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Polynomial search and global modeling +two new algorithms for
modeling chaos
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Abstract

Global modelling aims to build mathematical models of concise description.
Polynomial Model SearchPoMoS and Global Modelling (GloMo) are two
conmplementary algorithms (freely downloadable at the following address:
http://www.cesbio.up$ise.fr/us/pomos_et_glomo.hthdesigned fothe modelling of
observed dynamical systentmsed ora smallset of time seriesvMlodelsconsidered in
thes algorithmsare baed onordinary differential equationsbuilt on a polynomial
formulation More specifically, PoMoS aimat finding polynomial formulations from
a given set of 1 tdl time serieswhereasGloMo is designed for single time series and
aims toidentify the parmetersfor a selected structureGloMo also provides basic
featuresto visualizeintegrated trajectorieand to characterizéheir structure wherit
is simpleenough:One allows for drawing the first return map forchosenPoincaré
section in the reconstcted spaceanotherone computes the Lyapunaxponent
along the trajectory.

In the present paper, global modelling frangle time series is considereAl.
description of the algorithms is giveand tree exampls are provided The first
examples basedn thethreevariables of theRosslerattractor The second oneomes
from an experimental analysis of tbepperelectrodissolution in phosphoric acid for
which aless parsimoniouglobal modelwas obtained in a previous studihe third
example is an gloratory case and concerns the cycle of rainfed wiedérsemt
arid climatic conditionsas observethrough a vegetation index deriver[dm a spatial
sensor
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1 Introduction

A proper dentification of chaos in naturethat isfrom realobservational da +
is adifficult task. Most of themethodsthat have been developed foridgntification
consistof checking some of thgroperties of chaotic dynamic&.chaotic dynamisis
characterized by dynamical, geometrical and topological properties: unstable
behaviors, fractal structuref the flow, and stretched and squeezestructure
respectively These properties care brought out using various concephd tools.
Instability can be estimated from the spectrum of the Lyapunov expofiHnts
geometrical sucture can be investigated from the analysis of the correlation integral
[2]; topological properties can bdeducedfrom the structure of the embedded
trajectory [3-5]. Practically, these propertiegan provide important argumentsfor
chaosHowever,algorithmsassociated with dynamical and geometrical propesties
oftenvery sensitive to noise, which strongly lisitheir validity whenanalying data
stemming from real world or experimental conditions. Moreptleseanaly®s are
not sufficientto reveal chaos Actually, chaos requires two essential conditiofbe
first one isan underlying determinism, another onehe high ensitivity to initial
condition The dynamicaland geometricalinalysis can allow for validating the
secondcondition only Similarly, topological analysis can lead to a powerful way to
characterize the type of chaos and to identify and understand the behavior in terms of
trajectory, templateand knotHowever,noneof themcanguaraneethe determinism
of the ongoing processes

The question of thedeterminism isa hard question.Relatively tw
methodologies haveeen used tonvestigate the field. Determinism relates to the
uniquenessand causal determination of swtieom time t to time t + dt. As a
consequencehe ability b link dynamicallythe successive infinitesimatates of a
systemmight be a reasonable proof of determinisktethods based on tlenestep
prediction such as the surrogate data analyi€s have been suggested. This
techniqueis known toexhibit a high robustness to noisét also performs well at
revealing underlying nonlinear processes bcamot be used to determine i
dynamicsis deterministic or nof7]. Another approach based on noise titratvoss
introducedin [8]. This methodalsoshoweda mast efficientability to investigatehe
strength of nolinearities underlying dynamicslowever, the approach et always
able to distinguish colored noise from deterministic sti@p

Another very interestingapproach was introduced ithe early 1990s [10].
Instead of investigatingleterminismfrom the onestep predictionsthis approach
consistsof verifying that the tangent of the trajectories reconstructed in the phase
space is a function of position in phase sp8geconstruction such an approacban
guaraneéelocal determinism in the phase spdun#t not global since itdoesnot allow
for checkng the coherency of thdeterministicbehaviors betweeall consecutive
tangents The global approachims at findingan algebaic link betweenthe current
state of avariable and itcurrentderivatives[11] or between the current state of a
variable andts previousvisited stateg12]. In this sense, it also belongs to thder
approach10]. However, ly requiring the existence of a continuous correspand
between derivatives anthe model state, global motieg goes further since
guaranéang the coherency of the dynamiasside the whole reconstttion. The
global approach allows for a stronguaranteeof the existence of a link between



infinitesimal states.At present the global approach appears to be thest robust
manner to probe and reveal the determinismanf underlyingdynamics from
experimentalor observationaltime series. Therefore, associated with dynamical,
geometricalor topological conglerations, itappears asa powerful tool for the
identification of chaos from real observations. The approach has been applied
successfully to very different types of systems and data isehsding, mostly,
synthetic time series generated numericallynfrchaotic attractorgl1-13] as well as
real measurements gatheréom controlled experimest[14-18]. Few examples
could be obtained from real world measuremedtse global model was obtained in
astronomy for sunspot cyclgs9]; another one in ecolodgr the Canadiatynx cycle
[20].

Chaos has been one important source of research and development in the last
decadesMany packagesand librariesdedicated tahe analysis of chaos frotime
serieshave been developedmong whichs the TISEAN software[21]. This software
provides ssetof pre-existing methods organized into a standardized framewarid
published as suchtwhich does not incorporatetools for global modelling The
methodology ofglobal modelling requires specific developmefits.our krowledge,
there is no software or librariesailableat presentthat include reliable tools for
global modellingof chaos Oneobjectve of this work is to introduce a couple of tools
namedPolynomial Model SearchPoMoS and Global Modeling GloMo) [22] to
present thie algorithmsandtheir practical originality and to show their efficacy based
on specific examplestaken fromvarious contexd The presentalgorithms were
developed as packages unagdanguagg23-24]. The aim of these twaalgorithmsis
to investigate global models from time seriéoth of themdeal with ordinary
differential equation®f polynomial formulation The firstalgorithm PoMoS is built
to find the optimal terms in the polynomidbrmulation of the model. The second
algorithm GloMo, estimates the paramegation based on a GraiBchmidt
procedurd11] andalsoprovides basic tool®r visualization and analysis

The paper is built as followsirst, the background of global modelling is briefly
recalled inSection 2. A descripbn of PoMoSand GloMo algorithms is given in
Section 3.Threeexamplegaken as benchmaglare presented iBection4: The first
exampleis basedon the Rossler modelhosevariables offer very different levebf
difficulty when attemptingglobal modelirg. A second exampleis based onan
experimental dataeriesresulting from theelectradissolutionof copperin phosphoric
acid The last exampleelates tothe dynamics of rainfed wheats observed from
satellite remotesensingin Morocco. For each systemthe ability to retrieve the
dynamics from single time seriés tested Results arediscussedn Section5, and
compared to previous results when availdllesimplified summary ofhe analytical
solutions, and previously and presently obtained modétsgiven in Table 1)
Conclusiongare presented in the l&8éction

2 Theoretical background

One powerful resulin the theory ofnonlineardynamicalsystemscomes from
the possibility to reconstru@ trajectory guivalent to the original set of variables
from one single variabl@his result has been expressed mathematically in a theorem
by Takens[25]. The differential embedding is one of the metha&iwbling the
reconstruagbn of such atrajectory from one single time serig26]. For a time series



x t , this method consistsf representingan original time series as a function of its
successive derivatives as follows:

Yy RXX.x" | (1)

where x, x, and x" are the first, secondnd nth derivatives of xt , respectively.

When n equals to the dimension of the underlying dynamics, the reconstruction is
generallycomplete.If so, thereconstruction ighus called an emédding and the
associated dimension is called the embedding dimerkio®ne classical way to
estimated, is the global falseneighbas method[27]. However,the true embedding
dimension isoften difficult to estimate surely28]. Therefore, the dimensioof the
global model maylsobe usefullyinvestigatedvith atrial-anderror approach.

The differential formulation of a global model directly results from the
differential embeddingHg. 1).A quite generaformulationof a dynamical systenof
n variables can be expressed as follaws
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Under invertible propertie$29], if observedthrough X, x, one of the

original variable of the systenthe system can be fogmulatedin the following
canonical form
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where functionF X, X,,..,X, may be practically approximated by a polynomial
P X, X,,..,.X,, of degreeq since it wasshown that a polynomial enablesnore

stable and robugsnhodelsthanarational[11]. However, t was shown thain practice
the structure of the polynomidias tobe chosenadequatelysince inappropriate
combinatiors of terms may lead to spurious effects or to numericalhgtable
solutions[30]. Severalclasses obtructure selectiompproachhave beerpreviously
appliedin this context Thefirst and simplest class of technique considteemoving
one by one the terms of smaller contributi@i]. The second class of technique
(initially deweloped for theNARMAX modeling) [32] consistof removingclusters of
terms presenting compensative contributiofi33]. The last class of techniggie
includes any techniguebasedon a heuristic one of thesebased on agenetic
algorithm was applied t@nansatzmodelsearch29].

The algorithmintroduced in the present studyor applying the structure
selectionbelongs to thdast class of heuristicand was specifically developed for
global modellingCompared tdhe previously evoked cad@9], its originality is tobe
exclusively based othe binary parametet I DWLRQ RI1 WKH Rda@H® fV VWUXF



the presendabsenceof each monomialln other words,t aims atseparahg the

identification of the modelf \tructurefrom its precise parameterizationAnother

original aspectis that it keepsall the solutionsvisited during the search process

order toallow discriminaing goodfrom bad termsa posteriori Finally, the approach
was designed with theill to allow the X V Hlyrfamicalinteractionsvhen desired

3 Methodology

The aim of this section is tdescribethe overall functioning of the two
algorithms PoMoSand GloMo which can be useckeither in a blind mode or
interactively through thieassociated interface.

3.1 PoMoS algorithm

The PoMoStool is based onma heuristicalgorithm aiming at identifying the
monomialsof any polynomial ordinary differential equations Technically, it can be
applied to single or multiple time series the presentcase of global modeling
consideredhere PoMoS is used @ identify the terms ofone singlepolynomial
P X, X,,..X, for an optimal formulation of the dynamicsas observed from

n

variable X, x (see Section 2). A schematic description of thalgorithm is

presentedn Figure 1. Two baskés of models are useth the algorithm Basketl
collectsmodelsto be testetbasket 2 gathers the models alretebted.

Initially, both baskets are emptgset ofNy initial modelsis randomly generated
andput into basket 1 An iterative loop is thustarted:N; models are picked up from
basket 1 their suitability is estimated through a multivariate regressiamm which
goodness of fit is quantified throughchosencriterion Several criteria arprovided
accouning for accuracy andgizein a compétive way (their definitiors aregiven in
Appendix A). The best model among thégetestedmodels is thus identifiednd is
used to randomly generatg neighboring models. The distance between two models
is definedasthe numberof polynomial terms addkandremoved. The best modisl
put back into basket 1 together withe neighboring modeldNon optimal models are
gathered into basket 2 féurther (concurrent or posterioanalysis. The first loop is
thus completé. Other loops are iterativelyestated until the number of modsglin
basket 1 becomes lower thhh. If so, theconvergence of the heuristic algorithm is
consideredio be achievedLast models available in basket 1 are thus tested and
comparedvhich leadgo the pestfmodel.

Practically, he algorithmrequires three input parametefd, the number of
modelinitially generatedN; the number of modslto be evaluaté at each iterative
loop; and N, the number of modslneighboimng the current best modéb be added
into basket 1 at the end e&ch iterative loop

3.2 PoMoS interface

An interface is provided with PoMoS. This interface does not simyaie it
possibleto start and follow the model search. It also provideéseractivetools for



analying the currentresults and contrbhg the heurL V WparafhgtergN; and Ny)
during the search process

Two main analysistools are availableluring the search procedsach of these
aims at identifyingcurrentoptimal terms. Therefore, thesmalyses are basenh the
relation betweermonomial attendace and thecriterions of the models including
these monomialsin order to take advantage of all the tests performed during the
heuristic process, curremayses are basewt only on the set of optimal models but
on the whole set of models already exéd.Considering thesukensemble of models
containing onechosenpolynomial term the usefulness of this term can be evaluated
consideringthe distribution of criterion valueassociated tdahis sukensemble.The
first assistant tool provides this infortian by drawing abox plot, for each of the
terms considered in the analysihe second tool is based on a correlation analysis
comparingthe presence of one given temth the criterion valueof the associated
P R G H O.Notevibt¥ow values of coriaion are expected since correlation is
applied to a heterogeneous set of data (one biuraargble accounting for the presence
or absence of ongiven monomialand one continuous variabéecounting for the
model fitting.

From our experiencehése twodols have proven to be goaddicators ofwhat
monomial should be kg or preferentially throw out. The concurrent availabilityf
the toolswhen running the algorithm is a powerfuhy for a humanto control the
heuristic parameteias well afor a moreefficient convergence of the algoritHi34].
Indeed, the interface also allows for a dynamimahtrol of the polynomial terms
Monomialscan be added or removeal| terms ofone generipolynomialdefined by
its maximal degreean be authorizeay spedfic selectiors of termscan be designed
Note thatthrough the interfacehis selection can be dynamically modified during the
search process.

3.3 GloMo algorithm and interface

Contrarly to PoMoSwhich can be appliedlsoto multiple time series, GloMo
is exclusively dedicated to global modeling from single time series. The object of this
tool is theparameterizatiorof a polynomial P X, X,,..,X, (seeSection 2). The

algorithm is built on a Graschmidt procedure, following11]. Technically, the
polynomial formulation in the algorithmis fully generic and allows any model
dimension with any polynomial degree.

Due to the huge number of modébsexplore in a global modeling approaeh
search of model structuresay advantageouslige exploredwith PoMoS (or with
another toolas a first try Of course getting amodelstructure may not guarasits
reliability. Actually, because PoMoS was develofp@dselecton among huge number
of models thealgorithmwasdesigned baseah time saving tests. Hrefore practical
tess for numericalintegrability were not implementesh PoMoS As a consequence,
most often, dully satisfyingstructurecannot be directlpbtained fromthe PRGHO V
structuregrovided byPoMoS However,from ourexperiencewhen a eliable model
is underlying the time seriesuch amodelmaybe close toWKH pE H\bhvefheéd RG H O
with PoMoS.In other words, the best solution provided by PoMoS is often a good
start.

In such a context,GloMo will provide an accurate estimate of the
pamameterization that will be used for testing the practical integrability of the model.
In order tocontrol the extensionf the structure exploration, an interactive interface



was alsadesignedIn particular, this interface allows add or removingpolynamial

terms. After each structural change, a new identification can be performed and its
reliability checked in term afumericalintegrability. Information about theuitability

of themonomialss also provideafterparameterdentificationis run. Thisis doneby
removingeach monomiabne by one and comparing the fittsgp the one obtained

with all the termsNote that such suitability can reflect the contribution of a term only
in reference to the corresponding structuredeed, another structure ynéead to
different results. This reflects the local validity of the information provided by this
test and justifies the prior use thle PoMoS algorithm foanoverall {.e. global in the
sense used in optimization) view of tm@del ensembl be exploed

3.4 Experimental protocol

No full systematic protocotan beapplied whentrying to get a global model
with the PoMoSandGloMo algorithmsfrom one given time seriegnceinteractions
with the heuristic process are often very useiwing a modelseart. Indeed,it can
be notedretrospectivelythat to get a modelthe stages of theearcing processare
differentfor each caséut alsothatno procedurecanbe directly exchanged from one
case to anotheHowever, #hough differentfor each case, sommmmonhints can
be identified.

When applying the heuristic, one usual difficulty is to know when to stop the
research of the optimahodel. This difficulty is closely linkedo the impossibility for
the criteria to discriminate properlgn adequate moddtom a non robust or frona
trivial model. From our experience, Akaikigke criteria generally allow for visiting
the model space in somehowtransversafashion, leading to visialternatively large
regions of non robustnegsliverging solutions)and sméer regions of trivialness
(fixed points or periodic orbitsBetween these twtypes of region, some chaotic
behavios can sometimede found.Indeed, theboundary betweersuch clearly
characterizedegions generally appears fuzzy and possibly compleesiehaviours
observed there may often alternate discontinuouly between nonrobustness,
trivialness nortrivial (i.e. multiple) periodic orbitand potentially, chaos

One consequence of thidservationis that, when searchinipr a model, the
analysisof the successivenodek visited with the heuristic +applied with human
interaction or notxmay provide interesting modelshat the final resultmight have
missed, orlost This observatiorcan thus be turned into an informal rule when
applying PoMoSand GloMo algorithmsto time seriesTo reach a satisfying model,
the successive suboptimal models progressively visited by the heuwsticbe
considered individuallypy using GloMo andcheckedone by ondor their robustness
and nortrivialness

When a global model is retrieved from onebserved time serigst is well
known thatthe original dynamicsis not always precisely identified. deed the
dynamics identified is often shifted in the bifurcation diagram. Amongarious
possible cause®sf this shift (sampling of the vector field in the phase space,
parametergdentification process, level of noise, quality of the mpd#t), one is the
observability of the system from thmeasuredvariable {35], see Section 4.1).
Practically, oncea global model isobtained, oa simple way to overpass this
difficulty consiss of WXQLQJ RQH RI WKH PRGHOfV SDUDPHWH
systematicallyhere to the models obtained from thithree systems taken as
benchmarkin order toevaluatetheir ability to represent #h original dynamicand,



when useful to discriminateamong the various models obtainddote that the
algebraic formulation of all the global models obtainedtha presentanalysisis
presented if36].

3.5 Validation

Once a model is obtained, a validatishould be performedVithout applying
model validation, only the presence of a deterministic compadnetie underlying
dynamics can be reliably claimebo validatea chaotiomodel, oneefficient approach
consiss in comparing thdirst return mapobtanedfrom the modelthat is the pattern
generated by plotting the coordinatBs of the nth visiting poins of a Poincaré
section as a function of the coordinalgs; of then + 1st returning visits}o the one
reconstructedfrom the original signalln practice, this requires to appropriately
choosea Poincaré section which is not always an easy vasin dealing with noisy
data,jittery behaviourscomplexstructuresetc For this reason, a precise description
of each of thePoincarésectionsshould bealwaysprovided. Thedefinition of all the
sectionsand coordinatesystemsused in the preserdnalysisis unambiguously
providedin Table 2. Several levels of valation can beeacheddepending on the
quality of the data and on the complexity of dynamfasIn the best case, when the
dynamics igoreciselyretrieved,the shapeof the first return mapgneobtained from
the original data setanother one fronthe global mode) should match. If so, an
analysis of the branek fcorrespondence and of the BL WV UH)XUB&J HQFH
performed to verify the D W W U Sireatife (B a procedurewill be described
hereafter Note that acomparison of the bifurcation diagrams may alsoapplied
since itis likely to bea very strongralidation techniquésee[30]). However, sucla
procedure may be applied only when the original system is known, which is generally
not the casavith global modeling(b) If the structureof the JORE D O &tR&dd0 |V
correct butthe dynamicalregimeof the original behavioupoorly identified, the same
type of patternwill be obtainedfrom data and modeglsame numbeand typeof
branches) but with less developégnamics (or eventually more, but from our
experiencehisis more rare)(c) If the topology ispartlylost (e.g, less/more branches
appear on the first return magl YHQ DIWHU WXQLQJ WKKHnmM&GHOfV SD
probabe that thesystem of equatioretrievedis not equivalent to the original system
but similar only (d) Finally, if no pattern can be clearly commpd, only thepresence
of adeterministic componeninderlyingthe dynamicgan be reliably conclusive.

In the best @asementioned abovet case (a)corresponding to a quite good
matching of thdfirst return map *a refinedlevel of validation may be perfaed
Indeed,various degrees atliability can be distinguished sidethis former casdn a
chaotic context, therecisevalidation of a model igonsidered to ba difficult task
[5]. Indeed, due to the sensitivity to the initial condisompredictons can be
performedover relatively short horizon®only. As a resultmodelvalidation over long
time windows becomesnore difficult However, he existence of an attracte@quires
the dynamicto be ergodicand stationarytherefore although the trajectg might be
unpredictable the attractor V.V W Wholad/idtUvdry in timeand its statistical
propertiesshould remain identical Validation can thus be based on thetatistical
propertiesof the attractar And to go farther +with the aimto investiga¢ global
modesk {reliability in the long term +validation may bebased on the statistical
properties othe populations of periodic orbitSince only an imperfect model can be
expectedn a real contextone way to quantifyJ ORE D O RIRKIity Orfythus



consist in estimating the number of periodic visit of the attrathat can be
satisfyingly performedeforelosing the statistical properties of thaginal attractor
An iterative procedurés thus established in order teuccessively checknodelf V
reliability afterOQ, 1, 2, ..n periodicvisits of the attractorAt the Oth iteration stepthe
comparisons static(it relates tothe 1-symbotllength sequensy andthusbasically
allows for verifying thatthe modetd manifold hasthe same number dfranchas the
original data setin practice, thistepcan be performelly comparing the distribution
of the orbis. At the 1stiteration stepthe comparison alloswerifying thatthe same
branchconnexionsare in presencewithin the original and themodelled manifolds.
This can becheckedby comparing the transition matgs(matrix providng the link
between one symbol to anothénus relaing to a 2symbol length sequenceft
larger iteration steg the comparison will allowefining the (long-term) validation of
the model. For the nth iteration step (n t2), validation will be performed by
comparing thecorrespondencef the (n+1)-symbol lengthssequencesin practice,
suchvalidationprocedurecan be appliedteratively,increasinl] WKH VHTXHQFHYV OH
one by oneXQWLO WKH FRUUHVSRQGHQFH EHWZHHQ WKH RUL
become incompletécorrespondence is considered to be incomplete as soon as one
or more *additional or missing sequence is foundhe last iteratin for which
correspondence illy satisfied corresporsdto the horizon for whichthe structure
validation can bstatisticallyperformed.

Practically, transition matrices can be estimateakily oncea partition of the
first return mapcan be performedrhe transition matrix aim® characterizédnerethe
links existinginsidethe branched manifoldnderlyingthe attractarlt can be defined
in two ways. The Markov transition matrix is defined here as the matrix describing the
probability to move from onsymbol to anothereach symbol corresponding to one
branchof the manifold which canbe determinedrom first return maglV S D W&/ HU Q
binary transition matrix isa simplified view of the Markov transition matrix that
basically provide the existence athe nonexistence dhe samdink. In practice the
binary transition matrixan be directly deduced from the Markov transition matrix by
replacing nonzero values by oard keeping the zero values as Note that a more
detailed description of the bramed manifold may also be performatithis stephy
depicing the rotations and the intertwiningf the branchesThis could be done
through a complete topological analy§ss4] and may allowfor fully checking the
DWWUDFW R Hdinéver, $ihceXddHGQJ RQ D TXDOLWDWLYH GHVFULS\
structure, a topological analysigll not enable checking the accuracy of the model
over a time period longer than onperiodic visit of the attractor. Folongterm
validation, an approadiased on Markov ansition matrix should be preferred

The comparison of the populat®mf periodic orbits can be performed by
comparing the symbols sequenthe following examples are based on an alphabet of
four symbols (0, 1, 2and 3. For the 1-symbollength sequencg the comparison
direcly resultsfrom the presencetor the absencezof a branchexisting in the
original dynamicsas an example, the percentage of correspondence wildd8é if
all the branches are retrieved, 75% if three branches are retrievedrmohlyo onFor
2-symbotlong sequencesthis correspondencean be directly deduced from the
binary transition matrixAn alphabet of four symboleadsto a 4% 4 terms matrixif
the binary transition matrbR I WK H R UL JL QQuaiihe @& itespbiding to
the global modelthenthe correspondends 100% if one term differdetween those
matrices,correspondence 93.75% and so orfFor 3-symbotlength sequences and
beyond this correspondencanbe deduced from theumberof common sequences
retrievedin both original and modeled dynamickhe longer the symbol sequences



can be retrieved, the moaecuratecan be consideratie model. These analyses were
performed for each of the modeadbtained in this workexcept wherthe partition of
the first return mapwas not possib)e The (Markov and binary)ransition matrices
are allprovidedin [36]. The boundary limitsusedto perform theV \ P E Ro@rttifin
are provided in Table 3 for each original data set and modelaihty of the global
models dynamics to represertihe originaloneis alsoprovidedas a percentage of
retrieved sequensdor sequences of-symbol to 6symbol lengtlk. In practice, an
iteration is considered to be validated when correspondence strictly equals 100%.

4 Data

Three applicativecases areonsideredas benchmask The first cases purely
theoretic The seconctaseis derived from measurementsade under experimental
conditions The last case is taken froime observatiorof a real environmental system
obtained fronsatellite remote sensing

4.1 Rossler system

The Rossler systeli87] is an interesting cade study since its three variables
exhibit verydifferent levels of observabilitgf the underlying dynamicg35]. It is a
low-dimensional system defined as follows:

X XX
@ % ax @
X, b ocxg XX

Synthetic time seriesf variablesx,, x,, and x, were generatetly integrating

these equations with control parameteash,c  0.52Q 2.,4. corresponding to the
phase noncoherent regirokaracterized by fast oscillations around an external fixed
point. Resulting time series are plotted in Figur@Re reformulation of the system in

a derivative form(Eq. 3)is obtained from the fdwing transformation:

'Xl X
Xz B XXX
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ox, Wy W W
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When [/, is invertible, the exact model functiofr X, X,,..,X,, of the

canonicalformulation (Eq. 3)can beobtainedanalytically [29]. For the Rosler
system,solutions have been given [11]. For the variable x,, the function is a

second degregolynomial whereasdr x; and X, , functions are rational:
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Level of observability can vary from one variable to anotBasically, a system
is fully observable from one given variable ifetliull state of the system can be
retrieved from itHowever, in practe, it was shown thabbservabilitycould vary by
degree andraobservabilitycoefficientwasintroduced[35]. Practically, observability
can beestimated from the Lie derivativainceit highly depends on the invertibility
of /.. The classification obtained for the Rossler system slibatsthe variables can
be ranked according tdhe decreasing degree obbservability as follows
X, X X;. From a mdding point of view,the observability coefficiestbring

important information about th@otential difficulty to obtain a model

However, his coefficientis only comparativenside one system buamot be
applied to compare the observability of varigsl betweenseveral systens [35].
Therefore, it cannot be practicalligedwhen only onesingletime seriess available
Nonethelesstogether with other factors such as dynamical perturbations and noisy
measurements, level of observability may lead toy,easficult, or impossible
modeling. Thereforeobservability is assuredly one important elemerkeep in mind
as farasglobal modéng is consideredin order to betteillustratethe ability of the
present tools, the phase noncoherent regime wasrhosun the analygs The
phase noncoherent regime is characterized by abi@nch attractor that includes the
presence of two timescales in the dynamics. Tiddkes the conditions muahore
difficult to address when trying to capture the structur¢hefglobal modeand to
reproduce the original dynamics satisfyingly

4.2 Electrodissolution of copper in phosphoric acid

Many cases of chaotic behaviors héeen identifiedr approacheth chemical
reactions and electrodissolutiofhe case o€oppereledrodissolution in phosphoric
acid is especially interesting here, sirmgeriments were carefulljonductedn the
1990sfrom which a global modelwas obtained and validated using a topological
approach[14]. The time series used in the present work cofmas the same
experimentThis experiment wadesigned and studied nRKQ +XGVRQTV JURXS D\
University of Virginia [38]. The experimental setugonsists in a copper cylinder
(8.26 mm in diameter), inserted inside a tube of Teflon (20 mm in diansatdr)
rotating at a moderate speed of 4400 rotations per minute in an 85.7% (by mass)
solution of phosphoric acidA water bath was used to maintain the temperature at
20°C. Themoderate value of rotation spewds justified by the necessity to facilitate
the contact between the reactaots the one handndto avoid turbulenceon the
other hand[39]. The time evolution of the dissolutioncurrentI(t) was measured
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relatively to a reference electrodevhich was separatd from the solution by a
capillary.

The sampling recordingvascharacterized biargeamplitude oscillations of/-
15 mA (see Figre 3) exhibiting a chaotic phase portrailggestedy its firstreturn
map A 3-dimensionalmodel was obtainettom the datausing the global approach
[14]. The mocl function wasa fifth-degreepolynomial of52 terms The object of
this revisited analysis to check the ability of our tool to reachsanilar or amore
compact model.

4.3 Vegetation index

The Normalized Difference Vegetation Index (NDVI) product frdra Global
Inventory Modelling and Mapping Study (GIMMS) of the Global Land Cover Facility
is used in this studj4(], during the period 1982008. It is based on the Advanced
Very High Resolution Radiometer sensor onboard National Oceanic Atmospheric
Administration satellitesTheNDVI is an efficient index for monitoringnd modeling
of grasslands and grain crops in semiarid regjdst3]. The product used hehas a
10-day samplingandan 8x 8-km? resolution. ltis corrected from sensor degradation
ove time andalsoaccounts for atmospheric aerosols resulting from the eruptions of
the El Chichon (in April 1982) and Mt Pinatubo (in June 1991).

Thegeographiareaof the study islocatedin northernMorocco. It is defined by
a window ranging from 6.2°Wot5.4°W in longitude and from 34.6°N to 35.4°N in
latitude Although this areaincludesone part ofirrigated crops, rainfed production
remains the dominargart of the area of studyA selection based on the land cover
type has been applied to the dataider to obtain a more representative signal. The
GLC2000 land cover maj@4] wasused for this purpos@©nce the selection applied,
the signal was spatially aggregated at the scale of the whole provinsgabslly
averagng the datan order to reducéhe effect of noise. A Savitzk§olay method
[45] was then applied with d4-decade window to filter the resulting time series and
to compute the successive derivatives withda@ resampling. The resulting series is
shown in Figure 4.

5 Results and discussion

5.1 Rossler system

The object of thidirst applicationto the Rossler systeim to show thesfficacy
of the toolwhen considering three variables,, x;, and x, (see Eq. 4enablinga
deceasing level of observabilitpf the original systemFor this reason, the three
variables are considerseparately

Variable x, providesthe best observability of the Rossler systehich results
from the linearrelation between x, and variables x;,x,,X, andcan be deduced
from Ecg. (4) and (5)(see[35]). Moreover, thisvariable alsaallows fora formally
exact and even basic polynomial solution. For this readimfirst analysiscan be
consideed as gootentially prohibitive testsince itshould absolutely be passed. The
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best model obtaineower Akaike Information Criterion) from x, is obtained for
maximal polynomiategreeg = 2 and corresponds exactly to the polynomtalcture

F, X, X,,..,X, of the formal solutior{see Eq. 6)Startingthe structure search from
g 2orqg 3,itcan be obtainetdy using PoMoS or bgimply removing terms of

smaller contribution one by onhase portrag reconstructedrom the original data
X,,X%,, X, areshown in Figuresa together with the simulation obtained from the

global modelsFigures 5¢ and 5e. Global modéng often producesreliable model
structure with imperfect paranterization [12]. In the first casea 9-term model
corresponding to the canonical solutidg( 6) was obtainedlhe development of its
dynami@l behaviorappearsfully retrievedas illustratedby the first return map
highlighting a quite goodnatchng (Figures 5d) This is confirmed by the transition
matrices(seeSection 11 in [36]) and by the analysis of the populations of unstable
periodic orbitsfor which symbolic sequences aréully retrieved (100% of the
sequences match)ntil 3-symbotlength sequeces(see Table 3)None significant
improvement could be obtained by tuning the paramétgtsand(not shown) Such
improvement maye obtainedy developingan optimizationapproach dedicated to
this problem Surprisingly, a7-termmode| thussmallerthan theanalytic solution (see
Eg. 6) was also obtained (Figure %) by removing termsb and X, from

F, X, X,,..,X, , suggestinga compensative contributionf these two terms

However, the phase portrait associated with thisdeh of smaller size appears
incomplete and t should be noted that it was nfdund possible to adjust the
dynamics to the original behavior by tuning the paramefdrstransition matrixof
this 7term model is incomplete leading to a short horizon of confidence
corresponding to d-symbol length sequencenly, which is quite poor. Although
poor in quality, his smaller model is interesting this analysis Indeed it shows that
an approximate model can leadawiable attractor (althouglincompletey reliable
of approximatedynamics characterizedby a not fully developediand not fully
developablg dynamics This does not prevent from obtainingraumerically robust
(althoughapproximatg modelfor the original dynamicsThis model of smaller size
(7 terms instead of the 9 analytic ones) is also interesting since it show$yhat
oversimplifying the canonical systersome behaviors of the original system cannot
be retrievedindeed some behaviors provided by ttveo missing terms are obviously
lost. This, alsoillustratesthatthe principle of parsimongan apply here, but shoutbe
applied with some caution. There is no reason to choose the smaller solution
exclusively becauseit is smaller but rather,when two solutions exhibit same
behaviors then the smalleoneshould be preferresince there is no reason to choose
a more complicate onén the present context, thet®&m model should assuredly be
preferred These results also show tleatefined validation based on the comparison
of the populabns of periodic orbits can be a powerful approach

Variable x, provides a moderate observability of tR&ssler systemThe
analytical formulation offF, X, X,,..,X,, alsoexistsfor this variable ands rational
(seeEq. 6). The moderatelevd of observabilityresults fromthe nonlinear relation
existing betweerx, and variablesx;, x,, X, andcan be obtaineétom Ecp. (4) and
(5) (se€[39]). Since only a polynomial formulatidior the approximating functionF
is permitted in the present version of #igorithm an exactormulationof the global
model cannot be expectedHowever, @spite he presence of rational terms,

approximate functionef small sizecan be expectedndwereobtainedwith degree3
and 4polynomials Phase portraitseconstructed from the original data set and from
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the global modelsare given in Figure6a, 6¢, 6fand6h. None of these models allows
for an accurateeconstruction of the phase portraigs confirmed by thérst return
maps(seeFigures 6b, 6d, 6gnd6i). At first sight, thebest solution is obtained with
the BB-termmodel f maximumdegreeq = 4) for which three of the four branches of
the first return map ardirectly and &arly retrieved(seeFigure &l). A slightly less
developeddynamicsis obtained for the erm model ©f maximumdegreeq = 3,
Figure 6i), whereas the -82rm model ©f maximumdegreeq = 4) poorly exhibits
three branchesthe third one being extremely sméHigure 6g, respectively).The
PRGHOVY L Qdlksb Feddaldd-in thé/transition matrices Seetion 12 in [36)]).

By tuning one parameter of each of these three models, it was found thattémen 10
model wasobviously the best approximatigRigure 6j) Indeed, the full devepment

of the 13term @ =4) PRGHO TV ¢&ul@d Dl ibe partial and associated with
discontinuities in the first return map (Figure 6e); and it was found not possible to
tune the Yerm model (not shown). Contrarily, although not fuityatching the
original first return map, a gentle development of the dynamas obtained with the
10-term model ¢ = 3), including a small discontinuitgnly (Figure 6j).Moreover, it
was found possible to fully retrieve-2ymbol length sequences with this lat{see
Table 3) whereasequences of onl§~symbotlengthcould be retrievedavith the 13
term modelnd none with the-82rm model (se&ection 12 alsoin [36]).

Finally, variablex, provides the lower observability of the Rdssler systens Th
low observability results from the nonlineaelations betweenx, and variables
X, X%,,X; and can be obtainedrom Eg. (4) and (5)see[35]). The analytical
formulation of F, X, X,,..,X, alsoexists it is raional (seeEq. 8), and includes

degree2 termsat the denominato-rom thedifferential embeddindFig. 7a), his
variable exhibits avery spiky structure that makes global mdde especially
difficult [46]. Several solutionswere yet obtained in the @st by using an over
dimensioned 4D formulatiop%7], by using an ad hoc approablased on fixed points
coordinateq48], or by usinga very constraining structure selection witle Ansatz
library [46]. However, none direct 3D global model could be oleihipet This
difficult context is further complicatedhere by the use of a phase noncoherent
dynamics.

Despite the low observabilitgnd the spiky structurefifth degreepolynomial
approximationof 30 terms was obtained. Phase portraitand first returnmaps
reconstructedrom the initial data set and from tiheodelare shownin Figures 7a &
7c. The chaotic behavior of thglobal model is confirmed by the first return map
(Figure 7d) Three branches are obtained which means d@hphase noncoherent
regime is directly retrieved. However, the full development of thbhaosis not
obtained since only three branches appearthing one being partly truncate@hese
characteristics are directly readable in the transition matriceSés#on 13 in [36]).

A rather gentle development of the chaweas obtained by tuning one of the
parametes (Figure 7e)giving riseto thefull development of théour branches of the
original data set As a result, transition matricespuld become reliable and even, a
full agreement of the symbols sequeads found until 2symbol length sequences
(see Table 3)Some imperfections can be noted, howevetuZry behavioiis visible

in the first return map, on the left sidé the pattern corresponding tdhe faster
oscillations more difficult to detectThese imperfectionare likely toresult from the
especiallyacid situationcharacterized by @&piky structurein a context of low
observability and further complicated by tiweo timescals of the phase noncoherent
regime It is thereforea very convincing resuléince at presentno 3dimensional
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model could be obtaingget from thisdifficult variable of the Rdssler system without
usingstrongstructure selectian

5.2 Electrodissolution of copper in Phosphoric acid

The aalysis of the time evolution ofcurrent intensitymeasured from the
experiment introduced irsection 4.2 has led toa 21-term model of maximum
polynomialdegreeq = 4. A phaseportrait obtained fronthe measured signgFigure
8a)can be compared to the portraiitained from the model FiguBe. The retrieved
model exhibis the samestructure.The chaotic behaviour is confirmed in both cases
from the doubléoranch pattern of the first return mafsgures 8b & 8d). A larger
central hole with a slight shift can Wwever be noted in the model, leading to a poor
development of the first branch of the first return peaapd t was found not possible
to significantly develop the dynamics by manually tuning one of the parameter (not
shown).The direct consequence of thegp development of the dynamicsaéasily
readable irthe transition matriceseeSection 2 if36]).

Therefore, another solutid@1-p.’) obtainedby considering a shifted time series
of longer length(see Figure 3) was also considerEdr this reasornthe two models
have the same structuemd only theirparameterizatiordiffers. The second model
exhibits a limit cycle(see Figure 8eyery close to a perie8 cycle as depicted in the
first return map (see FiguBf). Although less chaotic with its in@l parameterization,
this other model could be efficiently tuned, gading toa developed chaos close to
the originaldynamics(Figure 8g).The transition matrix of the tuned version of this
second mode(21-p.” °™) is in agreement with the one obtainedm the original
signal. Further, symbol sequesaesulting from this latter modelre in agreement
with the original sequences untit€/mbotlength sequences

When onlyone singlevariable isavailable the observability coefficientsof the
system canot be estimated However, t can be noted thaunlike Rosslerx, or

Rdsslerx; and similar toRGsslerx,, a modelwas hardto find for this application

andonly a high degreepolynomial soluion could be obtainedq = 4). Moreover,as
found with Rdssler x,, a high sensitivity to théme serieq] Z L Q G&Jzo identify

the modelwasnoted.Suchsensitivity WR W KH W L P id adinthbrifedtfiredfL | H
global modéng. This sensitivityresults from the identification process which is a
difficult task ina contexiof chaotic behavior. Indeed, when more data is available
identify the parameterizatiopra more preciseparametdration may be expected.
Unfortunately more dita will also lead to more complex shapd the objective
function In the case of a chaotic behavior, the complexity of this shape will rapidly
tend to fractal structusethat simple identification approaggmay not be able to
overtake optimallyThe difficulties in obtairing a satisfyingmodelarelikely to arise
from the complex shape of the objective function complicatede by the
intermediateor poor level of observability of the systeras consideredrom the
measurement agurrent intensity This assumption mape investigatednterestingly

by reconsideringthe dynamics in asther experimentalconfigurationwhich would
involve severalelectrods simultaneouyl for comparison or by consideringother
variables of the system.
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5.3 Dynamics of rainfed wheat

The time evolution of the vegetation index (Figdjantroduced inSection 4.3
hasbeenanalyed leading to onel5-term model. The phase portraits obtained from
the original data set and from the retrieved model are shiovAgures 9a and 9b.
Somedifferences are noticeable that include the filtering of short timescale events
observed in the original portrait thatay result from transitory effects associated with
meteorological perturbatiorsr to spatially differentiated behaviors of the region of
study. Another emphasized difference comes from higher density of trajectories
observed in theener hole of the simulated trajectorywhereas the original phase
portrait clearly exhibigan empty holeSuch differencemay result from a suboptimal
parameterization. Indeed, it is well known that global modeling may leadytod
structure i e. equivalentto the original ongbut to aninaccuratadentification of the
regime Theattractor isgenerallynot locatedexactlyat the same place in a bidation
diagram of the original systefii2]. Despite the differences nogéd, obtaining such a
model is quitean important point since it clearly shows the robustness of the
algorithmto get a satisfactory model from a rather jittery time series. It iscatgote
important result from a thematic point of view sincérings a strong evidence af
deterministic component undgirig the signal of rainfed wheat observed from space.
More generally, to our knowledge, there was previously no such strong elefment
evidence of deterministic behavior underlying the dynamics of vegetation.

The resulting attractor exhibits @mplexstructure for which no simple first
return maps accessiblelts unstablebehavioris confirmed by aclearly positive first
Lyapunovexponent @ 1.90 r0.02 [1]. These analysgsrovidea strongargument

for a chaotic behavioin which instability is guaranteed by thdérst Lyapunov
exponentsaand wheredeterminismis ensuré by obtaining the (deterministic) global
model The moe in-depthanalysisof the attractowill require a dedicated study.

6 Conclusions

PoMoS and GloMo, acouple ofalgorithmsdeveloped under language and
dedicated to global modelings presentedand testedn this work. The tools are
applied to three diérent systems in order to show itheapacity in providing
satisfyingmodels of small sizérom single time seriedModek of smalker sizeare
preferredfor two reasonsOne reason i avoidredundant terms that mdyyasthe
correspondence witthe original dynamics Indeed,it is well known that the addition
of one single term in a dynamical system mayompletelychange WKH V\VWHP{V
behavior Another reason is to remowpurious terms thanay foster dynamical or
numerical instabilitiesand potentiallylead to a short or longterm divergence
Obtaining amodel of small size is thus powerful sign of strength of the model.
However, oversimplification should be avoided alsa Nonetheless,from our
experienceobtaining oversimplifiednodelsfrom global maleling appearsare and
may be considered with less apprehension since it may lead to simplifiedobeit
robustdynamicsrather than spurious or numerically unstable otesther words,
but depending on the context of application, oversimplificatioay lead to an
interesting solution by defauktspeciallyif no bettersolution can be found.

Various levels of validationare distinguishedin the paper and a validation
methodaccounting forlong-term dynamical behaviorns introduced These various
levds of validation weretested ontothe global models obtained with the two
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algorithmswith the aim tohavea significantoverview of the resultsThe capacity of
the two algorithmswasthus evaluatedhot only based otheir ability to reachviable
models,but also onthe reliability ofthe modelsobtained reliability beingevaluated
with a refined validation techniguewhen possible The quality ofa model was
estimatedn terms ofphase portrait, first return mapansition matrixandpopulation
of unstdle periodic orbits The model{ ¥ize was also considered as an interesting
criterion for comparison to the analytic or previously published solutiGmsability

of the toolwas firsttestedon the Rdssler systemwhich variablesexhibit various
levels d difficulty ranging from very low to higlwhen attempting a global modeling
Thealgorithmswerealso tested on two sets rafal observatios. One setelates tahe
electrodissolution of copper in phosphoric acichich data was obtained under
experimendl conditions. Another setonceris the dynamics of rainfed wheander
semiarid climatic conditions observed by satellitemote sensingover northern
Morocco.

It was possible to get a global model for each of the cases considered in the
study.Except forthe dynamics of rainfed wheatll the leve$ of validation could be
achievedoftenafter applying a a posterioriparameter tuning)a) Determinismwas
shown by obtaining a global moddb) the first return maiV. SDWWHUQV FRXOG
satisfyingly compare to the one reconstructed frorthe originaldata setthe same
number of branches could be obtained); (c) the same development of the dynamics
FRXOG EH FKHFNHG TXDOLWDWLYHO\()Yhe Wransitio J WKH EL
matrices could be satisfygly compared; and (e) the symbols sequences could be
checked (until Zymbollength sequences, at leasffhese models are more
parsimoniousompared tdhe previously published resultSurprisingly,although not
fully reliable,a 7-term modelwasobtainel for the first variable of the Rossler system
while aformal solutionof nine monomialss ideally known. The model obtained from
the time evolution of a current measured in an experiment of electrodissotion also has
a smaller size (21 parameters) thaa pineviouly publishedmodel of 52 parameters.

The efficiency of the PoMo&nd GloMo algorithmsis powerfully exhibited by
obtaininga 3-dimensional global model from the last variable of the Réssler system
(notedxs in the present work)which is charactézed by a low observabilityThis
result is especially significant since no 3D model could be directly obthietkede,
withoutusingavery constraining selection technigoea priori knowledge

Validation could not be performed onto the modttainfed wheat due tdhe
jittery structure of the phase portragsulting from the original signalhich probably
resuls from the noisy conditionsNonethelessthese new tools havespnittedthe
extraction ofa deterministic componeritom the signal of vegetdtion index observed
from space This is an importantesult since, to our knowledgehe deterministic
behavior has never been argweith such a strong element of evidence for any type
of vegetation. This is also important since determinism is one ofwhesssential
conditions for chaos. Since the dynamics captured from the vegetation index exhibits
a relatively high level of complexity which haracterized by a chaotregime, it
offers a strongvidenceor a chaotic behaviasf rainfed wheat imorthernMorocca

Finally, thanks to theéwo algorithms PoMoS and GloMo, it is shown that
dynamics of quite complex behawsaranbe modeled bglobal models otanonical
form andof quite small sizel0 terms only for the Rosstef variable, 30 terms only
for the ROssleks variable, 21 terms for the electrodissolution of copper in phosphoric
acid; and 15 terms for the dynamics of rainfed whet northern Morocca This latter
model alsasuggestshatrelativelycomplexdynamical structuresanbe modeled wih
canonical formulation of rather small siZzBevelopments of global modeling were
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initiated in the early 1990s¢he present results contribute poovide quite encouraging
newillustratiors of the potential otheapproach

7 Appendix A

Two mainoptimizéion criteriaare provided in PoMoEachis expressed as the
sum of two terms one termevaluatingthe maximum likelhood another term
corresponding tdhe model sizalefined hereDV W KH RURBeH @ patameter.
These twoterms are in competition sie maximum likelihood invariably leads to

PD[LPL]H WKH PTRe&GARLKY thfdrmdtidn CriteriolC*“ [49] is defined as
follows:

ch  2inL 2k 9)

wherelL is the likelihood and is the nurber of parameters independently adjusted
within the model.In practice L is estimated from the residls of the leastsquars

fitting. The Bayesian Information CriteriorC®“ [50] allows for a stronger
SHQDOL]DWLRQ R IhiaUSHh® RIBWHNG xpréssigmd W

C® 2InL kinn, (10

wheren, is the sample size (corresponding to the size of the time series).

The theoretical backgrousaf the two criteriaaredifferent sine C* aims at

finding a satisfying tradeff between likelihood and model size, wherg&® aims

at identifying the true or quasitrue moddlheir efficacy can vary drastically
depending on factors including the safethe sample, the presence of the true model
in the model ensemblendthe size of thisnodelensembleln practice due tothe

stronger penalization of the model size in & criterion, C®° may lead to sub
dimensioned modeJsvhereasC*® will generally leadto overdimensionednes.
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Tables

Analytic ~ Polynomial Rational solution Previols PoMoS & GloMo
solution solution 3D-models
exisence # terms Nominator Denominator # terms #terms degree
degree degree
Rosslerx; yes 9 2 0 9 7 2
9 2
Rosslerx; yes - 2 1 33 10 3
9 4
13 4
Rosslerxs yes - 2 2 none* 30 5
I(t) no - - - 52 21 4
v(t) no - - - none 15 3

Table 1:Synthetic presentation of the previouplyblishedand presentlpbtained
global modelsn terms of Q XPEHU RI PRQRPLDO LQ WKH DQDO\WLF VF

D QG GHQR mraxinDidpétyiddmial degree.

" None direct 3D global model could be obtained yet. However, solutions could be
obtained by over dimensioning (4D) the model formulaf®i, by using an ad hoc
approach based on fixed points coordiniéh, or by using thevery consraining
Ansatz library[46].
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Variable Model Poincaré section Istreturn

reference normal abscisa ordnate selected P_ DSTV
axis
point vecton vectoNa vectow zone
Rosslek,  origin. [-0.6; 0; 0] [-0.447:0.894; 0. [0.003:0.001; 1] [0.894:0.447:0.003] R,>-0.3 Vb
9p. 3 3 3 3 3 3
7-p. 3 3 3 3 R,>+0.1 3
Rosslek,  origin.  [0.;0.;0.] [-0.050; 0.999; 0 [0.998; 0.050; 0.] [0.019:0.001; 1.] R.< +0.3 Vb
13p. 3 3 3 3 3 3
13port 3 3 3 3 R.< +0.2 3
9p. 3 3 3 3 R.<+0.3 3
origin.  [0.;0.;0.] [1.;0.;0] [0.;0.031; 1] [0.; 1.;0.031] R,< 120 3
10p. 3 3 3 3 3 3
10port 3 3 3 3 R,< 100 3
Rosslek;  origin.  [0.; 0.;0.] [0;1;0] [-1.;0.; 0.002] [0.002; 0-1.] R,>-0.6 Va
30p. 8 8 8 8 R.>-0.49 3
30port 3 3 3 3 3 3
I(t) origin. [44.2;4;0  [1;0.020;0] [0.003;0.128;0.992 [-0.02; 0.9910.128] R.> 0. Va
21p. 3 3 3 3 B 3
21p.* 3 3 3 3 . 3
2. *ont 3 3 3 3 - 3

Table2: Definition of the Poincaré sections usedtmstruct the first return maps of
the original andjlobalmodelspresented ifrigures 5, 6, 7 and. §he Cartesian
coordinates systenO,n,v,,v, usedfor each Poincaré secti@me providedwhere
nis the normal to the Poincaséction.The direction {, or v, ) chosen to construct

the first return map is specifieRestrictions applied to the resulting plane as®
provided coordinatesR, and R, referring to directionss, and v, , respectively.
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Boundaries (aloRg,r1,) % of sequence retrieved Symbols  Maximum

Model between symbols VHTXHQFHYV OHQJWK present/ length
0&1 1&2 2&3 1 2 3 4 5 6 retrieved validated
sequence
Rosslek,  origin. 117 242 299 {0; 1; 2; 3]
9p. 119 241 3.01 100. 100. 100. 76.2 55.3 47.8 {0; 1; 2; 3] 3
7p. 151 266 3.09 100. 938 375 - - - {0; 1; 2; 3] 1
Rosslek,  origin. 66.0 118.5 1425 {0; 1; 2; 3]
13p. 63.0 1177 - 75 50 - - - - {0; 1; 2} 0
13port 64.0 119.0 144.0 100. 93.7 84.3 539 - - {0; 1, 2; 3] 1
9p. - 1275 152.8 75 50 - - - - {1;2; 3% 0
origin. 124 233 283 {0; 1; 2; 3]
10p. 121 213 - 75 50 - - - - {0;1; 2} 0
10port 120 228 2638 100. 100. 984 90.6 53.5 - {0;1; 2; 3] 2
Rosslers  origin. -0.36 -0.28 -0.26 {0; 1; 2; 3]
30p. 0.36 -0.20 - 75 50 - - - - {0; 1} 0
30port 0.36 -0.19 -0.16 100. 100. 96.9 90.6 56.25 - {0;1; 2; 3] 2
I(t) origin. 330 {0; 1}
21p. 590 100. 75. - - - - {0; 1} 1
21p.* 529 100. 75. - - - - {0; 1} 1
21:p.*ort 490 100. 100. 100. 100. 100. 100. {0; 1} 6

Table 3:Boundary limits used when partitioning the first return maps, %eqgtiences
retrieved by the moddébr symbol sequence ofto 6symbol length sequencges
symbols retrieved and length of the larger symbol sequences that could be validated.
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Figure Caption (color online only)

Figure 1: Operating diagram of PoMoS algorithm: (1) a saéahitial models is

randomly generated and put in basket 1; (2) if the number of model is large eNough (

> N;), models are tested based on one chosen criterioth@s@ppendx); (3) best

models are selected, whereas bad ones are rejected into basket 2; (4) the best model is
used to generate neighboring models (a model distance is defined for this purpose)
which are added into basket 1; (5) stagesd?4) are repeated untthe number of

model in basket 1 becomes too low (" 1); (6) the model research is thus stopped.

Figure 2: Original signal from the Rdssler system for variakjeftop), x, (middle)
and x, (bottom).

Figure 3:Selected windows of arxperimental signal of current intensityt

measured in an experiment of electrodissolution of copper in phosphoric acid obtained
LQ -RKQ +XGVBRM¥ catdgReMelata set is available on the atomosydb
site (http://www.atomosyd.net/

Figure 4:Vegetation index signal t of rainfed wheatThe time series wagerived
from the NDVI productprovided by the GIMMS40] at 8 x 8-km? resolutionand 10
daysampling It was ddtained by averaging the signal spatially over a window located
in northern Morroco and by applying a Savitziyolay filtering (details are given in
the text).

Figure 5:Differential embeddinggleft panels) and first return maps (right panels)
reconstruted from the original variable, of the Rdssler system (top panels) and

from two global models obtained from it: ongem model (middle panels) and one
7-termmodel (bottom panels).

Figure 6:Differential embeddinggleft panels) ad first return mapsngiddle column
andright column panels) reconstructed from the original varialileof the Rdossler

system (top pangl and from three global models obtained from it: one fourth degree
13-term model gecond lineparels), one fourth degree9-term model ¢hird line
panes), and onethird degreelO-term model (bottomline panes). The first return
maps reconstructed from the modetsrectly obtainedwith GloMo algorithm are
plotted in the middle column paneRhe firstreturn maps obtaineafter tuning one of

the parametesrare plottedwhen availablejn the right column panels.

Figure 7:Differential embeddinggleft panels) and first return mapsi@idle column
and right column panels) reconstructed from the originariable x, of the Rossler

system (top pangl and from the fifth degree30-term global model obtainedwith
GloMo (bottom panes). In the bottom panels, the middle panel correspémdhe
first return map of the 3@rm modeldirectly obtained from GloMo algorithm
whereas the right panel correspertd the modified versionof the same model
obtained by tuning one parameter

Figure 8:Differential embeddingfdeft panels) and first return mapmi@dle andright
panels) reconstructefom the original current intensity(t) measuredfrom an
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experience otopperelectrodissolution (top panel) and from tlve global moded
obtained from it Both have the same structure: foudkegree 2iterm modek. The
parameterizatiorof the first one (middle paneliyas obtained from the shorter time
series presentediFigure 3 and from the longertime series for the second one
(bottom panel)First return maps directly obtained by applying GloMo algorithm are
plotted in the middle colummpanels. First return maps obtained after tuning one
parameteof thesecondmodel is plottedn the right column panel.

Figure 9:Differential embeddingseconstructed from the original vegetation index
v(t) (left panel) and from ththird degreel5-termglobal model(right panel).
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