. Agreste, La statistique Agricole Ministère de l'agriculture et de la pêche, 2011.

F. H. Andrade, Analysis of growth and yield of maize, sunflower and soybean grown at 558, 1995.

G. Asrar, M. Fuchs, E. T. Kanemasu, and J. L. Hatfield, Estimating absorbed 560 photosynthetic radiation and leaf-area index from spectral reflectance in wheat Agronomy 561, 1984.

S. Baillarin, P. Gigord, &. O. , and H. , Atomatic Registration of optical images, a stake for 563 future missions: application to ortho-rectification, time series and mosaic products, 2008.

F. Baret and G. Guyot, Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sensing of Environment, vol.35, issue.2-3, pp.161-173, 1991.
DOI : 10.1016/0034-4257(91)90009-U

M. Cabelguenne, P. Debaeke, and A. Bouniols, EPICphase, a version of the EPIC model 594 simulating the effects of water and nitrogen stress on biomass and yield, taking account of 595 developmental stages: validation on maize, sunflower, sorghum, soybean and winter wheat, p.596, 1999.

P. Casadebaig, Analyse et modélisation des interactions génotype -environnement - 598, 2008.

M. Wattenbach, Management effects on net ecosystem carbon and GHG budgets at 605, 2010.

J. S. Chern, A. M. Wu, S. F. Lin, B. Hadria, R. Erraki et al., Lesson learned from FORMOSAT-2 mission Duchemin, p.635, 2006.

J. C. Simonneaux and V. , Monitoring wheat phenology and irrigation in Central Morocco, p.637, 2006.

B. Duchemin, P. Maisongrande, G. Boulet, and I. Benhadj, A simple algorithm for yield 640 estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. 641 Environmental Modelling & Software, pp.876-892, 2008.

A. Olioso and A. G. Chehbouni, Agrometerological study of semi-arid areas: an 645 experiment for analysing the potential of time series of FORMOSAT-2 images, p.646, 2008.

Y. Durand, E. Brun, L. Mérindol, G. Guyomarc-'h, B. Lesaffre et al., Some perspectives on carbon 675 sequestration in agriculture, International Workshop on Contribution of Agriculture to the 676, 1993.

S. Idbraim, Méthodes d'extraction de l'information spatiale et de classification en 678, 2009.

. Imagerie-de-télédétection, Applications à la cartographie thématique de la région d'Agadir 679 (Maroc) In, Sciences de l'Univers, de l'Environnement et de l'Espace (p. 149), p.680

P. D. Jamieson, J. R. Porter, J. Goudriaan, J. T. Ritchie, H. Van-keulen et al., A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought, Field Crops Research, vol.55, issue.1-2, pp.23-44, 1998.
DOI : 10.1016/S0378-4290(97)00060-9

M. J. Sanz, M. Saunders, H. Sogaard, W. Ziegler, J. L. Lindquist et al., The net biome production of full Maize 696 radiation use efficiency under optimal growth conditions, Agronomy Journal, vol.97, pp.72-78, 2005.

J. G. Liu, E. Pattey, J. R. Miller, H. Mcnairn, A. Smith et al., Estimating crop 698 stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined 699 with a radiation use efficiency model, pp.1167-1177, 2010.

D. B. Lobell, G. P. Asner, J. I. Ortiz-monasterio, and T. L. Benning, Remote sensing of 701 regional crop production in the Yaqui Valley, estimates and uncertainties. Agriculture 702, 2003.

D. Loseen, E. Mougin, S. Rambal, A. Gaston, and P. Hiernaux, A regional sahelian 704 grassland model to be coupled with multispectral satellite data .2. toward the control of its 705 simulations by remotely-sensed indexes, pp.194-206, 1995.

S. J. Maas, Parameterized Model of Gramineous Crop Growth: I. Leaf Area and Dry Mass Simulation, Agronomy Journal, vol.85, issue.2, pp.348-353, 1993.
DOI : 10.2134/agronj1993.00021962008500020034x

D. R. Upchurch, Remote sensing for crop management Photogrammetric Engineering 717 and Remote Sensing, pp.647-664, 2003.

S. D. Prince, A model of regional primary production for use with coarse resolution satellite data, International Journal of Remote Sensing, vol.48, issue.6, pp.1313-1330, 1991.
DOI : 10.1080/01431169108929726

L. Franchisteguy and S. Morel, Analysis of near-surface atmospheric variables : Validation of 722, 2008.

I. M. Scotford and P. C. Miller, Applications of spectral reflectance techniques in 724, 2005.

C. J. Tucker, C. Vanpraet, E. Boerwinkel, and A. Gaston, Satellite remote-sensing of total 726 dry-matter production in the senegalese sahel, pp.461-474, 1983.

C. J. Tucker and P. J. Sellers, Satellite remote sensing of primary production, International Journal of Remote Sensing, vol.12, issue.11, p.728, 1986.
DOI : 10.1104/pp.47.5.656

D. Daily and . Production, Eq. 2) using 865 an effective light-use efficiency (ELUE), a daily temperature stress factor (F T ) and the daily 866 photosynthetically active radiation absorbed by plants (APAR). The ELUE expresses the 867 conversion of the APAR into DAM. It is supposed to account for all agri-environmental stresses, 868 such as water and nitrogen supplies, except for temperature. It constrains the amplitude of the 869 GAI time course. The temperature stress function is a classical Polynomial (Eq. 3) of ? Degree 870 defined by an optimal daily mean air temperature (T opt ) for maximum crop functioning and two, Monteith, 1977.