members. 552
1) When estimating temperature end-members from 2538am
resolution data, one pixel is identi ed as fully coveresh
green vegetation, one pixel as fully covered senesgsnt
521 NDVIend-members are estimated as the minimum and maxi-  vegetation, one pixel as bare dry soil, and one pixedsas
522 mum values of NDVI observed over the 5 km by 32 km areafor ~ bare wet soil. In this case, it is assumed that all extresie
523 bare soil and full-cover green vegetation, respectively. Values conditions are included at high resolution within the stagy
524 for and are reported in Table II. domain. 559

C. Land Surface Temperature 549

520A. NDVI
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TABLE Il

LAND SURFACE TEMPERATURE ANDL-BAND BRIGHTNESS

TEMPERATUREEND-MEMBERS THAT ARE ESTIMATED FROM
HIGH-RESOLUTIONASTER TEMPERATUREDATA, EXTRAPOLATED
FROM AGGREGATEDASTER TEMPERATUREDATA, AND EXTRAPOLATED
FROM MODIS TEMPERATUREDATA. FOR THE CONVENIENCE OF THE

READER, THE UNIT IS DEGREECELSIUSFORRADIOMETRIC

TEMPERATURE ANDKELVIN FOR BRIGHTNESSTEMPERATURE

560 2) When estimating temperature end-members from 1-km

561 resolution data (as in the operational scenario), none of
562 the pixels are identi ed as representative of any extreme
563 condition. Temperature end-members are extrapolated
564 from 1-km temperature data using ancillary data com-
565 posed of air temperature, soil albedo, green vegetation
566 albedo, and senescent vegetation albedo as described in
567 the following.

_ _ Fig. 4. (a) Scatterplot of ASTER temperature versus fractional green vegeta-
568 _End members_ ’ ! » and . are O_'etef tion cover and (b) versus surface albedo, (c) scatterplot of aggregated ASTER
569 mined by analyzing the consistency of the diagrams in Fig. #mperature versus aggregated fractional green vegetation cover and (d) versus

570 Fig. 4(a) shows the space de ned by ASTER land surfa@@gregated surface albedo, and (e) scatterplot of MODIS temperature versus

: ; regated fractional green vegetation cover and (f) versus aggregated surface
571 temperature and ASTER fractional green vegetation cover. edo. The vertices . , ,and obtained using high-resolution data in

572 three edges of the triangle are interpreted [27] as “bare (a) and (b) are extrapolated using low-resolution data in (c), (d), (e), and (f)
573soil” between and , “wet surface” between and , and from ancillary data composed of air temperature, soil albedo , green

574 “dry soil’ between and . Fig. 4(b) shows the space de_vegetation albedo , and senescent vegetation albedo

575 ned by ASTER land surface temperature and ASTER surface

576 albedo. An interpretation of the polygon is provided 2y vertex corresponds to wet bare soil and is locatedsat
577in [5], which is consistent with the triangle method. The four in Fig. 4(c) [Fig. 4(e)] and at in 599
578 edges are interpreted as “bare soil” betweerand , “wet Fig. 4(d) [Fig. 4(f)]. It is placed in Fig. 4(c) [Fig. 4(e}po
s79surface” between and , “full cover” between and , at the intersection between  and the vertical lingo1
580 and “dry surface” between and . The notation system for . The slope of is computed as the slofe2
se1polygon vertices , , ,and issummarizedin Table I, and of the linear regression of the data points corresponeisg
ss2the corresponding temperature values , , to the “wet surface” edge of the triangle . 604
s83and are reported in Table I1I. The off-set of is determined from . 605
584 In this paper, high-resolution temperatureis assumed to  3) \Vertex corresponds to dry bare soil and is locatedcat
585 be unavailable. Consequently, the extreme temperatures, in Fig. 4(c) [Fig. 4(e)] and at in 607
586 : , and are extrapoled from the spaces Fig. 4(d) [Fig. 4(f)]. It is placed in Fig. 4(c) [Fig. 4(e}pos
587 and dened at kilometric resolution at the intersection between  and the vertical linegog
588 (see Fig. 4(c) and (d) for aggregated ASTER temperature and . The slope of is computed as the slogao
589 Fig. 4(e) and (f) for MODIS temperature). An approach similar  of the linear regression of the data points corresponding
590t [5] is used as follows. to the “dry soil” edge of the triangle . Thes12
501 1) Vertex  corresponds to full-cover green vegetation off-set of is determined from . 613
592 and is located at in Fig. 4(c) (Fig. 4(e) for  4) Vertex corresponds to full-cover senescent vegetasion
593 MODIS temperature) and at in Fig. 4(d) and is located at in Fig. 4(d) [Fig. 4(f)].615
594 [Fig. 4(f)]. In this paper, is set to the air tem- It is placed in Fig. 4(d) [Fig. 4(f)] at the intersectiane
595 perature  measured at the time of ASTER overpass. between and the vertical line . Thee17
596 Vertex s thus placed at in Fig. 4(c) [Fig. 4(e)] line is considered as being parallel to  [5]. 618

597 and at in Fig. 4(d) [Fig. 4(f)]. Consequently, the slope of is determined frons19
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620
621
622
623
624
625
626
627
628
629

637 temperatures being 2.6C, except for

the slope of . The off-set of is determined
from . Note that the lines and might

not be strictly parallel. This may be due to a lack of
representativeness of the surface conditions captured at
250-m resolution within the study area. In that case, one
or several data points may be located above . To
circumvent this artifact, the slope of in Fig. 4(d)

[Fig. 4(f)] is increased so that all data points will be
located below the “dry surface” edge.

Table Il lists the four temperature end-members: 1) esti-
630mated from Fig. 4(a) and (b) using high-resolution ASTER

631 data; 2) extrapolated from Fig. 4(c) and (d) using aggregated
632 ASTER temperature data; and 3) extrapolated from Fig. 4(e)
633and (f) using MODIS temperature data. The values extrapo-
634 lated from aggregated ASTER and MODIS temperatures are
635 rather close to those estimated from high-resolution ASTER
636 temperature data, with the maximum difference in extrapolated

using MODIS

638 data. In the latter case, the signi cant underestimation (€38

639 of

640 mean difference
ea1and/or 2) the smaller range of (spatial dynamics) of 1-km 4)

can be explained by the following: 1) the negative
C between MODIS and ASTER data

642 resolution MODIS data in relation to 1-km aggregated ASTER
643 data [please compare Fig. 4(c) with Fig. 4(e), and Fig. 4(d) with
644 Fig. 4(f)].

645D. Brightness Temperature

646

649

650 Ve values are estimated from a generalized version [5], [9] of
651 the classical “triangle method” [27].

652

To estimate soil evaporative efciency in (20) and
647in (22), ve brightness temperature values corresponding to
648 extreme surface conditions are required: , ,

Fig. 5(a) shows the space de ned by PLMR brightnesg
653 temperature and ASTER land surface temperature. In the f
654 lowing, an original interpretation of the ve vertices visible
655in Fig. 5(a) is provided, which is consistent with both th
656 classical “triangle method” and the state-of-the-art L-band r
657 diative transfer models. Vertices are presented successively
es8the counterclockwise direction, and the correspondence withl) Vertex

, and . In this paper, thos

In

659 vegetation and soil conditions is summarized in Table I.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

1)

2)

3)

Vertex at minimum brightness temperature: L-band ra-
diative transfer models predict an increase of brightness
temperature with biomass and a decrease of brightness
temperature with surface soil moisture (e.g., [48] and
[49]). Therefore, the point at minimum brightness tem-

perature corresponds to wet bare soil. This vertex is noted3) Vertex

as in Fig. 5(a), which is consistent with Fig. 4.

Vertex at maximum land surface temperature: the triangle
method predicts a decrease of land surface temperatur
with both vegetation cover and surface soil moisture.
Therefore, the point at maximum land surface tempera-
ture corresponds to dry bare soil. This vertex is noted as

in Fig. 5(a), which is consistent with Fig. 4.
Vertex at maximum brightness temperature: being con-

) Vertex

5) Vertex

moisture, the point at maximum brightness temperataee
corresponds to full-cover vegetation with dry soil.61t7
could correspond to full-cover green vegetation. Hews
ever, the associated land surface temperature in Fig63¢a)
is much larger than that over full-cover green vegetatigm
(21 C) and rather close to the temperature over fedl
cover senescent vegetation (34). Therefore, the poirds2
at maximum brightness temperature corresponds todsdl-
cover senescent vegetation with dry soil. This vesgx
is noted as in Fig. 5(a), which is consistent witkss
Fig. 4. A prime mark indicates that corresponds to as6
dry soil, whereas does not specify soil hydric status?
Note that  does not necessarily correspond to gy
senescent vegetation since wet senescent vegetatiogscan
lead to large values of brightness temperature [509m
our case study, however, no rainfall occurred duringedie
four days preceding the ASTER overpass, which means
that senescent vegetation was completely dry. In ternssof
radiative transfer modeling, the effect of dry biomasssen
brightness temperature can be represented by large v&lsies
of roughness parameter [51]. 696
Vertices at minimum land surface temperature: two nsore
vertices are apparent in the counterclockwise directo®.
Being consistent with a decrease of land surface &a®-
perature with green vegetation, both points correspond
to full-cover green vegetation. As vegetation is partiably
transparent to the L-band emission from the soil, each
point corresponds to a different soil hydric status. 7o
vertex with a larger [noted as in Fig. 5(a)]704
corresponds to full-cover green vegetation with dry sai,
and the point with a lower [noted as in Fig. 5(a)] 706
corresponds to full-cover green vegetation with wet soil7

As high-resolution temperature is assumed to be unavaitable
in this paper, brightness temperature end-members areosot
timated from the polygon
e polygon
an interpretation of the polygon in Fig. 5(b), based on tte
onsistency with the polygon in Fig. 5(a). In particular, the s
Pertices in Fig. 5(a) can be located in Fig. 5(b) as follows. 714

in Fig. 5(a) but from710
shown in Fig. 5(b). The following ig11

corresponds to wet bare soil. It is located7sd
the minimum value of brightness temperature such that
717

2) Vertex corresponds to bare dry soil. It is not apparerg

in Fig. 5(b) because fractional green vegetation is met
suf cient information to distinguish between bare swib
and senescent vegetation. 721
corresponds to full-cover senescent vegetatizmn
with dry soil. It is located at the maximum value ©f3
brightness temperature. 724
corresponds to full-cover green vegetatikes
with dry soil. It is located at the maximum value w6
brightness temperature such that 727
corresponds to full-cover green vegetation wits
wet soil. It is located at the minimum value of brightness
temperature such that 730

sistent with an increase of vegetation emission with Based on the aforementioned interpretation of the polyzgan

biomass and a decrease of soil emission with surface soil

in Fig. 5(b), the methodology used for estimatireg
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Fig. 5. (a) Scatterplot of PLMR incidence-corrected brightness temperatureersus ASTER land surface temperature and (b) versus ASTER fractional
green vegetation cover, and (c) scatterplot of aggregatedversus aggregated ASTER temperature and (d) versus MODIS temperature. Extreme brightness

temperatures , , ,and are estimated by interpreting the bare soil, dry surface, full-cover vegetation, and wet surface

edges of the polygon in (b). The estimation of using low-resolution temperature data is illustrated with aggregated ASTER temperature in (c) and MODIS

temperature in (d).
733 , , , , and is shown in Fig. 1, the veri cation strategy consists in comparing
734 detailed in the following. disaggregation results at 250-m resolution with ASTER land
735 1) The brightness temperature over full-cover dry surfaggirface temperature. An application to MODIS data is aigo
736 and over wet bare soill are set presented. 776
737 to the maximum and minimum brightness temperatures
738 observed within the study area, respectively. y .
739 2) The brightness temperatures over full-cover green vef: APPlication to Aggregated ASTER Data r
740 etation with wet soil and over full-cover 1) End-Members Derived From High-Resolution Daféhe 778
741 green vegetation with dry soil are estimated approachis rstimplemented using the end-members estinvated
742 as the brightness temperature extrapolated at  in  from high-resolution ASTER temperature data. This alloas
743 Fig. 5(b) along the “wet soil” and the “full-cover dry testing the robustness of the model in (15) and (16) inde-
744 soil” edge, respectively. The slope of the lines pendently of the methodology used for extrapolating the mize
745 and are determined so that all of the points withend-members , , : , : , 783
746 be above and below the “wet soil” and “full- , ,and ) 784
747 cover dry soil” edges, respectively. Fig. 6 shows the output images of the eight disaggregatien
748 3) Vertex cannot be identied in the space . algorithms, which are to be compared with the reference image
749 Consequently, is set to the brightness temperaderived from ASTER land surface temperature. One obsewes
750 ture corresponding to the maximum  (see Fig. 5(c) for that the disaggregated temperature is successively impmsged
751 aggregated ASTER temperature and Fig. 5(d) for MODISy including additional factors in the disaggregation, whish
752 temperature data). indicates that the methodology is able to take into accoemt
753 Table Ill lists the ve brightness temperature end-memberseveral independent factors. Although the boxy artifact at 1zém
754 1) estimated from Fig. 5(a) using high-resolution ASTER dategsolution is successively reduced from to , itis still 792
7552) estimated from Fig. 5(b) and (c) using high-resolutioapparent for . This effect may be due to the following: 133

756 fractional green vegetation cover and aggregated ASTER teather factors that are not taken into account in the procedeue,
757 perature data; and 3) estimated from Fig. 5(b) and (d) usisgch as green vegetation water stress, wind speed, sudace
758 high-resolution fractional green vegetation cover and MODI&nissivity, surface albedo, etc.; 2) errors in estimated , 796
759 temperature data. Values estimated from low-resolution tem- , and ; and/or 3) resampling errors at 250-m resolution797
760 perature are remarkably close to those estimated from high-Table 1V lists the RMSD, correlation coef cient, and slopes
761resolution ASTER temperature data (Table Ill), except fdyetween the disaggregated and ASTER temperatures forzeach
762 with a difference of 6 K. This difference is apparentlyof the eight disaggregation algorithms. The error is successéoely
763 due to the lack of representativeness of kilometric aggregatgecreased from 1.6%C to 1.16 C, while the correlation coeBo1
764 brightness temperature and the method for estimating cient and slope are successively increased from 0.79 and €053
765 at kilometric scale. Note, however, that a 6-K difference is stilb 0.89 and 0.88, respectively. When comparing D1, D2, Bo3
766 relatively low compared to the range (190 K—280 K) covereahd D , no signi cant differences are observed betweensedl
767 by brightness temperature values. four algorithms in terms of root-mean-square error, correlagosn
coef cient, and slope. Note that, in this paper, was estimatedos

in a different way than in [5] because only one visible @od
near-infrared image was available and a FORMOSAT-like those
769 The disaggregation algorithms presented here are applgsties would be required to derive more accurately on 809
770to the NAFE’'06 data set. ASTER land surface temperaturep#xel-by-pixel basis. Nevertheless, this comparison suggasts
771aggregated at 1-km resolution, and kilometric temperaturetisat D seems to be equivalent to D1 and Bequivalent tos11l
772used as inputto DO, D1, D,D2,D ,D ,D ,and D .As D2, which justi es the use of the model. 812

768 VI. APPLICATION
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Fig. 6. Maps of the temperature disaggregated by the eight algorithms as compared with the map (right) of high-resolution ASTER temperature.

TABLE IV
RMSD, CORRELATION COEFFICIENT , AND SLOPE BETWEEN THE
DISAGGREGATED ANDASTER TEMPERATURES THE RESULTS
CORRESPOND TO THEEND-MEMBERSESTIMATED USING
HIGH-RESOLUTIONASTER TEMPERATUREDATA
(TO THE END-MEMBERS EXTRAPOLATED USING
AGGREGATEDASTER TEMPERATUREDATA)

813 The main advantage of the new approach is to take into

814account a number of additional factors, including fractional

815 open water and soil evaporative ef ciency. When comparing the

816 results obtained forD,D ,andD inTable 1V, itis observed

g17that the disaggregated temperature is signi cantly improved

818 against the classical approaches D1 and D2. Moreover, the

819 statistical results are successively improved by including

820 , and . Fig. 7 shows the improvement, especially in the

821 slope between the_‘ dlsaggreg_atgd and ASTER temperatures. IIlhe7 Aggregated ASTER temperature (1 km) is disaggregated by each of

822 good results obtained for D indicate that the performance ofinhe eight algorithms and is plotted against high-resolution ASTER temperature.

823 disaggregation algorithms is intimately related to the following:

824 1) the capability of separating the independent factors thee subjected to uncertainties in land surface temperaturezand
825impact on surface temperature and 2) the ability to integréteightness temperature end-members, the ve algorithmsare
826 them consistently into the procedure. next tested using the end-members estimated from kilogaet-
827 2) End-Members Derived From Aggregated ASTER Datdac temperature data, as presented in Section V. Aggregated
828 As disaggregation procedures DD , D , D , and D ASTER (instead of MODIS) data are used to evaluateste
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TABLE V
RMSD, CORRELATION COEFFICIENT , AND SLOPE BETWEEN THE
DISAGGREGATED ANDASTER TEMPERATURES THE RESULTS
CORRESPOND TO THEEND-MEMBERSEXTRAPOLATED
USING MODIS TEMPERATUREDATA

from 3.2 C to 3.0 C, while the correlation coef cient angbo
slope increase from 0.6 and 0.3 to 0.7 and 0.5, respectsaly.
The results obtained for Dand D in Table V indicate thage2
the disaggregated temperature is improved against the classical
approaches D1 and D2. As for the application to aggregsded
ASTER data, the statistical results are successively impresed
by including , , and . However, the improvement witkse
MODIS data is not as visible as with aggregated ASTEER
data because the difference between MODIS and ASTERsdata
(please refer to Section 1I-C) has the same order of magniemle
Fig. 8. MODIS temperature (1 km) is disaggregated by each of the eighs the subpixel variability at 250-m resolution (see RMSDsfar
algorithms and is plotted against high-resolution ASTER temperature. DO in Table V). In particular, the mean bias and the relatisaty
low slope of the linear regression between the disaggregsated

834 impact of end-members regardless of the discrepancy betweo‘% ASTER data are associated with the discrepancy at &7km

835 MODIS and_ASTER temperatures. i i resolution between the MODIS and ASTER temperature data.
836 Table IV lists the RMSD, correlation coef cient, and slope

837 between the disaggregated and ASTER temperatures for each

83gof the ve algorithms. Results are compared with those ob- VII. SENSITIVITY ANALYSIS 875
839 tained using the end-members estimated from high-resolution - )

840 ASTER temperature. In general, the error is slightly larger, T0 further assess the stability of the newallyorithms based76
s41and the correlation coef cient and slope are slightly lower u£n radiative transfer, two sensitivity analyses are condueted
842ing extrapolated end-members. Nevertheless, the disaggreg@dhe following: 1) adding a Gaussian noise on kilomegrig
843temperature is still much improved by applying Dinstead of {emperatures and h|gh_-res_olut|on brightness temperatgre_s_mnd
844D , with the correlation coef cient and slope increasing fron?) €stimating the contribution of each factor on the variabiity
8450.74 to 0.88 and from 0.72 to 0.86, respectively. Consequenf®,modeled land surface temperature. 881
846 the extrapolation of end-members from kilometric data is not

847 found to be a limiting factor in the methodology. A Uncertainty in End-Members 662

To test the stability of the method for estimating the néag
end-members ( , , , , 884
849 Disaggregation algorithms DO, D1, D2,D ,D ,D , , , and ) from low-resolutionsss
gsoand D are then applied to MODIS data. In this case, endemperature data, a Gaussian noise with a standard devéaton
851 members are derived from MODIS data. Fig. 8 shows the scaf-1 C is added to the kilometric (aggregated ASTER) lagd
852 terplot of disaggregated MODIS versus ASTER temperature feurface temperature data set, and a Gaussian noise with a&tan-
853 each algorithm separately. One observes that the new methodald deviation of 2 K is added to the high-resolution brightresss
854 0gy improves the correlation and slope of the linear regressitamperature data set. An ensemble of 100 data sets is gensgated
855 between the disaggregated and ASTER temperatures. Howesad used as input to the disaggregation algorithms. 891
856a systematic negative bias is apparent in the disaggregatedable VI reports the average and standard deviation oBex-
857 temperature. Table V lists the RMSD, correlation coef cientrapolated end-members computed within the ensemble 084900
858 and slope between the disaggregated and ASTER temperatantiscially perturbed data sets. Results indicate that the metvad
859 for each of the eight algorithms. The error slightly decreasés extrapolating end-members is stable for all end-memisess.

848 B. Application to MODIS Data
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TABLE VI
MEAN AND STANDARD DEVIATION OF LAND SURFACE TEMPERATURE
AND L-BAND BRIGHTNESSTEMPERATUREEND-MEMBERS
EXTRAPOLATED USING KILOMETRIC TEMPERATUREDATA. FOR THE
CONVENIENCE OF THEREADER, THE UNIT IS DEGREECELSIUS FOR
RADIOMETRIC TEMPERATURE ANDKELVIN FOR
BRIGHTNESSTEMPERATURE

TABLE VII
RMSD, CORRELATION COEFFICIENT , AND SLOPE BETWEEN THE
DISAGGREGATED ANDASTER TEMPERATURES FOR THEDATA
INCLUDING ALL THE 100 ARTIFICIALLY NOISED DATA SETS

Fig. 9. Asfor Fig. 7 but using all the 100 arti cially noised input data sets.

in land surface temperature is derived by computing the 9tst

partial derivative of from (15) and (16) 917
— (25)
Similarly, the rst partial derivative of is computed witho1s
896 Table VII lists the RMSD, correlation coef cient, and sloperESpeCt to 919

897 between the disaggregated and ASTER temperatures for all 100

898 data sets. Although the results are generally degraded by using

899 noisy input data sets, D is still superior to all other algorithms (26)
900 (see Fig. 9). Therefore, the integration of fractional open wateith respect to 920
901 and soil evaporative ef ciency into the disaggregation is able to

902 improve the representation of land surface temperature variabil——

903 ity despite the uncertainties in and , and the uncertainties

904 in extrapolated end-members. (27)

and with respect to 921
905 B. Weighting Variability Factors 28)
906 Results with the NAFE'06 data set have indicated that the
907new D algorithms based on radiative transfer signi cantly Table VIII lists the standard deviation of each parameter
9og improve (in relation to D1 and D2 methods) the representatiavithin the study area, the average of partial derivatives, andzhe
909 of disaggregated temperature by directly integrating the variorgdative weight of each parameter on the variability of modeled
910 input parameters of the radiative transfer equation. Another ddnd surface temperature. The relative weights of , 925
911 vantage of the proposed methodology is to quantify the weigdnhd  are estimated as the mean partial derivative timeibe
912 of these input parameters. Here, the relative weights of standard deviation. Results indicate that all parameters haze a
913 , ,and are compared, and the relative improvement inegative impact on . More interestingly,  appears to be2s
914 disaggregated temperature when including these factors in the most signi cant variability factor, with a relative weigbao
915 disaggregation is assessed. The weight ofon the variability of 42%, which is consistent with NDVI-based approaches44j.
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TABLE VIl
STANDARD DEVIATION, MEAN PARTIAL DERIVATIVE, AND IMPACT ON HIGH-RESOLUTION MODELED TEMPERATURE OFEACH OF THE
FOUR PARAMETERS. FRACTIONAL GREEN VEGETATION COVER, FRACTIONAL SENESCENTVEGETATION COVER,
FRACTIONAL OPEN WATER, AND SOIL EVAPORATIVE EFFICIENCY

931 The second and third most signi cant variability factors are sodrror in disaggregated temperature is successively reducedfimom
932 evaporative ef ciency and fractional open water, with relativé.65 C to 1.16 C by including each of the four parametesgs
933 weights of 27% and 20%, respectively. Finally, fractional seneghe correlation coef cient and slope between the disaggregated
934 cent vegetation cover represents only 11% of the variabilighd ASTER temperatures are improved from 0.79 to 0.89%aad
935in land surface temperature. The low impact of can be from 0.63to 0.88, respectively. Moreover, the radiative transfer
936 associated with the low mean partial derivative. In particulaeguation allows quantifying the impact at high resolutiorogf
937 is low because the temperature difference beach parameter on land surface temperature. In this case study,
93gtween dry bare soil and full-cover senescent vegetatioriractional green vegetation cover is responsible for 42% obghe
939 is also low in our case study. variability in disaggregated land surface temperature, fractigszal
940 The relative weights in Table VIII are now related withsenescent vegetation cover for 11%, fractional open wategstor
941the disaggregation results in Table Ill. Consequently, the po®d%, and soil evaporative ef ciency for 27%. 985
942 improvement of D2 against D1 (and Dagainst D ) can be Note that the approach presented in this paper did notdske
943 attributed to the relatively low weight of in the variability of into account the water stress of green vegetation becausesgabne
944 land surface temperature. Conversely, the signi cant improvef the considered parameters (fractional green vegetation cseer,
assments of D against D, D against D , and D1 (and D)  fractional senescent vegetation cover, fractional open wateggand
946 against DO are attributed to the large weights of , and soil evaporative ef ciency) could describe the hydric statusdof
947 , respectively. photosynthetically active (green) vegetation. The analysisoans
948 In summary, the variability of land surface temperature is reaenducted solely in a highly irrigated environment in whash
949 sonably represented by model . Moreover, the approach vegetation water stress was small. However, in most casgs,
950 allows the relative weight of each variability factor to be takethe vegetation water stress might not be negligible for natbeeal
951 into account in the disaggregation procedure. areas. In the presence of water-stressed green vegetatiosgsthe
scatterplot (temperature versus green vegetation cover) vgoelld
be transformed into a trapezoidal shape with four vertéses
rather than a triangle. In such conditions, the disaggregatien
953 A new disaggregation methodology for land surface tenproblem would be partly undetermined since the partitiorsign
954 perature has been developed to integrate the main surfaetween unstressed and stressed green vegetations woulcbmot
955 parameters involved in the surface energy budget. It is badszlrepresented. Consequently, the approaches shown hammare
956 0n a linearized radiative transfer equation, which distinguishaet expected to be representative of other less extreme envivan-
957 between soil, vegetation, and water temperature, and uses swhts than the present irrigated area. Nevertheless, one siwoald
958 evaporative ef ciency and fractional senescent vegetation codarep in mind that improving the spatial resolution of laid4
959to parameterize/estimate soil and vegetation hydric status, sefface temperature data via disaggregation is only relevarbin
960 spectively. The approach is implemented using four parantbe conditions where the spatial variability of temperatureots
ge1ters: the fraction of green vegetation cover derived from rédrge. 1007
962 and near-infrared bands, the fraction of senescent vegetatiodlthough the approach was successfully applied to airbaong
963 cover derived from red and near-infrared bands, the fractiand satellite data collected during NAFE’'06, further researahds
964 of open water derived from shortwave-infrared band, and theeded to test the disaggregation approach on a routine basis.
965 soil evaporative ef ciency derived from microwave-L bandOne may anticipate that fractional green and senescent vege-
966 It is tested over a 5 km by 32 km area of irrigated land itation covers could be derived accurately using FORMOSAT2
967 Australia, including ooded rice crops, using ASTER and Liike data. The FORMOSAT-2 instrument [52] provides shaot3
968 band airborne data. Low-resolution land surface temperatuvave data at high spatial resolution (8 m) and high tempursed
969is simulated by aggregating ASTER land surface temperaequency (potentially one image per day), which allow a 105
groture at 1-km resolution, and the disaggregated temperaturaislysis of the seasonality of canopies during the crop ayle
971 compared to high-resolution ASTER temperature. The resulf, [53], [54]. Fractional open water could be derived fran17
972 indicate that the methodology is able to separate ef ciently tHeandsat-5 data (e.qg., [20]). Although the repeat cycle of Lantizat
973independent factors that impact surface temperature and to ir{fé days) is longer than the temporal resolution needed fordara
974 grate them consistently into the disaggregation procedure. Theface temperature, the seasonal variations of water boalies

952 VIIl. SUMMARY AND CONCLUSION
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