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Fig. 2. Flow of operations involved in the FOTO analysis up to biomass prediction  5 
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2.3.3 Virtual canopy images 1 
In this work, we only simulated mono-spectral images in the visible domain on flat 2 
topography without taking into account atmospheric effects (Fig. 5). Standard optical 3 
profiles of reflectance for soil, trunks and leaves are selected from the DART database using, 4 
for instance, '2D soil-vegetation', '2D bark_spruce' and '3D leaf_decidous' files. Such 5 
oversimplified images of virtual forest stands composed of trees with 'lollipop-shaped' 6 
crowns produce homogeneous texture dominated by few frequencies. The FOTO analysis of 7 
330 DART images however demonstrated their potential for benchmarking textural gradient 8 
of real forest canopies throughout the Amazon basin (cf. Fig. 3 in Barbier et al. 2010).  9 

2.4 Influence of instrumental characteristics 10 
2.4.1 Window size and spatial resolution 11 
Large windows may include features characterizing landforms such as relief variations 12 
rather than canopy grain (Couteron et al., 2006) whereas small windows may be unable 13 
to adequately capture large canopy features observable in mature growth stages. 14 
However, whatever the window size taken within a reasonable range of variations, i.e. 15 
75 to 150 m for tropical forest, spatial frequencies should display more or less the same 16 
patterns of contribution to PCA axes (Couteron et al. 2006). The influence of spatial 17 
resolution on the sensitivity of r-spectra to capture canopy grain of different forest types 18 
was highlighted using 1-m panchromatic and 4-m near infrared (NIR) Ikonos images in 19 
Proisy et al. (2007).  20 
 21 

 22 
Fig. 6. Radial spectra of 2 different mangrove growth stages using 0.5-m and 2-m 23 
panchromatic and near infrared Geoeye channels. 24 
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Additionally, for a given species varying tree heights and crowns dimensions may yield 1 
important mass differences that the parsimonious relationships cannot take into account. 2 
Selecting an appropriate allometric model is then crucial and the sampling uncertainty 3 
relative to the size of the study plot should also be addressed carefully (e.g. Chave et al. 4 
2004). 5 
Tree location, crown shape, tree height and wood specific gravity also constitute useful 6 
information that will contribute to the characterization of the forest structure typology.  7 
Although it remains unrealistic in heterogeneous forests without the help of skilled 8 
botanists, identification of tree species is advisable in low-diversified situations, since the 9 
inclusion of a specific wood gravity parameter into allometric equations proved to improve 10 
significantly the model (Chave et al. 2005). Such additional data will also be valuable for 11 
initializing 3D forest templates. It is important to note that, in tropical forest, tree height 12 
measurements from the ground are problematic and cumbersome explaining the 13 
enthusiasm aroused by Lidar data (e.g. Gillespie et al. 2004). Another important point to 14 
improve AGB prediction would be to conduct forest inventories simultaneously to image 15 
acquisitions.  16 

3.2 Sensitivity to forest structure and AGB 17 
Assuming that the constituted forest plots dataset is well distributed within the acquired 18 
scene(s), Fourier r-spectra can be computed for windows centred on each plot. For 19 
example, when applied to 1-m Ikonos (Proisy et al. 2007) or 0.5-m Geoeye panchromatic 20 
images (Fig. 9) r-spectra permit good discrimination of a wide array of canopy structures 21 
of mangroves (Fig. 9). Furthermore pre-adult, mature and decaying mangrove forests 22 
show contrasted signatures with dominant frequencies around 180, 80, 50 and 30 cycles 23 
per kilometre. 24 
Inverting FOTO indices (the three first PCA axes) into AGB of forest plots distributed 25 
over two different sites (i.e. two different images) yielded good correlations and low 26 
errors, as presented in Fig. 10. Compared to estimations provided by the P-band HV 27 
polarisation channel, FOTO-derived AGB did not show saturations over the whole range 28 
of mangrove biomass (Fig. 9), i.e. up to 500 tDM.ha -1 and rmse error remains acceptable 29 
(33 tDM.ha-1). This result suggests that, in the case of closed canopies with sub-strata of 30 
low biomass (e.g. the mangrove ecosystem in French Guiana), the canopy grain approach 31 
is suitable to map AGB because crown size and spatial distribution are directly 32 
correlated to standing biomass of the dominant trees. However, one do not forget that 33 
the remote sensing-based model of AGB is assessed with respect to allometric 34 
predictions of "true" AGB, i.e. the aboveground dry mass of trees, from dendrometric 35 
data, so that the quality of the allometric model is potentially a additional source of bias  36 
(Chave et al. 2004; 2005).  37 
Assuming the constituted forest dataset is well distributed within the acquired scene(s) 38 
r-spectra can be computed for Fourier windows centred on each plot. For example, when 39 
applied to 1-m Ikonos (Proisy et al. 2007) or 0.5-m Geoeye panchromatic images, r-40 
spectra permit good discrimination of a wide array of forest structures of mangroves 41 
(Fig. 9). For young, pre-adult, mature and decaying mangrove forests, they show 42 
contrasted signatures with dominant frequencies around 180, 80, 50 and 30 cycles per 43 
kilometre. 44 
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Good correlations were obtained between the first axis and tree density (r²= 0.8) or mean 1 
quadratic DBH (r²=0.71) in tropical evergreen terra firme forest Couteron et al (2005). 2 
However, forest heterogeneity and presence of relief makes the canopy approach to be 3 
used carefully, that is one must analyze visually whether the relief influences or not some 4 
of the PCA axes (e.g. Ploton, 2010). Only axes immune to relief influence should be used 5 
for biomass prediction otherwise the result may be biased or highly context-dependent. 6 
Moreover, due to the diversity of forest stand structures in tropical terra firme forests, a 7 
sufficient number of studies in diversified locations and contexts are still needed before 8 
general conclusions can be reached about the robustness of such correlations. 9 
Independent ongoing studies suggest that the correlation with density is highly context-10 
specific while the correlation with the mean quadratic diameter may be a more robust 11 
feature.   12 
 13 
 14 
 15 
 16 
 17 

 18 
 19 
 20 
 21 
 22 
 23 

Fig. 9. Radial spectra and associated 100 x 100 m images of different mangrove growth 24 
stages using a 0.5 m panchromatic Geoeye image acquired in 2009. Forest inventories dated 25 
of 2010 and 2011. Note the r-spectra of the open canopy decaying stage. A photograph of 26 
this plot is available in Fig. 11. 27 
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 1 
Fig. 10. Comparison of FOTO- (Proisy et al. 2007) and P-HV-derived (from Mougin et al. 2 
1999) biomass estimates in mangroves of French Guiana 3 

3.3 Present limitations of the methods and prerequisite 4 
In tropical forest, both gaps and multi-strata organization are often observed. Gaps are due 5 
to accidental tree falls or natural decaying of some canopy trees (Fig. 11, left). In presence of 6 
gaps, r-spectra tend to be skewed towards low frequencies and this may be erroneously 7 
interpreted as if the canopy contained large tree crowns (Fig. 9, r-spectrum of the decaying 8 
stage). In fact, gap-influenced r-spectra cannot be automatically related to the same biomass 9 
levels and must be removed from the PCA analysis to avoid biases in the AGB-FOTO 10 
relationship. Identically, the method was so far tested principally on evergreen forests. 11 
Further studies are needed regarding deciduous forests, not only because of the seasonal 12 
changes of the canopy aspect, but also because biomass of understorey vegetation often 13 
found in such forest type is not necessarily negligible. As spectral properties of the 14 
understorey may influence the overall reflectance of the corresponding pixels, this may be 15 
all more confusing if there is no intermediate stratum beneath the highest deciduous trees. 16 
An example of this is provided by the so-called Maranthaceae forest in Africa (Fig. 11, right) 17 
which presents a fairly closed albeit deciduous canopy and a very scarce intermediate tree 18 
storey. Such a structure allows the development of a dense herbaceous cover. Without 19 
relevant field information, results of the FOTO approach may be confusing in those forests. 20 
Their standing biomass is probably less than for evergreen closed forests since woody 21 
intermediate storey is missing, whereas both canopies are dominated by trees with large 22 
crowns. At least, statistical relationships between FOTO indices and AGB should be 23 

FOR PEER REVIEW







 
Biomass Prediction in Tropical Forests: The Canopy Grain Approach 17 

carbon stocks and balance in tropical forests. Oecologia, Vol.145, No.1, (August 1 
2005), pp.87-99, ISSN: 1432-1939 2 

Couteron, P. (2002). Quantifying change in patterned semi-arid vegetation by Fourier 3 
analysis of digitized aerial photographs. International Journal of Remote Sensing, 4 
Vol.23, No.17, (October 2002), pp.3407-3425, ISSN: 1366-5901 5 

Couteron, P., Pélissier, R., Nicolini, E. & Paget, D. (2005). Predicting tropical forest stand 6 
structure parameters from Fourier transform of very high-resolution remotely 7 
sensed canopy figures. Journal of Applied Ecology, Vol.42, No.6, (December 2005), 8 
pp.1121-1128, ISSN: 1365-2664 9 

Couteron, P., Barbier, N. & Gautier, D. (2006). Textural ordination based on Fourier spectral 10 
decomposition: a method to analyze and compare landscape patterns. Landscape 11 
Ecology, Vol.21, No.4, (May 2006), pp.555-567, ISSN: 1572-9761 12 

Fromard, F., Vega, C. & Proisy, C. (2004). Half a century of dynamic coastal change affecting 13 
mangrove shorelines of French Guiana. A case study based on remote sensing data 14 
analyses and field surveys. Marine Geology, Vol.208, No.2-4, (15 August 2004), 15 
pp.265-280, ISSN: 0025-3227 16 

Englhart, S., Keuck, V. & Siegert, F. (2011). Aboveground biomass retrieval in tropical forests 17 
-- The potential of combined X- and L-band SAR data use. Remote Sensing of 18 
Environment, Vol.115, No.5, (May 2011), pp.1260-1271, ISSN: 0034-4257  19 

Fromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J. L. & Cadamuro, L. (1998). Structure, 20 
above-ground biomass and dynamics of mangrove ecosystems: new data from 21 
French Guiana. Oecologia, Vol.115, No.1, (June 1998), pp.39-53, ISSN: 0029-8549 22 

Gastellu-Etchegorry, J. P., Martin, E. & Gascon, F. (2004). DART: a 3D model for simulating 23 
satellite images and studying surface radiation budget. International Journal of 24 
Remote Sensing, Vol.25, No.1, (January 2004), pp.73-96, ISSN: 0143-1161 25 

Gillespie, T. W., Brock, J. & Wright, C. W. (2004). Prospects for quantifying structure, 26 
floristic composition and species richness of tropical forests. International Journal of 27 
Remote Sensing, Vol.25, No.4, (February 2004), pp.707-715, ISSN: 1366-5901 28 

Imhoff, M. L. (1995). Radar backscatter and biomass saturation: ramifications for global 29 
biomass inventory. IEEE Transactions on Geoscience and Remote Sensing, Vol.33, No.2, 30 
(March 1995), pp.511-518, ISSN: 0196-2892 31 

Letouzey, R. (1968), Etude phytogéographique du Cameroun. Lechevalier Eds., Paris. 32 
Malhi, Y. & Román-Cuesta, R. M. (2008). Analysis of lacunarity and scales of spatial 33 

homogeneity in IKONOS images of Amazonian tropical forest canopies. Remote 34 
Sensing of Environment, Vol.112, No.5, (May 2008), pp.2074-2087, ISSN: 0034-4257 35 

Mougin, E., Proisy, C., Marty, G., Fromard, F., Puig, H., Betoulle, J. L. & Rudant, J. P. (1999). 36 
Multifrequency and multipolarization radar backscattering from mangrove forests. 37 
IEEE Transactions on Geoscience and Remote Sensing, Vol.37, No.1, (January 1999), 38 
pp.94-102, ISSN: 0196-2892  39 

Ouma, Y. O., Ngigi, T. G. & Tateishi, R. (2006). On the optimization and selection of wavelet 40 
texture for feature extraction from high-resolution satellite imagery with 41 
application towards urban-tree delineation. International Journal of Remote Sensing, 42 
Vol.27, No.1, (January 10), pp.73-104, ISSN: 0143-1161  43 

Ploton, P. 2010. Analyzing Canopy Heterogeneity of the Tropical Forests by Texture 44 
Analysis of Very-High Resolution Images - A Case Study in the Western Ghats of 45 

FOR PEER REVIEW



 
Remote Sensing of Biomass: Principles and Applications / Book 1 18 

India. Pondy Papers in Ecology, 10: 1-71, Available from <http://hal.archives-1 
ouvertes.fr/hal-00509952/fr/> 2 

Proisy, C., Mougin, E., Fromard, F., Trichon, V. & Karam, M. A. (2002). On the influence of 3 
canopy structure on the polarimetric radar response from mangrove forest. 4 
International Journal of Remote Sensing, Vol.23, No.20, pp.4197-4210, ISSN: 0143-1161 5 

Proisy, C., Couteron, P. & Fromard, F. (2007). Predicting and mapping mangrove biomass 6 
from canopy grain analysis using Fourier-based textural ordination of IKONOS 7 
images. Remote Sensing of Environment, Vol.109, No.3, (August 2007), pp.379-392, 8 
ISSN: 0034-4257 9 

Rao, A. R. & Lohse, G. L. (1996). Towards a texture naming system: Identifying relevant 10 
dimensions of texture. Vision Research, Vol.36, No.11, (June 1996), pp.1649-1669, 11 
ISSN: 0042-6989 12 

Rich, R. L., Frelich, L., Reich, P. B. & Bauer, M. E. (2010). Detecting wind disturbance 13 
severity and canopy heterogeneity in boreal forest by coupling high-spatial 14 
resolution satellite imagery and field data. Remote Sensing of Environment, Vol.114, 15 
No.2, (February 2010), pp.299-308, ISSN: 0034-4257 16 

Richards, P. W. (August 1996). The Tropical Rain Forest. An Ecological Study, 2nd edition, 17 
Cambridge University Press, ISBN: 9780521421942, Cambridge 18 

Vincent, G. & Harja, D. (2008). Exploring Ecological Significance of Tree Crown Plasticity 19 
through Three-dimensional Modelling. Annals of Botany, Vol.101, No.8, (May 2008), 20 
pp.1221-1231, ISSN: 1095-8290 21 

Zhao, K., S. Popescu and R. Nelson (2009). Lidar remote sensing of forest biomass: A scale-22 
invariant estimation approach using airborne lasers. Remote Sensing of 23 
Environment, Vol( 113), No.1, (January 2009), pp. 182-196, ISSN: 0034-4257 24 

FOR PEER REVIEW




