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Abstract—Overlapping soil moisture time series derived5
from two satellite microwave radiometers (the Soil Moisture6
and Ocean Salinity and the Advanced Microwave Scanning7
Radiometer-Earth Observing System) are used to generate a soil8
moisture time series from 2003 to 2010. Two statistical methodolo-AQ1 9
gies for generating long homogeneous time series of soil moisture10
are considered. Generated soil moisture time series using only11
morning satellite overpasses are compared to ground measure-12
ments from four watersheds in the U.S.A. with different clima-13
tologies. The two methods, cumulative density function (CDF)14
matching and copulas, are based on the same statistical theory, but15
the first makes the assumption that the two data sets are ordered16
the same way, which is not needed by the second. Both methods17
are calibrated in 2010, and the calibrated parameters are applied18
to the soil moisture data from 2003 to 2009. Results from these19
two methods compare well with ground measurements. However,20
CDF matching improves the correlation, whereas copulas improve21
the root-mean-square error.22

Index Terms—Advanced Microwave Scanning Radiometer-23
Earth Observing System (AMSR-E), cumulative density func-24
tion (CDF) matching, copulas, Soil Moisture and Ocean Salinity25
(SMOS), soil moisture, time series.26

I. INTRODUCTION27

SOIL moisture is an important variable and is now consid-28

ered as an essential climate variable by the World Meteo-29

rological Organization [1]. It has a crucial role in the transfers30

of water and energy between the soil and the atmosphere. Soil31

moisture is also an input variable for land surface modeling32

in determining the evaporative fraction at the surface and the33

infiltration in the root zone. For both agriculture and water34

resource management, soil moisture information is essential at35

local and regional scales. At global scales, soil moisture is of36
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great value for weather forecasting [2], climate change [3], and 37

monitoring extreme events such as floods and droughts. 38

Soil Moisture and Ocean Salinity (SMOS) [4] was success- 39

fully launched by the European Space Agency in November 40

2009 and since has been providing global maps of soil moisture 41

every three days at a nominal spatial resolution of 43 km 42

with an accuracy of 0.04 m3/m3. SMOS is the first mission AQ443

specifically designed for soil moisture monitoring. The Soil 44

Moisture Active Passive (SMAP) mission [5] is scheduled 45

for launch in October 2014 by the National Aeronautics and 46

Space Administration. SMAP will continue the time series of AQ547

soil moisture based on 1.4-GHz radiometer observations that 48

began with SMOS. The 1.4-GHz frequency channel is the most 49

suitable frequency for soil moisture retrieval [6]. 50

Longer time series of satellite-based soil moisture would be 51

of value in climate-related analysis. Utilizing the data from the 52

previous generations of satellite sensors involves resolving nu- 53

merous issues. Some of the platforms and approaches have been 54

developed to retrieve soil moisture using the higher frequencies, 55

which has been the only option until now. These include the 56

Scanning Multichannel Microwave Radiometer (1978–1987) 57

[7], the Special Sensor Microwave/Imager (1987–current) 58

[7], the Advanced Microwave Scanning Radiometer-Earth 59

Observing System (AMSR-E) (2002–2011) [7], [8], Wind- AQ660

Sat (2003–current) [9], and the European Remote Sensing- 61

Advanced Scatterometer (1991–current) [10]. Although their AQ762

lowest frequencies (5–20 GHz) are not the most suitable for 63

soil moisture retrievals (higher sensitivity to vegetation growth 64

and atmospheric conditions), they remain a valuable time series 65

from 1978 until now. Applications such as data assimilation 66

or climate change assessment require consistent products. The 67

products referenced earlier have been retrieved using different 68

sensors with different algorithms, and as a result, the time series 69

is not homogeneous. This heterogeneity can be interpreted as a 70

bias and is a problem in the data assimilation process. To avoid 71

this issue, these products need to be processed to correct for any 72

bias or amplitude variation between the data sets. 73

Many previous studies have developed various methods for 74

the homogenization of time series. Vincent et al. [11] developed 75

a method to harmonize temperature time series with gaps. The 76

first step was to determine if the series was homogeneous by 77

comparing its anomalies to those of a reference series. The 78

identification of the gaps and their magnitude was performed 79

by successively fitting a linear model with different magnitude 80

values with the best fit being indicated by the minimum sum 81

of square errors. Homogeneous temperature and precipitation 82

time series were developed by Begert et al. [12] using statistical 83
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methods to detect potential inhomogeneity. In that study, a84

reference time series was necessary in order to detect and85

compute the magnitude of the shifts. Picard and Fily [13]AQ8 86

proposed a method to simulate a homogeneous time series of87

the cumulative melting surface in Antarctica. Using satellite88

observations from different sensors and acquisition times was89

the biggest challenge. Correcting for the effect of the observing90

time was accomplished in two steps. First, a sinusoidal function91

with a 24-h periodicity was fitted, and then, an optimal interpo-92

lation to refine this first guess model to force it to be closer was93

applied to the observations and to provide very low uncertainty94

around observation time and larger uncertainty when there is no95

available observation.96

Matching the cumulative density functions (CDFs) of two97

data sets has been used in several studies to merge time series.98

Reichle and Koster [14] and Choi and Jacobs [15] merged99

soil moisture derived from satellite observations with model100

data, and Li et al. [16] corrected the bias of precipitation101

and temperature products derived from different models. CDF102

matching was also used as a preliminary step of the assimilation103

process [17] and to produce long time series of soil moisture104

[18], [19].105

Over the last few years, a new method based on copula106

functions has been developed. It allows the derivation of bi-107

variate distributions without making the assumptions required108

when dealing with multivariate frequency distributions, e.g.,109

the same type of marginal distribution for both variables, a110

joint normal distribution, and independent variables. One of111

the major advantages of the copula method is that the marginal112

distributions can be of any form [20]. The first comprehensive113

treatment of copulas was by Nelsen [21]. He presented methods114

to construct copulas and discussed the role played by copulas115

in modeling and dependence. Since then, copulas have been116

applied in various applications with the majority of the liter-117

ature dedicated to the financial sector [22], [23]. In the field of118

hydrology, some applications have emerged. Genest and Favre119

[24] summarized the existing methods to detect and evaluate120

the dependence between the data sets through copulas (analyt-121

ically and graphically) and enumerated the various methods to122

choose the best copula family and estimate their parameters.123

Favre et al. [25] applied copulas to peak flows and volumes124

from two watersheds, Salvadori and De Michele [26] to storm125

and rainfall time series, Dupuis [27] to the volume and duration126

of low flows of two rivers, Zhang and Singh [28] to rainfall fre-127

quency, Serinaldi and Grimaldi [29] to flood and sea frequency,128

and Laux et al. [30] to precipitation data. Gao et al. [31] used129

copulas as a preprocessing step for the assimilation process on130

soil moisture data.131

Joint statistical analysis has already been applied when the132

sources of the soil moisture measurements come from different133

observation systems (e.g., AMSR-E surface soil moisture and134

10-cm soil moisture from a land surface model [14]). Similarly,135

joint statistical methods form the basis for data assimilation of136

satellite soil moisture into land surface models [31]. There are137

many other studies related to joint probability, including where138

the variables are physically different but where their statistical139

relationships are useful (e.g., rainfall storm intensity and storm140

duration [32]).141

The goal of this paper is to estimate for all the AMSR-E 142

period (2003–2010) SMOS-equivalent observations that can be 143

used to develop a statistical representation of SMOS retrieval so 144

that current and future SMOS retrievals can be used in applica- 145

tions like drought monitoring based on percentiles. However, AQ9146

matching 130 am C-/X-band (AMSR-E) observations with 147

600 am L-band (SMOS) observations presents some issues: 148

1) The crossing times are different, and rainfalls may occur be- 149

tween the two acquisitions; and 2) the frequencies are different, 150

so the sensing depths are not similar. 151

The statistical impact of the rainfalls that could occur be- 152

tween 130 am and 600 am is to lower the correlation. However, 153

if the correlation is sufficiently high, a statistical relationship 154

can be established to estimate an equivalent SMOS value from 155

an AMSR-E observation. This high correlation implies that the 156

occurrence of precipitation between the SMOS and AMSR-E 157

overpasses is rare. Moreover, it is well known that soil moisture 158

has a long temporal correlation time scale, so the overpass time 159

differences will have a minimal effect on the analysis. AQ10160

The impact of the different frequencies between AMSR-E 161

and SMOS is, in most situations, not significant. The higher 162

AMSR-E frequency (10.7 GHz) results in a more superficial 163

emission depth than the SMOS observations, so while the 164

retrieved values may be different, their relative values will be 165

similar (both dry or wet). The correlation between paired ob- 166

servations depends on their relative values (with their individual 167

time series) and not absolute values, and in the case of copula- 168

based joint distributions, the correlation is represented by the 169

Kendall tau whose calculation is based on ranks. 170

If the two sensing depths were to be reconciled physically, 171

given the soil property variability (spatially and with depth) 172

with different wetting and drying properties, a physical model 173

would introduce significant uncertainty that could be very 174

difficult to estimate afterward. If the SMOS (or AMSR-E) 175

data were adjusted to the AMSR-E (or SMOS) emission depth 176

through data assimilation into a land surface model for exam- 177

ple, then the complete record would have to be adjusted with 178

the added uncertainty of the data assimilation step. With any 179

of the suggested adjustments, there is a mismatch with the 180

past or with the future. Only by treating the original data sets 181

and determining the information content between them can a 182

consistent approach be represented. AQ11183

Data assimilation could, however, deal with the precipitation 184

and the difference in sensing depth issues, but that would imply 185

other uncertainties such as the space–time variability of the 186

precipitation data sets, as well as other meteorological issues. 187

Building a homogeneous time series based on data assimila- 188

tion into a land surface model can be seen as a competing 189

approach. 190

In this paper, we show two statistical methods to obtain 191

this homogeneous time series. The satellite data and the four 192

watersheds where the time series are simulated are presented 193

in Section II. The two statistical methods for generating ho- 194

mogeneous time series are presented in Section III which 195

includes the general theory and how to apply them to real data. 196

Simulated time series over the four watersheds are presented in 197

Section IV. Conclusions and perspectives are described in the 198

last section. 199
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II. REGIONS OF INTEREST AND SATELLITE DATA200

A. SMOS201

With its L-band radiometer, SMOS [4] has been providing202

soil moisture data for almost three years and global coverage203

every three days with a 43-km resolution. The satellite is polar204

orbiting with equator crossing times of 6 am (local solar time205

(LST), ascending) and 6 pm (LST, descending). The signal at206

L-band is mainly influenced by the water content at the surface207

of the soil (around 5 cm).208

SMOS acquires brightness temperatures at multiple inci-209

dence angles, from 0◦ to 55◦ with full polarization. The an-210

gular signature is a key element of the retrieval algorithm211

that provides soil moisture and the vegetation optical thickness212

through the minimization of a cost function between modeled213

and acquired brightness temperatures [33], [34]. This estimated214

soil moisture is referred as the Level 2 product [34] and is215

available on the Icosahedral Snyder Equal Area-4h9 grid [35].AQ12 216

The nodes of this grid are equally spaced at about 15 km. In217

this paper, the 2010 SMOS Level 2 version 4 products have218

been used.219

Currently, numerous studies are underway on the validation220

of SMOS soil moisture product with in situ measurements221

and estimates of other sensors and models. Bitar et al. [36]222

used the Soil Climate Analysis Network [37] and the Snow-223

pack Telemetry sites in North America to compare SMOS224

soil moisture retrievals and ground measurements. That study225

showed that SMOS soil moisture had a very good dynamic226

response but tended to underestimate the values. However,227

the new version of the product (V4) significantly improved228

the general results. Jackson et al. [38] studied SMOS soil229

moisture and vegetation optical depth over four watersheds in230

the U.S. They concluded that SMOS almost met the accuracy231

requirement with root-mean-square errors (rmses) of 0.043 andAQ13 232

0.047 m3/m3 in the morning and afternoon, respectively,233

whereas the vegetation optical depth retrievals were not reliable234

yet for use in vegetation analyses. Leroux et al. [39] comparedAQ14 235

SMOS data with other satellite and model output products over236

the same four watersheds for the year 2010. It showed that237

SMOS soil moisture data were closer to the ground measure-238

ments than the other data sets. Even though the correlation239

coefficient was not the best, the bias was extremely small.240

After the results of the validation activities, the European241

Center for Medium-Range Weather Forecasts has decided and242

is now ready to process SMOS data in near real time into their243

Integrated Forecast System. It is expected to have an impact on244

the weather forecast at short and medium ranges [40].245

B. AMSR-E246

The AMSR-E was launched in June 2002 on the Aqua247

satellite. This radiometer acquires data with a single 55◦ inci-248

dence angle at six different frequencies: 6.9, 10.7, 18.7, 23.8,249

36.5, and 89.0 GHz, all dual polarized. The crossing times are250

respectively 1:30 am (LST, descending) and 1:30 pm (LST,251

ascending).252

There are several soil moisture products available that are253

based on AMSR-E data. Many studies have already showed254

Fig. 1. Map of the four sites: WG, AZ; LW, OK; LR, GA; and RC, ID.

that the NASA product [41] is not able to reproduce low values AQ15255

of soil moisture and has low dynamic range [42]–[46]. The 256

soil moisture data produced by the joint collaboration of the 257

Vrije University of Amsterdam and NASA (whereafter called 258

the Land Parameter Retrieval Model (LPRM) [7]) were chosen 259

in this study. AQ16260

The LPRM [7] retrieves soil moisture and optical thickness 261

using the C- and X-band AMSR-E channels (combined prod- 262

uct) and 36.5 GHz to estimate the surface temperature. This 263

algorithm is based on a microwave radiative transfer model with 264

a priori information about soil characteristics. The products are 265

available on a 0.25◦ × 0.25◦ grid only for the descending orbit. 266

These data have been quality controlled, and the contaminated 267

estimates due to high topography and extreme weather condi- 268

tions such as snow have been flagged and not been considered 269

in this study. AQ17270

C. Study Areas 271

Four watersheds located in the United States were selected 272

for this study: Walnut Gulch (WG) in Arizona, Little Washita 273

(LW) in Oklahoma, Little River (LR) in Georgia, and Reynolds 274

Creek (RC) in Idaho (see Fig. 1). They represent different 275

types of climate (from semiarid to humid) and land use patterns 276

[47]. These four watersheds have been used as calibration and 277

validation sites for comparison of AMSR-E satellite product 278

[47] and SMOS product [38], [39]. 279

WG is located in the Southeast Arizona. Most of the water- 280

shed is covered by shrubs and grass, which is typical of the re- 281

gion. The annual mean temperature is 17.6 ◦C (at Tombstone), 282

and the annual mean precipitation is 320 mm (mainly from 283

high intensity convective thunderstorms in the late summer). 284

The uppermost 10 cm of the soil profile contains up to 60% 285

gravel, and the underlying horizons usually contain less than 286

40% gravel. 287
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TABLE I
WATERSHED CHARACTERISTICS AND THE COORDINATES OF THE BOX CONTAINING THE POINTS USED FOR STATISTICSAQ18

TABLE II
CORRELATION COEFFICIENTS (R) BETWEEN THE IN SITU

MEASUREMENTS AT 130 AM AND 600 AM FOR THE FOUR WATERSHEDS.
N IS THE NUMBER OF AVAILABLE DATES, AND CI IS THE 95%

CONFIDENCE INTERVAL

LW is located in Southwest Oklahoma in the Southern Great288

Plains region of the U.S. The climate is subhumid with an289

average annual rainfall of 750 mm (mainly during the spring290

and fall seasons). Topography is moderately rolling with a291

maximum relief of less than 200 m. Land use is dominated by292

rangeland and pasture (63%).293

LR is located in the Southern Georgia near Tifton. With294

an average annual precipitation of 1200 mm, the climate is295

humid. The LR watershed is typical of the heavily vegetated296

slow-moving stream systems in the Coastal Plain region of297

the U.S. The topography over this watershed is relatively flat.298

Approximately 40% of the watershed is forest with 40% crops299

and 15% pasture.300

RC is located in a mountainous area of Southwest Idaho. The301

topography is high with a relief of over 1000 m that results in302

diverse climates. Soils and vegetations are typical in this part303

of the Rocky Mountains. The climate is considered as semiarid304

with an annual precipitation of 500 mm. Approximately 75% of305

the annual precipitation at high elevation is snow, whereas only306

25% is snow at low elevation.307

Surface soil moisture and temperature sensors (0–5 cm) have308

been acquiring data since 2002 for the four watersheds. The309

data used in this study are the means and standard deviations310

of the soil moisture and surface temperature acquired every311

30 min from 2009 to 2010 (hourly for RC). The averages312

are based on 14/8/8/15 sensors for WG/LW/LR/RC, respec-313

tively, after eliminating sensors with poor and suspicious314

performances. Weighting coefficients have been derived forAQ19 315

each sensor with a Thiessen polygon. Table I summarizes the316

characteristics of each watershed [47].317

In order to estimate the effect of the rainfalls that could318

occur between 130 am and 600 am, the correlation coefficients319

between the measurements at 130 am and 600 am have been320

computed for the four watersheds (see Table II and Fig. 2). They321

range from 0.95 to 0.99, and based on the fact that rainfalls322

would lower the correlation, we can assess that precipitations323

that do not affect significantly the analysis.324

Fig. 2. Comparison between the 130 am and the 600 am soil moisture:
In situ observations and satellite products for the four watersheds. (a) In situ
soil moisture at 130 am and 600 am. (b) LPRM (130 am) and SMOS (600 am)
soil moisture.

Fig. 3. Principle of CDF matching by setting the probabilities equal. For a
given x, find y such that GY (y) = FX(x).

III. TWO STATISTICAL METHODS FOR GENERATING 325

HOMOGENEOUS TIME SERIES 326

Two statistical methods were used to create a homogeneous 327

time series of soil moisture. CDF matching has been widely 328

used in previous studies to merge time series [14], [15], [18], 329

[19], whereas copulas have just started to be used recently for 330

environmental purposes. 331

A. CDF Matching 332

The CDF is the probability that a random variable X takes a 333

value less than or equal to a given number x 334

FX(x) = Pr[X ≤ x] (1)
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Fig. 4. Representations of the nine copulas showing their characteristics in the form of the point cloud (x-axis: CDF of the first data set; y-axis: CDF of the
second data set).

where FX is the CDF of the random variable X . If two time335

series are considered, the CDF matching consists of matching336

the CDF of each data set by setting their probabilities equal337

(see Fig. 3). The following approach has been applied here to338

the soil moisture data.339

1) Compute the CDF of both data setsX and Y :FX andGY .340

2) Given a value x of X , find y such that GY (y) = FX(x).341

However, the assumption that the probabilities FX(x) and342

GY (y) are equal is never confirmed, and most of the time, they343

are scattered like in Fig. 4. The copula method models this 344

dependence between the probabilities. 345

For the rest of this paper, we use the variable u to represent 346

FX(x) and v for GY (y). U and V are data sets, whereas u and 347

v are values of these data sets. 348

B. Copulas 349

The copula theory is a very useful and powerful tool to model 350

the dependence structure between two sets of random variables. 351
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TABLE III
NINE COPULAS TESTED IN THE STUDY: DEFINITION, PARAMETER RANGE, AND FAMILY

Like the CDF matching, copulas separate the marginal behavior352

of variables from the dependence structure by using distribution353

functions. Instead of setting the probabilities u and v equal,354

the variables U and V are compared and analyzed. The copula355

function binds the two variables together.356

There are many families of copulas which exhibit very differ-357

ent properties. The form of the scatter of U and V is controlled358

by the family choice, and the width of the tail of this scatter359

is controlled by the single parameter θ. Most of the definitions360

that follow in this section are based on [21].361

1) General Theory: A copula is a function that gener-362

ates a multivariate cumulative distribution function from 1-DAQ20 363

marginal CDFs. Given two random variables, X and Y , with364

marginal CDFs FX and GY , then, Sklar’s theorem states365

HXY (x, y)=CXY (FX(x), GY (y))=Pr[X≤x, Y ≤y] (2)

where HXY is the joint CDF of X and Y and CXY is the asso-366

ciated copula function. It is then possible to derive conditional367

distributions, HXY (y|x), i.e., the joint CDF knowing x. Let368

u=FX(x) and v=GY (y). Then, HXY (y|x) can be derived by369

CV |U =
∂C(u, v)

∂u
. (3)

Schweizer and Wolff [48] established that the copula func-370

tion accounts for all the dependence between the two variables.371

They demonstrated that transformations of the variables X and372

Y do not affect their associated variables. Thus, the way that X373

and Y evolve together is captured by the copula, regardless of374

the scale in which each variable is measured.375

2) Some Copula Families: The product copula corresponds376

to the independence between X and Y377

C(u, v) = u · v. (4)

A copula of the Archimedean family takes the following378

form:379

C(u, v) = φ−1 (φ(u) + φ(v)) (5)

where φ is the generator function that goes from [0, 1] to380

(0,∞). It satisfies three conditions: φ(1) = 0, φ strictly de-381

creasing, and φ convex.382

Elliptical copulas have distributions with elliptic contours.383

The main advantage of elliptical distributions is that the level384

of correlation between the variables U and V can be specified. 385

The disadvantages are that elliptical copulas do not have closed- 386

form expressions and are restricted to have radial symmetry. AQ21387

In this paper, nine copulas were used: the product cop- 388

ula, Clayton, Frank, Gumbel, Farlie–Gumbel–Moregenstern 389

(FGM), Ali–Mikhail–Haq, Arch12 (the 12th copula presented 390

in [21]), Arch14 (the 14th copula presented in [21]), and the 391

Gaussian copula. The nine copulas are described in Table III 392

and Fig. 4 and have their own characteristics. 393

1) Clayton: Strong left tail dependence and relatively weak 394

right tail dependence (i.e., u and v are strongly linked for 395

low values, whereas they are not for high values). 396

2) Frank: Dependence is symmetric in both tails, weak in 397

both tails, and stronger in the center of the distribution. AQ22398

3) Gumbel: Strong right tail dependence and relatively weak 399

left tail dependence (the opposite of Clayton). 400

4) FGM: Useful when the dependence between U and V is 401

modest in amplitude. 402

5) Gaussian: Flexible as it allows for positive and negative 403

dependences. 404

Hafner and Reznikova [23] and Wang and Pham [49] 405

developed a method that includes the time into the copula 406

formula to create a dynamic copula evolving with time. In 407

this paper, time was not included, but the year 2010 was 408

divided into four seasons as different statistical behaviors were 409

expected: December–January–February, March–April–May 410

(MAM), June–July–August (JJA), and September–October– 411

November (SON). 412

3) How to Select a Family: Since copulas separate marginal 413

distributions from dependence structures, the appropriate cop- 414

ula for a particular application is the one that best captures the 415

dependence features of the data [22]. Dupuis [27] examined the 416

effects of model misspecification and highlighted the dangers 417

of improper copula selection. Genest and Rivest [50] proposed 418

a method to select the most appropriate copula, but this method 419

is only relevant for Archimedean copulas. Other methods 420

were developed to compare any type of copulas [51]–[54]. 421

Genest et al. [55] and Berg [54] compared some of them 422

and concluded that there was no universal test and that some 423

procedures performed better in some situations but never in all 424

the situations. 425
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The method proposed by Huard et al. [56] is based on a426

Bayesian approach where any type of copula can be tested. It427

does not perform perfectly well in all the situations (with small428

correlation coefficients or with small sample size) but has the429

advantage to be a very fast method. This method was chosen430

in this study to select the copula that provides the best fit to the431

data.432

4) Method Used for Simulations: The key to generating433

simulations from a copula is to understand that a copula is a434

joint distribution and that it obeys to the same rules. A con-435

ditional copula CV |U (u, v) is the probability that the random436

variable V is less than or equal to a value v knowing that the437

random variable U is equal to a value u438

CV |U (u, v) = Pr[V ≤ v | U = u] = t ∼ U(0, 1). (6)

Simulating a uniform variable t is necessary in order to439

generate simulations from a copula. To retrieve V |U , the func-440

tion CV |U needs to be inverted such that v = C−1
V |U (t), or the441

equation CV |U (v) = t needs to be solved numerically. For each442

value of t, a value for v is retrieved. The following approach443

was used here to simulate data with the copulas.444

1) Compute FX and GY from the two original data sets X445

and Y with (1).446

2) Choose the appropriate copula C by applying Huard’s447

method and fitting the parameter θ to the original data.448

3) Derive the conditional copula CV |U with (3).449

4) Generate 1000 simulations t ∼ U(0, 1).450

5) Compute v with v = C−1
V |U (t) and y with y = G−1

Y (v).451

6) The mean and standard deviation from the 1000 simula-452

tions can be computed.453

IV. METHODOLOGY454

For the CDF matching and the copula methods, 2010 data455

were used for calibration. The CDFs of SMOS and LPRM were456

calculated for the 2010 data sets. The two algorithms were then457

applied to the data from previous years. It should be noted that458

the consequence of using 2010 as a calibration year is that only459

the soil moisture range from 2010 is taken into account. If an460

extreme event occurred in the previous years, it might not be461

well described with these methods as they are only based on462

statistics and not on physical models. By looking at the in situ463

soil moisture time series in Fig. 7, 2010 did not have enough464

wet values over LR to estimate correctly the strong rainfalls465

of 2004, 2005, and 2009, not enough wet values over LW for466

rainfalls in 2007 and not enough dry values as well for 2003467

and 2006, and again not enough dry values over RC for all the468

previous years.AQ23 469

The two methods were applied to data contained in a 1◦ × 1◦470

box around each watershed in order to have enough points for471

computing reliable statistics. The coordinates of each box are472

indicated in Table I. Only the satellite morning overpasses were473

selected for this study (6:00 am for SMOS and 1:30 am for474

AMSR-E, LST) since LPRM retrievals were only available for475

this overpass.476

The 2010 calibration year was divided into four seasons:477

December–January–February, MAM, JJA, and SON. This478

Fig. 5. Discrepancies in the simulations of soil moisture between CDF match-
ing and copulas in 2010. Original soil moisture LPRM data are represented
by blue points, and simulated data with CDF matching and copulas are in
green and red, respectively. The standard deviation of the copula simulations AQ24
is represented in shadowed red. Each row corresponds to a site, and each
column corresponds to a season. x-axis: LPRM soil moisture. y-axis: SMOS
soil moisture.

subdivision was done in order to better capture the sea- 479

sonal dynamic that can be very different depending on the 480

time of the year, particularly in vegetated areas. However, 481

not enough points were available during the winter period 482

(December–January–February) to compute reliable statistics, 483

so no estimation was performed for this season. 484

When comparing either two different remote sensing prod- 485

ucts or in situ data with remote sensing products, there is the 486

issue of the scale effect, as the products may have significantly 487

different spatial resolutions. Moreover, the spatial variability 488

varies with the seasons and the heterogeneity. So as to reduce 489

the problem, we used in this study averaged in situ data sets 490

(8 to 15 stations that were several miles away) which were 491

especially produced to be representative of 50-km spatial res- 492

olution or so [47]. Also, statistics were applied to all the points 493

contained in a 1◦ × 1◦ box (more than 50 grid points). 494

V. GENERATED HOMOGENEOUS TIME SERIES 495

The year 2010 was used to compute the CDFs of each 496

data set (SMOS and LPRM) for both methods and the joint 497

CDF based on fitting and selecting copula functions as de- 498

scribed previously. The soil moisture data were estimated using 499
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TABLE IV
STATISTICAL RESULTS OF THE SIMULATIONS FROM COPULAS AND CDF MATCHING. THE SIMULATIONS WERE COMPARED TO GROUND

MEASUREMENTS OVER 2010 DIVIDED INTO FOUR SEASONS: MAM, JJA, SON, BUT NOT ENOUGH DATA AVAILABLE FOR

WINTER SEASON. THE BEST RESULTS ARE WRITTEN IN BOLD, AND RMSES ARE IN m3/m3AQ25

the conditional distribution (conditional on LPRM retrievals).500

While the copula procedure has the potential to generate an501

ensemble of SMOS-like soil moisture estimates, given the502

LPRM estimated soil moisture, we only use the mean estimate.503

The ensembles could be used to provide uncertainty estimates.504

It should be noted that CDF matching can only provide a505

single SMOS estimate. The resulting time series will result in506

a statistically homogeneous time series under the assumption507

that 2010 LPRM retrievals and the underlying AMSR-E bright-508

ness temperatures are temporally consistent. The resulting509

SMOS-like estimated soil moisture is then compared to ground510

measurements.511

A. Calibration Year 2010 and Comparison With512

Ground Measurements513

2010 is the year with both SMOS data and LPRM data.514

CDFs were computed for both variables. CDF matching and515

copula methods were then applied, and these produced different516

SMOS-like estimates. In Fig. 5, the original data (SMOS and517

LPRM) are represented by the blue point cloud, CDF matching518

and copula estimates are in green and red colors, respectively,519

and standard deviations from copula simulations are in red520

shadows. This standard deviation can be interpreted as theAQ26 521

uncertainty associated to the copula simulations, which can be522

not produced by CDF matching estimation.523

Over WG in the MAM season, there was no obvious differ-524

ence between the two simulation methods. However, in the JJA525

and SON seasons, there were differences for the high values526

of soil moisture: The CDF matching method produced higher527

simulated values than the copula method. Similar behavior can528

also be seen for all seasons in the other three sites, i.e., LW, LR,529

and RC. Discrepancies can also be observed for small values530

of soil moisture over LW, LR, and RC (MAM) where copulas531

generated higher values of soil moisture.532

Standard deviations of soil moisture simulations from copu-533

las were also computed (see Fig. 5). This standard deviation is534

directly related to the width of the tail of the chosen copula535

which is controlled by the θ parameter. A high value of the536

standard deviation corresponds to a large tail, meaning that537

the two variables are weakly linked to each other, whereas a 538

small value corresponds to a strong link. The differences in 539

the simulations can also be observed in the 2010 time series 540

(see Table IV and Fig. 6). Compared to the original LPRM 541

data, the estimated soil moisture was close to the SMOS level 542

and comparable to the ground measurements. The bias between 543

LPRM and SMOS was corrected by both methods. 544

Over WG, CDF matching and copula simulations were not 545

very different except in the summer season when the CDF 546

matching simulations were higher than the copulas. Consid- 547

ering the entire year, both simulation methods improved the 548

original statistics from the LPRM data set. The correlation 549

coefficient did not change significantly (R = 0.79 for LPRM 550

and R = 0.79/0.82 for copulas/CDF matching), but the rmse 551

was highly improved going from 0.139 m3/m3 (original LPRM 552

data) to 0.054 m3/m3 with CDF matching and 0.043 m3/m3 553

with copula, which represents an improvement of a factor of 3. 554

Over LW, simulations responded very well to the succes- 555

sive rain events throughout the year and exhibited a pattern 556

of decrease following a rain event. The first two months 557

(March–April) exhibited more noisy simulations, and the statis- 558

tics were impacted by this behavior (R = 0.55/0.57 and 559

rmse = 0.057/0.075 m3/m3 for copulas/CDF matching). The 560

other two seasons gave good results in terms of statistics. For 561

the entire year, the R value was highly improved (R = 0.59 562

for LPRM and R = 0.71/0.71 for copulas/CDF matching), and 563

the rmse was reduced by a factor of 3 (rmse = 0.148 m3/m3 564

for LPRM and rmse = 0.043/0.059 m3/m3 for copulas/CDF 565

matching). 566

The LR watershed is the site with the highest rainfall fre- 567

quency (events of small amplitude). The successive rainfall 568

events were not well captured by the simulations, particularly 569

during the fall season when both simulations exhibited only 570

small variations, which resulted in very poor statistics (R = 571

0.17/0.16 for copulas/CDF matching). Unfortunately, even if 572

the rain events were captured by the original data sets, none 573

was captured by both data sets at the same time, so only the 574

nonraining periods were taken into account by the statistics. 575

Therefore, the simulations can only be representative of the dry 576

periods. It should be noted that the statistics of LPRM were 577
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Fig. 6. Simulations for 2010: SMOS, LPRM, simulated soil moisture data from CDF matching and copulas, and ground measurements over the four watersheds.
Since the in situ data are the mean of several ground measurements, their standard deviations are represented in gray shadows showing the spatial variability.
(a) WG. (b) LW. (c) LR. (d) RC.

already not good during this season (R = 0.37 and rmse =578

0.174 m3/m3). During the spring season, SMOS overestimated579

the in situ soil moisture measurements, so as a result, the580

copulas and CDF matching estimates overestimated the in situ581

measurements as well.582

RC is located in a mountainous region and is subject to583

frequent snow and frozen soil events. The satellite-based soil584

moisture was not comparable to the ground measurements until585

late May. After this winter period, the simulations captured586

accurately the soil moisture evolution and improved the original587

statistics and especially the rmse (0.099 m3/m3 for LPRM and588

0.059/0.067 m3/m3 for copulas/CDF matching).589

B. Times Series 2003–2010 and Comparison With590

Ground Measurements591

Soil moisture from 2003 to 2010 was simulated from the592

LPRM retrievals (2003–2010) using the copulas and CDF593

matching relationships developed for 2010. Fig. 7 and Table V 594

show the entire time series and the associated statistics (R and 595

rmse) between the original data, CDF matching simulations, 596

copula simulations, and ground measurements. 597

WG is the driest site and did not have a lot of rain events. 598

These rain events were well described by the simulated soil 599

moisture even though they were sometimes largely overesti- 600

mated, particularly by CDF matching simulations. Artifacts at 601

the extremities of the seasons can be seen at the beginning 602

of 2006 and 2008. The correlation coefficient was improved 603

using the CDF matching for each year, whereas the errors were 604

reduced by a factor larger than 2 with the copulas. 605

The overestimation of the soil moisture after the rain events 606

with CDF matching can be found as well over LW, but the 607

temporal evolution was well captured by both methods. For this 608

watershed, CDF matching overestimated the high soil moisture 609

values and underestimated the low values. CDF matching pro- 610

duced soil moisture with a higher dynamic range than copulas. 611
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Fig. 7. Simulated time series from 2003 to 2010 with ground measurements for the four watersheds. (a) WG. (b) LW. (c) LR. (d) RC.

This was reflected in the total rmse value (0.079 m3/m3),612

whereas the rmse of the copula simulations was of 0.066 m3/m3613

(original LPRM rmse: 0.160 m3/m3).614

LR is the site with the largest number of rain events, and as615

mentioned in the previous section, this high rain frequency was616

not properly captured during the fall season of 2010; this can617

be seen as well in the entire time series where all the copulas618

and CDF matching estimates were flat during fall seasons.619

Moreover, since SMOS was overestimating the soil moisture620

during the spring season of 2010, both statistical estimates had621

this behavior. Even though the tendency of the simulations was622

correct, the dynamic behavior was not well represented, which623

resulted in a very poor correlation coefficient (negative values624

in 2004 and 2007).625

RC is a very complicated site because of the frequent626

snow and frozen soil events occurring during half of the year.627

However, statistical results were improved for the entire year628

with copula simulations (rmse = 0.099 m3/m3 for LPRM and 629

rmse = 0.056/0.062 m3/m3 for copulas/CDF matching). 630

VI. CONCLUSION AND PERSPECTIVES 631

The main goal of this study was to propose a new method to 632

generate a long homogeneous time series (2003–2010) of soil 633

moisture from two overlapping time series. 634

For that purpose, two statistical tools, the CDF matching and 635

the copulas, were tested over four watersheds in the U.S. By us- 636

ing CDF matching, the assumption that the two studied data sets 637

are ranked in the same way is made, which the copulas do not 638

require. The two analyzed data sets (SMOS and LPRM) were 639

jointly available only for 2010, so data from 2010 were used to 640

estimate the CDFs that are used as references to estimate SMOS 641

soil moisture for previous years. The novelty of the approach is 642

its application: establishing the statistical relationship between 643
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TABLE V
STATISTICAL RESULTS FROM THE COMPARISON BETWEEN THE SIMULATED TIME SERIES OF SOIL MOISTURE FROM 2003 TO 2010. ORIGINAL SOIL

MOISTURE TIMES ARE REPRESENTED BY LPRM. THE BEST RESULTS ARE INDICATED IN BOLD,
AND THE RMSE ARE IN m3/m3. (a) WG. (b) LW. (c) LR. (d) RC

AMSR-E and SMOS retrieved soil moisture values and using644

this relationship to estimate the equivalent SMOS value for the645

AMSR-E period prior to the SMOS launch.646

The first analysis of these simulations over 2010 showed that647

the simulated data sets were very similar to the SMOS estimates648

and reproduced SMOS behavior accurately except over the LR649

watershed where numerous rain events occurred. This high650

rainfall frequency was interpreted statistically as noise, and651

hence, the simulations did not describe the soil moisture evolu-652

tion over this site very well. RC was also a very complicated site653

due to the local topography and seasonal climate conditions.654

Soil moisture derived from satellite observations was not able655

to accurately reproduce the dynamics as found in the in situ656

data, and as a result, the simulated soil moisture did not either.657

However, the total rmse for the simulated soil moisture from658

copulas was reduced by a factor of almost 2. The WG and659

LW sites were well represented by the simulations, and copulas660

improved the error by a factor of 3, whereas CDF matching661

improved the correlation.662

The time series of soil moisture were estimated from 2003 to663

2010 and were compared to in situ measurements at all four664

watersheds. Since simulated soil moisture data in 2010 over665

the LR watershed had very little dynamic range, they remained666

the same for the entire time series and showed very poor667

statistical results. Even though the rmse values were improved668

by a factor of 3, the total correlation was not good. For the 669

three other sites, the correlation coefficient was a bit degraded 670

compared to the original LPRM data, but the rmse was highly 671

improved with copulas by a factor of 2 to 3. In general, CDF 672

matching gave better results in terms of correlation, and copulas 673

gave better results in terms of errors compared to the ground 674

measurements. 675

As a more general conclusion, CDF matching gives good 676

results but does not take into account the structure of the 677

dependence between the two data sets, whereas the copulas 678

allow to model this structure. Through the choice of the family 679

and the parameter θ (which controls the width of the tail of the 680

scatter), it is possible to model all kinds of structures, from the 681

perfect dependence (CDF matching), right or left dependence, 682

to complete independence. This is why copulas produce better 683

results for the extreme values (very low and very high values) 684

than CDF matching. Copulas can also estimate the uncertainty 685

of the soil moisture simulations given the LPRM value and 686

can be seen as a quality information in the simulation process. 687

However, the copula method is time consuming. It is quick 688

to choose the copula family and its associated parameter as 689

it is based on a Bayesian approach; however, it is very time 690

consuming to generate the 1000 simulations, particularly if the 691

chosen copula does not have an analytic inversion form. In the 692

latter case, 1000 equations need to be resolved numerically. 693
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Nevertheless, these simulations represent an advantage since it694

is possible to compute a mean and a standard deviation. The695

limitations are the same for both methods and even for any696

general statistical methods using a specific year as a reference:697

Only the variable range of this particular year can be well698

represented. Therefore, if an event in a previous year occurs699

and is out of the range found in the specific year of reference700

(such as drought or flood events), then that event will not be701

well represented in the simulated results.702

In order to improve this methodology, applying a moving703

window of three months would provide more accurate results704

instead of dividing the year into four seasons. This would also705

avoid the artifacts and gaps generally noticed at the transition706

between the seasons. Another solution would be to introduce707

the time in the copulas, but the level of complexity in the copula708

manipulation would increase as well.709

In this paper, the attempt to build a homogeneous soil mois-710

ture time series has been based on statistical methods only. Of711

course, other methods exist to reconcile different sensor ac-712

quisitions, and because SMOS and AMSR-E do not operate at713

the same frequencies and not at the same crossing times, using714

physical models to tackle these discrepancies is an alternative to715

statistical methods. Moreover, matching observations acquired716

at 130 am and 600 am can trigger some questions, particularly717

regarding the precipitations that could occur in between. The718

present study is a first step toward a unified and homogeneous719

soil moisture time series, and mixing physical and statisti-720

cal models to do so would be a breakthrough for climate721

studies.722

The next step of this study is to build a homogeneous time723

series of soil moisture at the global scale. Hence, the results of724

this study will be extended in the future to build a global map725

of the copula family choice and to study if there exists any rela-726

tionship between the chosen copulas and the soil characteristics727

or land use data. This would allow us to derive soil moisture728

time series from LPRM data within SMOS soil moisture range729

over the entire globe.730
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3

4

Abstract—Overlapping soil moisture time series derived5
from two satellite microwave radiometers (the Soil Moisture6
and Ocean Salinity and the Advanced Microwave Scanning7
Radiometer-Earth Observing System) are used to generate a soil8
moisture time series from 2003 to 2010. Two statistical methodolo-AQ1 9
gies for generating long homogeneous time series of soil moisture10
are considered. Generated soil moisture time series using only11
morning satellite overpasses are compared to ground measure-12
ments from four watersheds in the U.S.A. with different clima-13
tologies. The two methods, cumulative density function (CDF)14
matching and copulas, are based on the same statistical theory, but15
the first makes the assumption that the two data sets are ordered16
the same way, which is not needed by the second. Both methods17
are calibrated in 2010, and the calibrated parameters are applied18
to the soil moisture data from 2003 to 2009. Results from these19
two methods compare well with ground measurements. However,20
CDF matching improves the correlation, whereas copulas improve21
the root-mean-square error.22

Index Terms—Advanced Microwave Scanning Radiometer-23
Earth Observing System (AMSR-E), cumulative density func-24
tion (CDF) matching, copulas, Soil Moisture and Ocean Salinity25
(SMOS), soil moisture, time series.26

I. INTRODUCTION27

SOIL moisture is an important variable and is now consid-28

ered as an essential climate variable by the World Meteo-29

rological Organization [1]. It has a crucial role in the transfers30

of water and energy between the soil and the atmosphere. Soil31

moisture is also an input variable for land surface modeling32

in determining the evaporative fraction at the surface and the33

infiltration in the root zone. For both agriculture and water34

resource management, soil moisture information is essential at35

local and regional scales. At global scales, soil moisture is of36
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great value for weather forecasting [2], climate change [3], and 37

monitoring extreme events such as floods and droughts. 38

Soil Moisture and Ocean Salinity (SMOS) [4] was success- 39

fully launched by the European Space Agency in November 40

2009 and since has been providing global maps of soil moisture 41

every three days at a nominal spatial resolution of 43 km 42

with an accuracy of 0.04 m3/m3. SMOS is the first mission AQ443

specifically designed for soil moisture monitoring. The Soil 44

Moisture Active Passive (SMAP) mission [5] is scheduled 45

for launch in October 2014 by the National Aeronautics and 46

Space Administration. SMAP will continue the time series of AQ547

soil moisture based on 1.4-GHz radiometer observations that 48

began with SMOS. The 1.4-GHz frequency channel is the most 49

suitable frequency for soil moisture retrieval [6]. 50

Longer time series of satellite-based soil moisture would be 51

of value in climate-related analysis. Utilizing the data from the 52

previous generations of satellite sensors involves resolving nu- 53

merous issues. Some of the platforms and approaches have been 54

developed to retrieve soil moisture using the higher frequencies, 55

which has been the only option until now. These include the 56

Scanning Multichannel Microwave Radiometer (1978–1987) 57

[7], the Special Sensor Microwave/Imager (1987–current) 58

[7], the Advanced Microwave Scanning Radiometer-Earth 59

Observing System (AMSR-E) (2002–2011) [7], [8], Wind- AQ660

Sat (2003–current) [9], and the European Remote Sensing- 61

Advanced Scatterometer (1991–current) [10]. Although their AQ762

lowest frequencies (5–20 GHz) are not the most suitable for 63

soil moisture retrievals (higher sensitivity to vegetation growth 64

and atmospheric conditions), they remain a valuable time series 65

from 1978 until now. Applications such as data assimilation 66

or climate change assessment require consistent products. The 67

products referenced earlier have been retrieved using different 68

sensors with different algorithms, and as a result, the time series 69

is not homogeneous. This heterogeneity can be interpreted as a 70

bias and is a problem in the data assimilation process. To avoid 71

this issue, these products need to be processed to correct for any 72

bias or amplitude variation between the data sets. 73

Many previous studies have developed various methods for 74

the homogenization of time series. Vincent et al. [11] developed 75

a method to harmonize temperature time series with gaps. The 76

first step was to determine if the series was homogeneous by 77

comparing its anomalies to those of a reference series. The 78

identification of the gaps and their magnitude was performed 79

by successively fitting a linear model with different magnitude 80

values with the best fit being indicated by the minimum sum 81

of square errors. Homogeneous temperature and precipitation 82

time series were developed by Begert et al. [12] using statistical 83

0196-2892/$31.00 © 2013 IEEE
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methods to detect potential inhomogeneity. In that study, a84

reference time series was necessary in order to detect and85

compute the magnitude of the shifts. Picard and Fily [13]AQ8 86

proposed a method to simulate a homogeneous time series of87

the cumulative melting surface in Antarctica. Using satellite88

observations from different sensors and acquisition times was89

the biggest challenge. Correcting for the effect of the observing90

time was accomplished in two steps. First, a sinusoidal function91

with a 24-h periodicity was fitted, and then, an optimal interpo-92

lation to refine this first guess model to force it to be closer was93

applied to the observations and to provide very low uncertainty94

around observation time and larger uncertainty when there is no95

available observation.96

Matching the cumulative density functions (CDFs) of two97

data sets has been used in several studies to merge time series.98

Reichle and Koster [14] and Choi and Jacobs [15] merged99

soil moisture derived from satellite observations with model100

data, and Li et al. [16] corrected the bias of precipitation101

and temperature products derived from different models. CDF102

matching was also used as a preliminary step of the assimilation103

process [17] and to produce long time series of soil moisture104

[18], [19].105

Over the last few years, a new method based on copula106

functions has been developed. It allows the derivation of bi-107

variate distributions without making the assumptions required108

when dealing with multivariate frequency distributions, e.g.,109

the same type of marginal distribution for both variables, a110

joint normal distribution, and independent variables. One of111

the major advantages of the copula method is that the marginal112

distributions can be of any form [20]. The first comprehensive113

treatment of copulas was by Nelsen [21]. He presented methods114

to construct copulas and discussed the role played by copulas115

in modeling and dependence. Since then, copulas have been116

applied in various applications with the majority of the liter-117

ature dedicated to the financial sector [22], [23]. In the field of118

hydrology, some applications have emerged. Genest and Favre119

[24] summarized the existing methods to detect and evaluate120

the dependence between the data sets through copulas (analyt-121

ically and graphically) and enumerated the various methods to122

choose the best copula family and estimate their parameters.123

Favre et al. [25] applied copulas to peak flows and volumes124

from two watersheds, Salvadori and De Michele [26] to storm125

and rainfall time series, Dupuis [27] to the volume and duration126

of low flows of two rivers, Zhang and Singh [28] to rainfall fre-127

quency, Serinaldi and Grimaldi [29] to flood and sea frequency,128

and Laux et al. [30] to precipitation data. Gao et al. [31] used129

copulas as a preprocessing step for the assimilation process on130

soil moisture data.131

Joint statistical analysis has already been applied when the132

sources of the soil moisture measurements come from different133

observation systems (e.g., AMSR-E surface soil moisture and134

10-cm soil moisture from a land surface model [14]). Similarly,135

joint statistical methods form the basis for data assimilation of136

satellite soil moisture into land surface models [31]. There are137

many other studies related to joint probability, including where138

the variables are physically different but where their statistical139

relationships are useful (e.g., rainfall storm intensity and storm140

duration [32]).141

The goal of this paper is to estimate for all the AMSR-E 142

period (2003–2010) SMOS-equivalent observations that can be 143

used to develop a statistical representation of SMOS retrieval so 144

that current and future SMOS retrievals can be used in applica- 145

tions like drought monitoring based on percentiles. However, AQ9146

matching 130 am C-/X-band (AMSR-E) observations with 147

600 am L-band (SMOS) observations presents some issues: 148

1) The crossing times are different, and rainfalls may occur be- 149

tween the two acquisitions; and 2) the frequencies are different, 150

so the sensing depths are not similar. 151

The statistical impact of the rainfalls that could occur be- 152

tween 130 am and 600 am is to lower the correlation. However, 153

if the correlation is sufficiently high, a statistical relationship 154

can be established to estimate an equivalent SMOS value from 155

an AMSR-E observation. This high correlation implies that the 156

occurrence of precipitation between the SMOS and AMSR-E 157

overpasses is rare. Moreover, it is well known that soil moisture 158

has a long temporal correlation time scale, so the overpass time 159

differences will have a minimal effect on the analysis. AQ10160

The impact of the different frequencies between AMSR-E 161

and SMOS is, in most situations, not significant. The higher 162

AMSR-E frequency (10.7 GHz) results in a more superficial 163

emission depth than the SMOS observations, so while the 164

retrieved values may be different, their relative values will be 165

similar (both dry or wet). The correlation between paired ob- 166

servations depends on their relative values (with their individual 167

time series) and not absolute values, and in the case of copula- 168

based joint distributions, the correlation is represented by the 169

Kendall tau whose calculation is based on ranks. 170

If the two sensing depths were to be reconciled physically, 171

given the soil property variability (spatially and with depth) 172

with different wetting and drying properties, a physical model 173

would introduce significant uncertainty that could be very 174

difficult to estimate afterward. If the SMOS (or AMSR-E) 175

data were adjusted to the AMSR-E (or SMOS) emission depth 176

through data assimilation into a land surface model for exam- 177

ple, then the complete record would have to be adjusted with 178

the added uncertainty of the data assimilation step. With any 179

of the suggested adjustments, there is a mismatch with the 180

past or with the future. Only by treating the original data sets 181

and determining the information content between them can a 182

consistent approach be represented. AQ11183

Data assimilation could, however, deal with the precipitation 184

and the difference in sensing depth issues, but that would imply 185

other uncertainties such as the space–time variability of the 186

precipitation data sets, as well as other meteorological issues. 187

Building a homogeneous time series based on data assimila- 188

tion into a land surface model can be seen as a competing 189

approach. 190

In this paper, we show two statistical methods to obtain 191

this homogeneous time series. The satellite data and the four 192

watersheds where the time series are simulated are presented 193

in Section II. The two statistical methods for generating ho- 194

mogeneous time series are presented in Section III which 195

includes the general theory and how to apply them to real data. 196

Simulated time series over the four watersheds are presented in 197

Section IV. Conclusions and perspectives are described in the 198

last section. 199
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II. REGIONS OF INTEREST AND SATELLITE DATA200

A. SMOS201

With its L-band radiometer, SMOS [4] has been providing202

soil moisture data for almost three years and global coverage203

every three days with a 43-km resolution. The satellite is polar204

orbiting with equator crossing times of 6 am (local solar time205

(LST), ascending) and 6 pm (LST, descending). The signal at206

L-band is mainly influenced by the water content at the surface207

of the soil (around 5 cm).208

SMOS acquires brightness temperatures at multiple inci-209

dence angles, from 0◦ to 55◦ with full polarization. The an-210

gular signature is a key element of the retrieval algorithm211

that provides soil moisture and the vegetation optical thickness212

through the minimization of a cost function between modeled213

and acquired brightness temperatures [33], [34]. This estimated214

soil moisture is referred as the Level 2 product [34] and is215

available on the Icosahedral Snyder Equal Area-4h9 grid [35].AQ12 216

The nodes of this grid are equally spaced at about 15 km. In217

this paper, the 2010 SMOS Level 2 version 4 products have218

been used.219

Currently, numerous studies are underway on the validation220

of SMOS soil moisture product with in situ measurements221

and estimates of other sensors and models. Bitar et al. [36]222

used the Soil Climate Analysis Network [37] and the Snow-223

pack Telemetry sites in North America to compare SMOS224

soil moisture retrievals and ground measurements. That study225

showed that SMOS soil moisture had a very good dynamic226

response but tended to underestimate the values. However,227

the new version of the product (V4) significantly improved228

the general results. Jackson et al. [38] studied SMOS soil229

moisture and vegetation optical depth over four watersheds in230

the U.S. They concluded that SMOS almost met the accuracy231

requirement with root-mean-square errors (rmses) of 0.043 andAQ13 232

0.047 m3/m3 in the morning and afternoon, respectively,233

whereas the vegetation optical depth retrievals were not reliable234

yet for use in vegetation analyses. Leroux et al. [39] comparedAQ14 235

SMOS data with other satellite and model output products over236

the same four watersheds for the year 2010. It showed that237

SMOS soil moisture data were closer to the ground measure-238

ments than the other data sets. Even though the correlation239

coefficient was not the best, the bias was extremely small.240

After the results of the validation activities, the European241

Center for Medium-Range Weather Forecasts has decided and242

is now ready to process SMOS data in near real time into their243

Integrated Forecast System. It is expected to have an impact on244

the weather forecast at short and medium ranges [40].245

B. AMSR-E246

The AMSR-E was launched in June 2002 on the Aqua247

satellite. This radiometer acquires data with a single 55◦ inci-248

dence angle at six different frequencies: 6.9, 10.7, 18.7, 23.8,249

36.5, and 89.0 GHz, all dual polarized. The crossing times are250

respectively 1:30 am (LST, descending) and 1:30 pm (LST,251

ascending).252

There are several soil moisture products available that are253

based on AMSR-E data. Many studies have already showed254

Fig. 1. Map of the four sites: WG, AZ; LW, OK; LR, GA; and RC, ID.

that the NASA product [41] is not able to reproduce low values AQ15255

of soil moisture and has low dynamic range [42]–[46]. The 256

soil moisture data produced by the joint collaboration of the 257

Vrije University of Amsterdam and NASA (whereafter called 258

the Land Parameter Retrieval Model (LPRM) [7]) were chosen 259

in this study. AQ16260

The LPRM [7] retrieves soil moisture and optical thickness 261

using the C- and X-band AMSR-E channels (combined prod- 262

uct) and 36.5 GHz to estimate the surface temperature. This 263

algorithm is based on a microwave radiative transfer model with 264

a priori information about soil characteristics. The products are 265

available on a 0.25◦ × 0.25◦ grid only for the descending orbit. 266

These data have been quality controlled, and the contaminated 267

estimates due to high topography and extreme weather condi- 268

tions such as snow have been flagged and not been considered 269

in this study. AQ17270

C. Study Areas 271

Four watersheds located in the United States were selected 272

for this study: Walnut Gulch (WG) in Arizona, Little Washita 273

(LW) in Oklahoma, Little River (LR) in Georgia, and Reynolds 274

Creek (RC) in Idaho (see Fig. 1). They represent different 275

types of climate (from semiarid to humid) and land use patterns 276

[47]. These four watersheds have been used as calibration and 277

validation sites for comparison of AMSR-E satellite product 278

[47] and SMOS product [38], [39]. 279

WG is located in the Southeast Arizona. Most of the water- 280

shed is covered by shrubs and grass, which is typical of the re- 281

gion. The annual mean temperature is 17.6 ◦C (at Tombstone), 282

and the annual mean precipitation is 320 mm (mainly from 283

high intensity convective thunderstorms in the late summer). 284

The uppermost 10 cm of the soil profile contains up to 60% 285

gravel, and the underlying horizons usually contain less than 286

40% gravel. 287
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TABLE I
WATERSHED CHARACTERISTICS AND THE COORDINATES OF THE BOX CONTAINING THE POINTS USED FOR STATISTICSAQ18

TABLE II
CORRELATION COEFFICIENTS (R) BETWEEN THE IN SITU

MEASUREMENTS AT 130 AM AND 600 AM FOR THE FOUR WATERSHEDS.
N IS THE NUMBER OF AVAILABLE DATES, AND CI IS THE 95%

CONFIDENCE INTERVAL

LW is located in Southwest Oklahoma in the Southern Great288

Plains region of the U.S. The climate is subhumid with an289

average annual rainfall of 750 mm (mainly during the spring290

and fall seasons). Topography is moderately rolling with a291

maximum relief of less than 200 m. Land use is dominated by292

rangeland and pasture (63%).293

LR is located in the Southern Georgia near Tifton. With294

an average annual precipitation of 1200 mm, the climate is295

humid. The LR watershed is typical of the heavily vegetated296

slow-moving stream systems in the Coastal Plain region of297

the U.S. The topography over this watershed is relatively flat.298

Approximately 40% of the watershed is forest with 40% crops299

and 15% pasture.300

RC is located in a mountainous area of Southwest Idaho. The301

topography is high with a relief of over 1000 m that results in302

diverse climates. Soils and vegetations are typical in this part303

of the Rocky Mountains. The climate is considered as semiarid304

with an annual precipitation of 500 mm. Approximately 75% of305

the annual precipitation at high elevation is snow, whereas only306

25% is snow at low elevation.307

Surface soil moisture and temperature sensors (0–5 cm) have308

been acquiring data since 2002 for the four watersheds. The309

data used in this study are the means and standard deviations310

of the soil moisture and surface temperature acquired every311

30 min from 2009 to 2010 (hourly for RC). The averages312

are based on 14/8/8/15 sensors for WG/LW/LR/RC, respec-313

tively, after eliminating sensors with poor and suspicious314

performances. Weighting coefficients have been derived forAQ19 315

each sensor with a Thiessen polygon. Table I summarizes the316

characteristics of each watershed [47].317

In order to estimate the effect of the rainfalls that could318

occur between 130 am and 600 am, the correlation coefficients319

between the measurements at 130 am and 600 am have been320

computed for the four watersheds (see Table II and Fig. 2). They321

range from 0.95 to 0.99, and based on the fact that rainfalls322

would lower the correlation, we can assess that precipitations323

that do not affect significantly the analysis.324

Fig. 2. Comparison between the 130 am and the 600 am soil moisture:
In situ observations and satellite products for the four watersheds. (a) In situ
soil moisture at 130 am and 600 am. (b) LPRM (130 am) and SMOS (600 am)
soil moisture.

Fig. 3. Principle of CDF matching by setting the probabilities equal. For a
given x, find y such that GY (y) = FX(x).

III. TWO STATISTICAL METHODS FOR GENERATING 325

HOMOGENEOUS TIME SERIES 326

Two statistical methods were used to create a homogeneous 327

time series of soil moisture. CDF matching has been widely 328

used in previous studies to merge time series [14], [15], [18], 329

[19], whereas copulas have just started to be used recently for 330

environmental purposes. 331

A. CDF Matching 332

The CDF is the probability that a random variable X takes a 333

value less than or equal to a given number x 334

FX(x) = Pr[X ≤ x] (1)
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Fig. 4. Representations of the nine copulas showing their characteristics in the form of the point cloud (x-axis: CDF of the first data set; y-axis: CDF of the
second data set).

where FX is the CDF of the random variable X . If two time335

series are considered, the CDF matching consists of matching336

the CDF of each data set by setting their probabilities equal337

(see Fig. 3). The following approach has been applied here to338

the soil moisture data.339

1) Compute the CDF of both data setsX and Y :FX andGY .340

2) Given a value x of X , find y such that GY (y) = FX(x).341

However, the assumption that the probabilities FX(x) and342

GY (y) are equal is never confirmed, and most of the time, they343

are scattered like in Fig. 4. The copula method models this 344

dependence between the probabilities. 345

For the rest of this paper, we use the variable u to represent 346

FX(x) and v for GY (y). U and V are data sets, whereas u and 347

v are values of these data sets. 348

B. Copulas 349

The copula theory is a very useful and powerful tool to model 350

the dependence structure between two sets of random variables. 351
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TABLE III
NINE COPULAS TESTED IN THE STUDY: DEFINITION, PARAMETER RANGE, AND FAMILY

Like the CDF matching, copulas separate the marginal behavior352

of variables from the dependence structure by using distribution353

functions. Instead of setting the probabilities u and v equal,354

the variables U and V are compared and analyzed. The copula355

function binds the two variables together.356

There are many families of copulas which exhibit very differ-357

ent properties. The form of the scatter of U and V is controlled358

by the family choice, and the width of the tail of this scatter359

is controlled by the single parameter θ. Most of the definitions360

that follow in this section are based on [21].361

1) General Theory: A copula is a function that gener-362

ates a multivariate cumulative distribution function from 1-DAQ20 363

marginal CDFs. Given two random variables, X and Y , with364

marginal CDFs FX and GY , then, Sklar’s theorem states365

HXY (x, y)=CXY (FX(x), GY (y))=Pr[X≤x, Y ≤y] (2)

where HXY is the joint CDF of X and Y and CXY is the asso-366

ciated copula function. It is then possible to derive conditional367

distributions, HXY (y|x), i.e., the joint CDF knowing x. Let368

u=FX(x) and v=GY (y). Then, HXY (y|x) can be derived by369

CV |U =
∂C(u, v)

∂u
. (3)

Schweizer and Wolff [48] established that the copula func-370

tion accounts for all the dependence between the two variables.371

They demonstrated that transformations of the variables X and372

Y do not affect their associated variables. Thus, the way that X373

and Y evolve together is captured by the copula, regardless of374

the scale in which each variable is measured.375

2) Some Copula Families: The product copula corresponds376

to the independence between X and Y377

C(u, v) = u · v. (4)

A copula of the Archimedean family takes the following378

form:379

C(u, v) = φ−1 (φ(u) + φ(v)) (5)

where φ is the generator function that goes from [0, 1] to380

(0,∞). It satisfies three conditions: φ(1) = 0, φ strictly de-381

creasing, and φ convex.382

Elliptical copulas have distributions with elliptic contours.383

The main advantage of elliptical distributions is that the level384

of correlation between the variables U and V can be specified. 385

The disadvantages are that elliptical copulas do not have closed- 386

form expressions and are restricted to have radial symmetry. AQ21387

In this paper, nine copulas were used: the product cop- 388

ula, Clayton, Frank, Gumbel, Farlie–Gumbel–Moregenstern 389

(FGM), Ali–Mikhail–Haq, Arch12 (the 12th copula presented 390

in [21]), Arch14 (the 14th copula presented in [21]), and the 391

Gaussian copula. The nine copulas are described in Table III 392

and Fig. 4 and have their own characteristics. 393

1) Clayton: Strong left tail dependence and relatively weak 394

right tail dependence (i.e., u and v are strongly linked for 395

low values, whereas they are not for high values). 396

2) Frank: Dependence is symmetric in both tails, weak in 397

both tails, and stronger in the center of the distribution. AQ22398

3) Gumbel: Strong right tail dependence and relatively weak 399

left tail dependence (the opposite of Clayton). 400

4) FGM: Useful when the dependence between U and V is 401

modest in amplitude. 402

5) Gaussian: Flexible as it allows for positive and negative 403

dependences. 404

Hafner and Reznikova [23] and Wang and Pham [49] 405

developed a method that includes the time into the copula 406

formula to create a dynamic copula evolving with time. In 407

this paper, time was not included, but the year 2010 was 408

divided into four seasons as different statistical behaviors were 409

expected: December–January–February, March–April–May 410

(MAM), June–July–August (JJA), and September–October– 411

November (SON). 412

3) How to Select a Family: Since copulas separate marginal 413

distributions from dependence structures, the appropriate cop- 414

ula for a particular application is the one that best captures the 415

dependence features of the data [22]. Dupuis [27] examined the 416

effects of model misspecification and highlighted the dangers 417

of improper copula selection. Genest and Rivest [50] proposed 418

a method to select the most appropriate copula, but this method 419

is only relevant for Archimedean copulas. Other methods 420

were developed to compare any type of copulas [51]–[54]. 421

Genest et al. [55] and Berg [54] compared some of them 422

and concluded that there was no universal test and that some 423

procedures performed better in some situations but never in all 424

the situations. 425
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The method proposed by Huard et al. [56] is based on a426

Bayesian approach where any type of copula can be tested. It427

does not perform perfectly well in all the situations (with small428

correlation coefficients or with small sample size) but has the429

advantage to be a very fast method. This method was chosen430

in this study to select the copula that provides the best fit to the431

data.432

4) Method Used for Simulations: The key to generating433

simulations from a copula is to understand that a copula is a434

joint distribution and that it obeys to the same rules. A con-435

ditional copula CV |U (u, v) is the probability that the random436

variable V is less than or equal to a value v knowing that the437

random variable U is equal to a value u438

CV |U (u, v) = Pr[V ≤ v | U = u] = t ∼ U(0, 1). (6)

Simulating a uniform variable t is necessary in order to439

generate simulations from a copula. To retrieve V |U , the func-440

tion CV |U needs to be inverted such that v = C−1
V |U (t), or the441

equation CV |U (v) = t needs to be solved numerically. For each442

value of t, a value for v is retrieved. The following approach443

was used here to simulate data with the copulas.444

1) Compute FX and GY from the two original data sets X445

and Y with (1).446

2) Choose the appropriate copula C by applying Huard’s447

method and fitting the parameter θ to the original data.448

3) Derive the conditional copula CV |U with (3).449

4) Generate 1000 simulations t ∼ U(0, 1).450

5) Compute v with v = C−1
V |U (t) and y with y = G−1

Y (v).451

6) The mean and standard deviation from the 1000 simula-452

tions can be computed.453

IV. METHODOLOGY454

For the CDF matching and the copula methods, 2010 data455

were used for calibration. The CDFs of SMOS and LPRM were456

calculated for the 2010 data sets. The two algorithms were then457

applied to the data from previous years. It should be noted that458

the consequence of using 2010 as a calibration year is that only459

the soil moisture range from 2010 is taken into account. If an460

extreme event occurred in the previous years, it might not be461

well described with these methods as they are only based on462

statistics and not on physical models. By looking at the in situ463

soil moisture time series in Fig. 7, 2010 did not have enough464

wet values over LR to estimate correctly the strong rainfalls465

of 2004, 2005, and 2009, not enough wet values over LW for466

rainfalls in 2007 and not enough dry values as well for 2003467

and 2006, and again not enough dry values over RC for all the468

previous years.AQ23 469

The two methods were applied to data contained in a 1◦ × 1◦470

box around each watershed in order to have enough points for471

computing reliable statistics. The coordinates of each box are472

indicated in Table I. Only the satellite morning overpasses were473

selected for this study (6:00 am for SMOS and 1:30 am for474

AMSR-E, LST) since LPRM retrievals were only available for475

this overpass.476

The 2010 calibration year was divided into four seasons:477

December–January–February, MAM, JJA, and SON. This478

Fig. 5. Discrepancies in the simulations of soil moisture between CDF match-
ing and copulas in 2010. Original soil moisture LPRM data are represented
by blue points, and simulated data with CDF matching and copulas are in
green and red, respectively. The standard deviation of the copula simulations AQ24
is represented in shadowed red. Each row corresponds to a site, and each
column corresponds to a season. x-axis: LPRM soil moisture. y-axis: SMOS
soil moisture.

subdivision was done in order to better capture the sea- 479

sonal dynamic that can be very different depending on the 480

time of the year, particularly in vegetated areas. However, 481

not enough points were available during the winter period 482

(December–January–February) to compute reliable statistics, 483

so no estimation was performed for this season. 484

When comparing either two different remote sensing prod- 485

ucts or in situ data with remote sensing products, there is the 486

issue of the scale effect, as the products may have significantly 487

different spatial resolutions. Moreover, the spatial variability 488

varies with the seasons and the heterogeneity. So as to reduce 489

the problem, we used in this study averaged in situ data sets 490

(8 to 15 stations that were several miles away) which were 491

especially produced to be representative of 50-km spatial res- 492

olution or so [47]. Also, statistics were applied to all the points 493

contained in a 1◦ × 1◦ box (more than 50 grid points). 494

V. GENERATED HOMOGENEOUS TIME SERIES 495

The year 2010 was used to compute the CDFs of each 496

data set (SMOS and LPRM) for both methods and the joint 497

CDF based on fitting and selecting copula functions as de- 498

scribed previously. The soil moisture data were estimated using 499
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TABLE IV
STATISTICAL RESULTS OF THE SIMULATIONS FROM COPULAS AND CDF MATCHING. THE SIMULATIONS WERE COMPARED TO GROUND

MEASUREMENTS OVER 2010 DIVIDED INTO FOUR SEASONS: MAM, JJA, SON, BUT NOT ENOUGH DATA AVAILABLE FOR

WINTER SEASON. THE BEST RESULTS ARE WRITTEN IN BOLD, AND RMSES ARE IN m3/m3AQ25

the conditional distribution (conditional on LPRM retrievals).500

While the copula procedure has the potential to generate an501

ensemble of SMOS-like soil moisture estimates, given the502

LPRM estimated soil moisture, we only use the mean estimate.503

The ensembles could be used to provide uncertainty estimates.504

It should be noted that CDF matching can only provide a505

single SMOS estimate. The resulting time series will result in506

a statistically homogeneous time series under the assumption507

that 2010 LPRM retrievals and the underlying AMSR-E bright-508

ness temperatures are temporally consistent. The resulting509

SMOS-like estimated soil moisture is then compared to ground510

measurements.511

A. Calibration Year 2010 and Comparison With512

Ground Measurements513

2010 is the year with both SMOS data and LPRM data.514

CDFs were computed for both variables. CDF matching and515

copula methods were then applied, and these produced different516

SMOS-like estimates. In Fig. 5, the original data (SMOS and517

LPRM) are represented by the blue point cloud, CDF matching518

and copula estimates are in green and red colors, respectively,519

and standard deviations from copula simulations are in red520

shadows. This standard deviation can be interpreted as theAQ26 521

uncertainty associated to the copula simulations, which can be522

not produced by CDF matching estimation.523

Over WG in the MAM season, there was no obvious differ-524

ence between the two simulation methods. However, in the JJA525

and SON seasons, there were differences for the high values526

of soil moisture: The CDF matching method produced higher527

simulated values than the copula method. Similar behavior can528

also be seen for all seasons in the other three sites, i.e., LW, LR,529

and RC. Discrepancies can also be observed for small values530

of soil moisture over LW, LR, and RC (MAM) where copulas531

generated higher values of soil moisture.532

Standard deviations of soil moisture simulations from copu-533

las were also computed (see Fig. 5). This standard deviation is534

directly related to the width of the tail of the chosen copula535

which is controlled by the θ parameter. A high value of the536

standard deviation corresponds to a large tail, meaning that537

the two variables are weakly linked to each other, whereas a 538

small value corresponds to a strong link. The differences in 539

the simulations can also be observed in the 2010 time series 540

(see Table IV and Fig. 6). Compared to the original LPRM 541

data, the estimated soil moisture was close to the SMOS level 542

and comparable to the ground measurements. The bias between 543

LPRM and SMOS was corrected by both methods. 544

Over WG, CDF matching and copula simulations were not 545

very different except in the summer season when the CDF 546

matching simulations were higher than the copulas. Consid- 547

ering the entire year, both simulation methods improved the 548

original statistics from the LPRM data set. The correlation 549

coefficient did not change significantly (R = 0.79 for LPRM 550

and R = 0.79/0.82 for copulas/CDF matching), but the rmse 551

was highly improved going from 0.139 m3/m3 (original LPRM 552

data) to 0.054 m3/m3 with CDF matching and 0.043 m3/m3 553

with copula, which represents an improvement of a factor of 3. 554

Over LW, simulations responded very well to the succes- 555

sive rain events throughout the year and exhibited a pattern 556

of decrease following a rain event. The first two months 557

(March–April) exhibited more noisy simulations, and the statis- 558

tics were impacted by this behavior (R = 0.55/0.57 and 559

rmse = 0.057/0.075 m3/m3 for copulas/CDF matching). The 560

other two seasons gave good results in terms of statistics. For 561

the entire year, the R value was highly improved (R = 0.59 562

for LPRM and R = 0.71/0.71 for copulas/CDF matching), and 563

the rmse was reduced by a factor of 3 (rmse = 0.148 m3/m3 564

for LPRM and rmse = 0.043/0.059 m3/m3 for copulas/CDF 565

matching). 566

The LR watershed is the site with the highest rainfall fre- 567

quency (events of small amplitude). The successive rainfall 568

events were not well captured by the simulations, particularly 569

during the fall season when both simulations exhibited only 570

small variations, which resulted in very poor statistics (R = 571

0.17/0.16 for copulas/CDF matching). Unfortunately, even if 572

the rain events were captured by the original data sets, none 573

was captured by both data sets at the same time, so only the 574

nonraining periods were taken into account by the statistics. 575

Therefore, the simulations can only be representative of the dry 576

periods. It should be noted that the statistics of LPRM were 577
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Fig. 6. Simulations for 2010: SMOS, LPRM, simulated soil moisture data from CDF matching and copulas, and ground measurements over the four watersheds.
Since the in situ data are the mean of several ground measurements, their standard deviations are represented in gray shadows showing the spatial variability.
(a) WG. (b) LW. (c) LR. (d) RC.

already not good during this season (R = 0.37 and rmse =578

0.174 m3/m3). During the spring season, SMOS overestimated579

the in situ soil moisture measurements, so as a result, the580

copulas and CDF matching estimates overestimated the in situ581

measurements as well.582

RC is located in a mountainous region and is subject to583

frequent snow and frozen soil events. The satellite-based soil584

moisture was not comparable to the ground measurements until585

late May. After this winter period, the simulations captured586

accurately the soil moisture evolution and improved the original587

statistics and especially the rmse (0.099 m3/m3 for LPRM and588

0.059/0.067 m3/m3 for copulas/CDF matching).589

B. Times Series 2003–2010 and Comparison With590

Ground Measurements591

Soil moisture from 2003 to 2010 was simulated from the592

LPRM retrievals (2003–2010) using the copulas and CDF593

matching relationships developed for 2010. Fig. 7 and Table V 594

show the entire time series and the associated statistics (R and 595

rmse) between the original data, CDF matching simulations, 596

copula simulations, and ground measurements. 597

WG is the driest site and did not have a lot of rain events. 598

These rain events were well described by the simulated soil 599

moisture even though they were sometimes largely overesti- 600

mated, particularly by CDF matching simulations. Artifacts at 601

the extremities of the seasons can be seen at the beginning 602

of 2006 and 2008. The correlation coefficient was improved 603

using the CDF matching for each year, whereas the errors were 604

reduced by a factor larger than 2 with the copulas. 605

The overestimation of the soil moisture after the rain events 606

with CDF matching can be found as well over LW, but the 607

temporal evolution was well captured by both methods. For this 608

watershed, CDF matching overestimated the high soil moisture 609

values and underestimated the low values. CDF matching pro- 610

duced soil moisture with a higher dynamic range than copulas. 611
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Fig. 7. Simulated time series from 2003 to 2010 with ground measurements for the four watersheds. (a) WG. (b) LW. (c) LR. (d) RC.

This was reflected in the total rmse value (0.079 m3/m3),612

whereas the rmse of the copula simulations was of 0.066 m3/m3613

(original LPRM rmse: 0.160 m3/m3).614

LR is the site with the largest number of rain events, and as615

mentioned in the previous section, this high rain frequency was616

not properly captured during the fall season of 2010; this can617

be seen as well in the entire time series where all the copulas618

and CDF matching estimates were flat during fall seasons.619

Moreover, since SMOS was overestimating the soil moisture620

during the spring season of 2010, both statistical estimates had621

this behavior. Even though the tendency of the simulations was622

correct, the dynamic behavior was not well represented, which623

resulted in a very poor correlation coefficient (negative values624

in 2004 and 2007).625

RC is a very complicated site because of the frequent626

snow and frozen soil events occurring during half of the year.627

However, statistical results were improved for the entire year628

with copula simulations (rmse = 0.099 m3/m3 for LPRM and 629

rmse = 0.056/0.062 m3/m3 for copulas/CDF matching). 630

VI. CONCLUSION AND PERSPECTIVES 631

The main goal of this study was to propose a new method to 632

generate a long homogeneous time series (2003–2010) of soil 633

moisture from two overlapping time series. 634

For that purpose, two statistical tools, the CDF matching and 635

the copulas, were tested over four watersheds in the U.S. By us- 636

ing CDF matching, the assumption that the two studied data sets 637

are ranked in the same way is made, which the copulas do not 638

require. The two analyzed data sets (SMOS and LPRM) were 639

jointly available only for 2010, so data from 2010 were used to 640

estimate the CDFs that are used as references to estimate SMOS 641

soil moisture for previous years. The novelty of the approach is 642

its application: establishing the statistical relationship between 643
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TABLE V
STATISTICAL RESULTS FROM THE COMPARISON BETWEEN THE SIMULATED TIME SERIES OF SOIL MOISTURE FROM 2003 TO 2010. ORIGINAL SOIL

MOISTURE TIMES ARE REPRESENTED BY LPRM. THE BEST RESULTS ARE INDICATED IN BOLD,
AND THE RMSE ARE IN m3/m3. (a) WG. (b) LW. (c) LR. (d) RC

AMSR-E and SMOS retrieved soil moisture values and using644

this relationship to estimate the equivalent SMOS value for the645

AMSR-E period prior to the SMOS launch.646

The first analysis of these simulations over 2010 showed that647

the simulated data sets were very similar to the SMOS estimates648

and reproduced SMOS behavior accurately except over the LR649

watershed where numerous rain events occurred. This high650

rainfall frequency was interpreted statistically as noise, and651

hence, the simulations did not describe the soil moisture evolu-652

tion over this site very well. RC was also a very complicated site653

due to the local topography and seasonal climate conditions.654

Soil moisture derived from satellite observations was not able655

to accurately reproduce the dynamics as found in the in situ656

data, and as a result, the simulated soil moisture did not either.657

However, the total rmse for the simulated soil moisture from658

copulas was reduced by a factor of almost 2. The WG and659

LW sites were well represented by the simulations, and copulas660

improved the error by a factor of 3, whereas CDF matching661

improved the correlation.662

The time series of soil moisture were estimated from 2003 to663

2010 and were compared to in situ measurements at all four664

watersheds. Since simulated soil moisture data in 2010 over665

the LR watershed had very little dynamic range, they remained666

the same for the entire time series and showed very poor667

statistical results. Even though the rmse values were improved668

by a factor of 3, the total correlation was not good. For the 669

three other sites, the correlation coefficient was a bit degraded 670

compared to the original LPRM data, but the rmse was highly 671

improved with copulas by a factor of 2 to 3. In general, CDF 672

matching gave better results in terms of correlation, and copulas 673

gave better results in terms of errors compared to the ground 674

measurements. 675

As a more general conclusion, CDF matching gives good 676

results but does not take into account the structure of the 677

dependence between the two data sets, whereas the copulas 678

allow to model this structure. Through the choice of the family 679

and the parameter θ (which controls the width of the tail of the 680

scatter), it is possible to model all kinds of structures, from the 681

perfect dependence (CDF matching), right or left dependence, 682

to complete independence. This is why copulas produce better 683

results for the extreme values (very low and very high values) 684

than CDF matching. Copulas can also estimate the uncertainty 685

of the soil moisture simulations given the LPRM value and 686

can be seen as a quality information in the simulation process. 687

However, the copula method is time consuming. It is quick 688

to choose the copula family and its associated parameter as 689

it is based on a Bayesian approach; however, it is very time 690

consuming to generate the 1000 simulations, particularly if the 691

chosen copula does not have an analytic inversion form. In the 692

latter case, 1000 equations need to be resolved numerically. 693
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Nevertheless, these simulations represent an advantage since it694

is possible to compute a mean and a standard deviation. The695

limitations are the same for both methods and even for any696

general statistical methods using a specific year as a reference:697

Only the variable range of this particular year can be well698

represented. Therefore, if an event in a previous year occurs699

and is out of the range found in the specific year of reference700

(such as drought or flood events), then that event will not be701

well represented in the simulated results.702

In order to improve this methodology, applying a moving703

window of three months would provide more accurate results704

instead of dividing the year into four seasons. This would also705

avoid the artifacts and gaps generally noticed at the transition706

between the seasons. Another solution would be to introduce707

the time in the copulas, but the level of complexity in the copula708

manipulation would increase as well.709

In this paper, the attempt to build a homogeneous soil mois-710

ture time series has been based on statistical methods only. Of711

course, other methods exist to reconcile different sensor ac-712

quisitions, and because SMOS and AMSR-E do not operate at713

the same frequencies and not at the same crossing times, using714

physical models to tackle these discrepancies is an alternative to715

statistical methods. Moreover, matching observations acquired716

at 130 am and 600 am can trigger some questions, particularly717

regarding the precipitations that could occur in between. The718

present study is a first step toward a unified and homogeneous719

soil moisture time series, and mixing physical and statisti-720

cal models to do so would be a breakthrough for climate721

studies.722

The next step of this study is to build a homogeneous time723

series of soil moisture at the global scale. Hence, the results of724

this study will be extended in the future to build a global map725

of the copula family choice and to study if there exists any rela-726

tionship between the chosen copulas and the soil characteristics727

or land use data. This would allow us to derive soil moisture728

time series from LPRM data within SMOS soil moisture range729

over the entire globe.730
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