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Abstract: 
Global modelling aims to build mathematical models of concise description. 

Polynomial Model Search (PoMoS) and Global Modelling (GloMo) are two 
complementary algorithms (freely downloadable at the following address: 
http://www.cesbio.ups-tlse.fr/us/pomos_et_glomo.html) designed for the modelling of 
observed dynamical systems based on a small set of time series. Models considered in 
these algorithms are based on ordinary differential equations built on a polynomial 
formulation. More specifically, PoMoS aims at finding polynomial formulations from 
a given set of 1 to N time series, whereas GloMo is designed for single time series and 
aims to identify the parameters for a selected structure. GloMo also provides basic 
features to visualize integrated trajectories and to characterize their structure when it 
is simple enough: One allows for drawing the first return map for a chosen Poincaré 
section in the reconstructed space, another one computes the Lyapunov exponent 
along the trajectory. 

In the present paper, global modelling from single time series is considered. A 
description of the algorithms is given and three examples are provided. The first 
example is based on the three variables of the Rössler attractor. The second one comes 
from an experimental analysis of the copper electrodissolution in phosphoric acid for 
which a less parsimonious global model was obtained in a previous study. The third 
example is an exploratory case and concerns the cycle of rainfed wheat under semi-
arid climatic conditions as observed through a vegetation index derived from a spatial 
sensor. 

                                                 
* To whom correspondence should be sent : 
sylvain.mangiarotti@ird.fr (S. Mangiarotti) 
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1 Introduction 
 
A proper identification of chaos in nature �± that is from real observational data �± 

is a difficult  task. Most of the methods that have been developed for its identification 
consist of checking some of the properties of chaotic dynamics. A chaotic dynamics is 
characterized by dynamical, geometrical and topological properties: unstable 
behaviors, fractal structure of the flow, and stretched and squeezed structure, 
respectively. These properties can be brought out using various concepts and tools. 
Instability can be estimated from the spectrum of the Lyapunov exponents [1]; 
geometrical structure can be investigated from the analysis of the correlation integral 
[2]; topological properties can be deduced from the structure of the embedded 
trajectory [3-5]. Practically, these properties can provide important arguments for 
chaos. However, algorithms associated with dynamical and geometrical properties are 
often very sensitive to noise, which strongly limits their validity when analyzing data 
stemming from real world or experimental conditions. Moreover, these analyses are 
not sufficient to reveal chaos. Actually, chaos requires two essential conditions: The 
first one is an underlying determinism, another one is the high sensitivity to initial 
condition. The dynamical and geometrical analysis can allow for validating the 
second condition only. Similarly, topological analysis can lead to a powerful way to 
characterize the type of chaos and to identify and understand the behavior in terms of 
trajectory, template, and knot. However, none of them can guarantee the determinism 
of the ongoing processes. 

The question of the determinism is a hard question. Relatively few 
methodologies have been used to investigate the field. Determinism relates to the 
uniqueness and causal determination of states from time t to time t + dt. As a 
consequence, the ability to link dynamically the successive infinitesimal states of a 
system might be a reasonable proof of determinism. Methods based on the one-step 
prediction, such as the surrogate data analysis [6], have been suggested. This 
technique is known to exhibit a high robustness to noise. It also performs well at 
revealing underlying nonlinear processes but cannot be used to determine if a 
dynamics is deterministic or not [7]. Another approach based on noise titration was 
introduced in [8]. This method also showed a most efficient ability to investigate the 
strength of nonlinearities underlying dynamics. However, the approach is not always 
able to distinguish colored noise from deterministic chaos [9]. 

Another very interesting approach was introduced in the early 1990s [10]. 
Instead of investigating determinism from the one-step predictions, this approach 
consists of verifying that the tangent of the trajectories reconstructed in the phase 
space is a function of position in phase space. By construction, such an approach can 
guarantee local determinism in the phase space but not global since it does not allow 
for checking the coherency of the deterministic behaviors between all consecutive 
tangents. The global approach aims at finding an algebraic link between the current 
state of a variable and its current derivatives [11] or between the current state of a 
variable and its previous visited states [12]. In this sense, it also belongs to the latter 
approach [10]. However, by requiring the existence of a continuous correspondence 
between derivatives and the model state, global modeling goes further since 
guaranteeing the coherency of the dynamics inside the whole reconstruction. The 
global approach allows for a strong guarantee of the existence of a link between 
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infinitesimal states. At present, the global approach appears to be the most robust 
manner to probe and reveal the determinism of an underlying dynamics from 
experimental or observational time series. Therefore, associated with dynamical, 
geometrical or topological considerations, it appears as a powerful tool for the 
identification of chaos from real observations. The approach has been applied 
successfully to very different types of systems and data sets including, mostly, 
synthetic time series generated numerically from chaotic attractors [11-13] as well as 
real measurements gathered from controlled experiments [14-18]. Few examples 
could be obtained from real world measurements: One global model was obtained in 
astronomy for sunspot cycles [19]; another one in ecology for the Canadian lynx cycle 
[20]. 

Chaos has been one important source of research and development in the last 
decades. Many packages and libraries dedicated to the analysis of chaos from time 
series have been developed, among which is the TISEAN software [21]. This software 
provides a set of pre-existing methods organized into a standardized framework �± and 
published as such �± which does not incorporate tools for global modelling. The 
methodology of global modelling requires specific developments. To our knowledge, 
there is no software or libraries available at present, that include reliable tools for 
global modelling of chaos. One objective of this work is to introduce a couple of tools 
named Polynomial Model Search (PoMoS) and Global Modeling (GloMo) [22] to 
present their algorithms and their practical originality and to show their efficacy based 
on specific examples taken from various contexts. The present algorithms were 
developed as packages under R language [23-24]. The aim of these two algorithms is 
to investigate global models from time series. Both of them deal with ordinary 
differential equations of polynomial formulation. The first algorithm, PoMoS, is built 
to find the optimal terms in the polynomial formulation of the model. The second 
algorithm, GloMo, estimates the parameterization based on a Gram-Schmidt 
procedure [11] and also provides basic tools for visualization and analysis. 

The paper is built as follows. First, the background of global modelling is briefly 
recalled in Section 2. A description of PoMoS and GloMo algorithms is given in 
Section 3. Three examples taken as benchmarks are presented in Section 4: The first 
example is based on the Rössler model whose variables offer very different levels of 
difficulty when attempting global modeling. A second example is based on an 
experimental data series resulting from the electrodissolution of copper in phosphoric 
acid. The last example relates to the dynamics of rainfed wheat as observed from 
satellite remote sensing in Morocco. For each system, the ability to retrieve the 
dynamics from single time series is tested. Results are discussed in Section 5, and 
compared to previous results when available (a simplified summary of the analytical 
solutions, and previously and presently obtained models is given in Table 1). 
Conclusions are presented in the last Section. 

 

2 Theoretical background 
 
One powerful result in the theory of nonlinear dynamical systems comes from 

the possibility to reconstruct a trajectory equivalent to the original set of variables 
from one single variable. This result has been expressed mathematically in a theorem 
by Takens [25]. The differential embedding is one of the methods enabling the 
reconstruction of such a trajectory from one single time series [26]. For a time series 
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�� ��tx , this method consists of representing an original time series as a function of its 
successive derivatives as follows: 

 
�� ���> �@nxxxxy ..,, �������          (1) 

 
where x��, x���� , and �� ��nx  are the first, second, and nth derivatives of �� ��tx , respectively. 
When n equals to the dimension of the underlying dynamics, the reconstruction is 
generally complete. If so, the reconstruction is thus called an embedding and the 
associated dimension is called the embedding dimension de. One classical way to 
estimate de is the global false neighbors method [27]. However, the true embedding 
dimension is often difficult to estimate surely [28]. Therefore, the dimension of the 
global model may also be usefully investigated with a trial-and-error approach. 

The differential formulation of a global model directly results from the 
differential embedding (Eq. 1). A quite general formulation of a dynamical system of 
n variables can be expressed as follows: 
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Under invertible properties [29], if observed through ixX � 1 , one of the 

original variable of the system, the system can be reformulated in the following 
canonical form: 
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where function �� ��nXXXF ,..,, 21  may be practically approximated by a polynomial 

�� ��nXXXP ,..,, 21  of degree q since it was shown that a polynomial enables more 
stable and robust models than a rational [11]. However, it was shown that, in practice, 
the structure of the polynomial has to be chosen adequately since inappropriate 
combinations of terms may lead to spurious effects or to numerically unstable 
solutions [30]. Several classes of structure selection approach have been previously 
applied in this context. The first and simplest class of technique consists of removing 
one by one the terms of smaller contribution [31]. The second class of technique 
(initially developed for the NARMAX modeling) [32] consists of removing clusters of 
terms presenting compensative contributions [33]. The last class of techniques 
includes any technique based on a heuristic; one of these, based on a genetic 
algorithm, was applied to an ansatz model search [29]. 

The algorithm introduced in the present study for applying the structure 
selection belongs to the last class of heuristics and was specifically developed for 
global modelling. Compared to the previously evoked case [29], its originality is to be 
exclusively based on the binary parameter�L�]�D�W�L�R�Q�� �R�I�� �W�K�H�� �P�R�G�H�O�¶�V�� �V�W�U�X�F�W�X�U�H related to 
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the presence/absence of each monomial. In other words, it aims at separating the 
identification of the model�¶�V structure from its precise parameterization. Another 
original aspect is that it keeps all the solutions visited during the search process in 
order to allow discriminating good from bad terms a posteriori. Finally, the approach 
was designed with the will to allow the �X�V�H�U�¶�V��dynamical interactions when desired. 
 

3 Methodology 
 
The aim of this section is to describe the overall functioning of the two 

algorithms PoMoS and GloMo which can be used either in a blind mode, or 
interactively through their associated interface. 

 

3.1 PoMoS algorithm 
 
The PoMoS tool is based on a heuristic algorithm aiming at identifying the 

monomials of any polynomial ordinary differential equations. Technically, it can be 
applied to single or multiple time series. In the present case of global modeling 
considered here, PoMoS is used to identify the terms of one single polynomial 

�� ��nXXXP ,..,, 21  for an optimal formulation of the dynamics as observed from 

variable ixX � 1  (see Section 2). A schematic description of the algorithm is 
presented in Figure 1. Two baskets of models are used in the algorithm: Basket 1 
collects models to be tested, basket 2 gathers the models already tested. 

Initially, both baskets are empty: a set of N0 initial models is randomly generated 
and put into basket 1. An iterative loop is thus started: N1 models are picked up from 
basket 1, their suitability is estimated through a multivariate regression from which 
goodness of fit is quantified through a chosen criterion. Several criteria are provided, 
accounting for accuracy and size in a competitive way (their definitions are given in 
Appendix A). The best model among these N1 tested models is thus identified and is 
used to randomly generate N2 neighboring models. The distance between two models 
is defined as the number of polynomial terms added and removed. The best model is 
put back into basket 1 together with the neighboring models. Non optimal models are 
gathered into basket 2 for further (concurrent or posterior) analysis. The first loop is 
thus completed. Other loops are iteratively restarted until the number of models in 
basket 1 becomes lower than N1. If so, the convergence of the heuristic algorithm is 
considered to be achieved. Last models available in basket 1 are thus tested and 
compared which leads to the �µbest�¶ model. 

Practically, the algorithm requires three input parameters: N0 the number of 
model initially generated; N1 the number of models to be evaluated at each iterative 
loop; and N2 the number of models neighboring the current best model to be added 
into basket 1 at the end of each iterative loop. 

 

3.2 PoMoS interface 
 
An interface is provided with PoMoS. This interface does not simply make it 

possible to start and follow the model search. It also provides interactive tools for 
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analyzing the current results and controlling the heur�L�V�W�L�F�¶�V��parameters (N1 and N2) 
during the search process. 

Two main analysis tools are available during the search process. Each of these 
aims at identifying current optimal terms. Therefore, these analyses are based on the 
relation between monomial attendance and the criterions of the models including 
these monomials. In order to take advantage of all the tests performed during the 
heuristic process, current analyses are based not only on the set of optimal models but 
on the whole set of models already evaluated. Considering the subensemble of models 
containing one chosen polynomial term, the usefulness of this term can be evaluated 
considering the distribution of criterion values associated to this subensemble. The 
first assistant tool provides this information by drawing a box plot, for each of the 
terms considered in the analysis. The second tool is based on a correlation analysis 
comparing the presence of one given term with the criterion value of the associated 
�P�R�G�H�O�¶�V�� �V�H�W. Note that low values of correlation are expected since correlation is 
applied to a heterogeneous set of data (one binary variable accounting for the presence 
or absence of one given monomial and one continuous variable accounting for the 
model fitting). 

From our experience, these two tools have proven to be good indicators of what 
monomial should be kept or preferentially thrown out. The concurrent availability of 
the tools when running the algorithm is a powerful way for a human to control the 
heuristic parameters as well as for a more efficient convergence of the algorithm [34]. 
Indeed, the interface also allows for a dynamical control of the polynomial terms: 
Monomials can be added or removed; all terms of one generic polynomial defined by 
its maximal degree can be authorized, or specific selections of terms can be designed. 
Note that through the interface, this selection can be dynamically modified during the 
search process. 

 

3.3 GloMo algorithm and interface 
 
Contrarly to PoMoS, which can be applied also to multiple time series, GloMo 

is exclusively dedicated to global modeling from single time series. The object of this 
tool is the parameterization of a polynomial �� ��nXXXP ,..,, 21  (see Section 2). The 
algorithm is built on a Gram-Schmidt procedure, following [11]. Technically, the 
polynomial formulation in the algorithm is fully generic and allows any model 
dimension with any polynomial degree. 

Due to the huge number of models to explore in a global modeling approach, a 
search of model structures may advantageously be explored with PoMoS (or with 
another tool) as a first try. Of course, getting a model structure may not guarantee its 
reliability. Actually, because PoMoS was developed for selection among huge number 
of models, the algorithm was designed based on time saving tests. Therefore, practical 
tests for numerical integrability were not implemented in PoMoS. As a consequence, 
most often, a fully satisfying structure cannot be directly obtained from the �P�R�G�H�O�V�¶��
structures provided by PoMoS. However, from our experience, when a reliable model 
is underlying the time series, such a model may be close to �W�K�H���µ�E�H�V�W�¶���P�R�G�H�O obtained 
with PoMoS. In other words, the best solution provided by PoMoS is often a good 
start. 

In such a context, GloMo will provide an accurate estimate of the 
parameterization that will be used for testing the practical integrability of the model. 
In order to control the extension of the structure exploration, an interactive interface 
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was also designed. In particular, this interface allows adding or removing polynomial 
terms. After each structural change, a new identification can be performed and its 
reliability checked in term of numerical integrability. Information about the suitability 
of the monomials is also provided after parameter identification is run. This is done by 
removing each monomial one by one and comparing the fittings to the one obtained 
with all the terms. Note that such suitability can reflect the contribution of a term only 
in reference to the corresponding structure. Indeed, another structure may lead to 
different results. This reflects the local validity of the information provided by this 
test and justifies the prior use of the PoMoS algorithm for an overall (i.e. global in the 
sense used in optimization) view of the model ensemble to be explored. 

 

3.4 Experimental protocol 
 
No full systematic protocol can be applied when trying to get a global model 

with the PoMoS and GloMo algorithms from one given time series since interactions 
with the heuristic process are often very useful during a model search. Indeed, it can 
be noted retrospectively that, to get a model, the stages of the searching process are 
different for each case but also that no procedure can be directly exchanged from one 
case to another. However, although different for each case, some common hints can 
be identified. 

When applying the heuristic, one usual difficulty is to know when to stop the 
research of the optimal model. This difficulty is closely linked to the impossibility for 
the criteria to discriminate properly an adequate model from a non robust or from a 
trivial model. From our experience, Akaike-like criteria generally allow for visiting 
the model space in a somehow transversal fashion, leading to visit alternatively large 
regions of non robustness (diverging solutions) and smaller regions of trivialness 
(fixed points or periodic orbits). Between these two types of region, some chaotic 
behaviors can sometimes be found. Indeed, the boundary between such clearly 
characterized regions generally appears fuzzy and possibly complex since behaviours 
observed there may often alternate discontinuously between nonrobustness, 
trivialness, nontrivial (i.e. multiple) periodic orbits and, potentially, chaos. 

One consequence of this observation is that, when searching for a model, the 
analysis of the successive models visited with the heuristic �± applied with human 
interaction or not �± may provide interesting models that the final result might have 
missed, or lost. This observation can thus be turned into an informal rule when 
applying PoMoS and GloMo algorithms to time series. To reach a satisfying model, 
the successive suboptimal models progressively visited by the heuristic can be 
considered individually by using GloMo and checked one by one for their robustness 
and non trivialness. 

When a global model is retrieved from one observed time series, it is well 
known that the original dynamics is not always precisely identified. Indeed, the 
dynamics identified is often shifted in the bifurcation diagram. Among various 
possible causes of this shift (sampling of the vector field in the phase space, 
parameters identification process, level of noise, quality of the model, etc.), one is the 
observability of the system from the measured variable ([35], see Section 4.1). 
Practically, once a global model is obtained, one simple way to overpass this 
difficulty consists of �W�X�Q�L�Q�J�� �R�Q�H�� �R�I�� �W�K�H�� �P�R�G�H�O�¶�V�� �S�D�U�D�P�H�W�H�U���� �7�K�L�V�� �Z�D�V�� �D�S�S�O�L�H�G��
systematically here to the models obtained from the three systems taken as a 
benchmark in order to evaluate their ability to represent the original dynamics and, 
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when useful, to discriminate among the various models obtained. Note that the 
algebraic formulation of all the global models obtained in the present analysis is 
presented in [36]. 

 

3.5 Validation 
 
Once a model is obtained, a validation should be performed. Without applying 

model validation, only the presence of a deterministic component in the underlying 
dynamics can be reliably claimed. To validate a chaotic model, one efficient approach 
consists in comparing the first return map obtained from the model (that is the pattern 
generated by plotting the coordinates Rn of the nth visiting points of a Poincaré 
section as a function of the coordinates Rn+1 of the n + 1st returning visits) to the one 
reconstructed from the original signal. In practice, this requires to appropriately 
choose a Poincaré section which is not always an easy task when dealing with noisy 
data, jittery behaviours, complex structures, etc. For this reason, a precise description 
of each of the Poincaré sections should be always provided. The definition of all the 
sections and coordinate systems used in the present analysis is unambiguously 
provided in Table 2. Several levels of validation can be reached depending on the 
quality of the data and on the complexity of dynamics. (a) In the best case, when the 
dynamics is precisely retrieved, the shape of the first return maps (one obtained from 
the original data set, another one from the global model) should match. If so, an 
analysis of the branches�¶ correspondence and of the or�E�L�W�V�¶�� �U�H�F�X�U�U�H�Q�F�H may be 
performed to verify the �D�W�W�U�D�F�W�R�U�¶�V��structure. Such a procedure will be described 
hereafter. Note that a comparison of the bifurcation diagrams may also be applied 
since it is likely to be a very strong validation technique (see [30]). However, such a 
procedure may be applied only when the original system is known, which is generally 
not the case with global modeling. (b) If the structure of the �J�O�R�E�D�O���P�R�G�H�O�¶�V��attractor is 
correct but the dynamical regime of the original behaviour poorly identified, the same 
type of pattern will be obtained from data and model (same number and type of 
branches) but with less developed dynamics (or eventually more, but from our 
experience this is more rare). (c) If the topology is partly lost (e.g., less/more branches 
appear on the first return map, �H�Y�H�Q�� �D�I�W�H�U�� �W�X�Q�L�Q�J�� �W�K�H�� �P�R�G�H�O�¶�V�� �S�D�U�D�P�H�W�H�U), it is most 
probable that the system of equation retrieved is not equivalent to the original system, 
but similar only. (d) Finally, if no pattern can be clearly compared, only the presence 
of a deterministic component underlying the dynamics can be reliably conclusive. 

In the best case mentioned above �± case (a) corresponding to a quite good 
matching of the first return maps �± a refined level of validation may be performed. 
Indeed, various degrees of reliability can be distinguished inside this former case. In a 
chaotic context, the precise validation of a model is considered to be a difficult task 
[5]. Indeed, due to the sensitivity to the initial conditions, predictions can be 
performed over relatively short horizons only. As a result, model validation over long 
time windows becomes more difficult. However, the existence of an attractor requires 
the dynamic to be ergodic and stationary; therefore, although the trajectory might be 
unpredictable, the attractor�¶�V�� �V�W�U�X�F�W�X�U�H should not vary in time and its statistical 
properties should remain identical. Validation can thus be based on the statistical 
properties of the attractor. And to go farther �± with the aim to investigate global 
models�¶��reliability in the long term �± validation may be based on the statistical 
properties of the populations of periodic orbits. Since only an imperfect model can be 
expected in a real context, one way to quantify �J�O�R�E�D�O�� �P�R�G�H�O�¶�V��reliability may thus 
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consist in estimating the number of periodic visit of the attractor that can be 
satisfyingly performed before losing the statistical properties of the original attractor. 
An iterative procedure is thus established in order to successively check model�¶�V��
reliability after 0, 1, 2, .. n periodic visits of the attractor. At the 0th iteration step, the 
comparison is static (it relates to the 1-symbol-length sequences), and thus basically 
allows for verifying that the modeled manifold has the same number of branch as the 
original data set. In practice, this step can be performed by comparing the distribution 
of the orbits. At the 1st iteration step, the comparison allows verifying that the same 
branch connexions are in presence within the original and the modelled manifolds. 
This can be checked by comparing the transition matrices (matrix providing the link 
between one symbol to another, thus relating to a 2-symbol length sequence). At 
larger iteration steps, the comparison will allow refining the (long-term) validation of 
the model. For the nth iteration step ( 2�tn ), validation will be performed by 
comparing the correspondence of the (n+1)-symbol lengths sequences. In practice, 
such validation procedure can be applied iteratively, increasin�J���W�K�H���V�H�T�X�H�Q�F�H�¶�V���O�H�Q�J�W�K��
one by one �X�Q�W�L�O�� �W�K�H�� �F�R�U�U�H�V�S�R�Q�G�H�Q�F�H�� �E�H�W�Z�H�H�Q�� �W�K�H�� �R�U�L�J�L�Q�D�O�� �D�Q�G�� �W�K�H�� �P�R�G�H�O�¶�V�� �G�\�Q�D�P�L�F�V��
become incomplete (correspondence is considered to be incomplete as soon as one �± 
or more �± additional or missing sequence is found). The last iteration for which 
correspondence is fully satisfied corresponds to the horizon for which the structure 
validation can be statistically performed. 

Practically, transition matrices can be estimated easily once a partition of the 
first return map can be performed. The transition matrix aims to characterize here the 
links existing inside the branched manifold underlying the attractor. It can be defined 
in two ways. The Markov transition matrix is defined here as the matrix describing the 
probability to move from one symbol to another, each symbol corresponding to one 
branch of the manifold, which can be determined from first return map�¶�V���S�D�W�W�H�U�Q. The 
binary transition matrix is a simplified view of the Markov transition matrix that 
basically provides the existence or the nonexistence of the same link. In practice, the 
binary transition matrix can be directly deduced from the Markov transition matrix by 
replacing nonzero values by one and keeping the zero values as so. Note that a more 
detailed description of the branched manifold may also be performed at this step, by 
depicting the rotations and the intertwining of the branches. This could be done 
through a complete topological analysis [3-4] and may allow for fully checking the 
�D�W�W�U�D�F�W�R�U�¶�V�� �V�W�U�X�F�W�X�U�H. However, since ba�V�H�G�� �R�Q�� �D�� �T�X�D�O�L�W�D�W�L�Y�H�� �G�H�V�F�U�L�S�W�L�R�Q�� �R�I�� �W�K�H�� �I�O�R�Z�¶�V��
structure, a topological analysis will not enable checking the accuracy of the model 
over a time period longer than one periodic visit of the attractor. For long-term 
validation, an approach based on Markov transition matrix should be preferred. 

The comparison of the populations of periodic orbits can be performed by 
comparing the symbols sequence. The following examples are based on an alphabet of 
four symbols (0, 1, 2, and 3). For the 1-symbol-length sequences, the comparison 
directly results from the presence �± or the absence �± of a branch existing in the 
original dynamics; as an example, the percentage of correspondence will be 100% if 
all the branches are retrieved, 75% if three branches are retrieved only, and so on. For 
2-symbol-long sequences, this correspondence can be directly deduced from the 
binary transition matrix. An alphabet of four symbols leads to a 4 × 4 terms matrix, if 
the binary transition matrix �R�I���W�K�H���R�U�L�J�L�Q�D�O�¶�V���G�\�Q�D�P�L�F�V equals the one corresponding to 
the global model, then the correspondence is 100%; if one term differs between those 
matrices, correspondence is 93.75% and so on. For 3-symbol-length sequences and 
beyond this correspondence can be deduced from the number of common sequences 
retrieved in both original and modeled dynamics. The longer the symbol sequences 
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can be retrieved, the more accurate can be considered the model. These analyses were 
performed for each of the models obtained in this work (except when the partition of 
the first return map was not possible). The (Markov and binary) transition matrices 
are all provided in [36]. The boundary limits used to perform the �V�\�P�E�R�O�V�¶��partition 
are provided in Table 3 for each original data set and model. The ability of the global 
models�¶ dynamics to represent the original one is also provided as a percentage of 
retrieved sequences for sequences of 1-symbol to 6-symbol lengths. In practice, an 
iteration is considered to be validated when correspondence strictly equals 100%. 

 

4 Data 
 
Three applicative cases are considered as benchmarks. The first case is purely 

theoretic. The second case is derived from measurements made under experimental 
conditions. The last case is taken from the observation of a real environmental system 
obtained from satellite remote sensing. 

 

4.1 Rössler system 
 
The Rössler system [37] is an interesting case to study since its three variables 

exhibit very different levels of observability of the underlying dynamics [35]. It is a 
low-dimensional system defined as follows: 
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Synthetic time series of variables 1x , 2x , and 3x  were generated by integrating 

these equations with control parameters �� �� �� ��.4.,2,520.0,, � cba  corresponding to the 
phase noncoherent regime characterized by fast oscillations around an external fixed 
point. Resulting time series are plotted in Figure 2. The reformulation of the system in 
a derivative form (Eq. 3) is obtained from the following transformation: 
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When P�I  is invertible, the exact model function �� ��nXXXF ,..,, 21  of the 

canonical formulation (Eq. 3) can be obtained analytically [29]. For the Rössler 
system, solutions have been given in [11]. For the variable 2x , the function is a 
second degree polynomial, whereas for 1x  and 3x , functions are rational: 
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Level of observability can vary from one variable to another. Basically, a system 

is fully observable from one given variable if the full state of the system can be 
retrieved from it. However, in practice, it was shown that observability could vary by 
degree and an observability coefficient was introduced [35]. Practically, observability 
can be estimated from the Lie derivatives since it highly depends on the invertibility 
of P�I . The classification obtained for the Rössler system shows that the variables can 
be ranked according to the decreasing degree of observability as follows: 

312 xxx ���� . From a modeling point of view, the observability coefficients bring 
important information about the potential difficulty to obtain a model. 

However, this coefficient is only comparative inside one system but cannot be 
applied to compare the observability of variables between several systems [35]. 
Therefore, it cannot be practically used when only one single time series is available. 
Nonetheless, together with other factors such as dynamical perturbations and noisy 
measurements, level of observability may lead to easy, difficult, or impossible 
modeling. Therefore, observability is assuredly one important element to keep in mind 
as far as global modeling is considered. In order to better illustrate the ability of the 
present tools, the phase noncoherent regime was chosen to run the analyses. The 
phase noncoherent regime is characterized by a four-branch attractor that includes the 
presence of two timescales in the dynamics. This makes the conditions much more 
difficult to address when trying to capture the structure of the global mode and to 
reproduce the original dynamics satisfyingly. 

 

4.2 Electrodissolution of copper in phosphoric acid 
 
Many cases of chaotic behaviors have been identified or approached in chemical 

reactions and electrodissolutions. The case of copper electrodissolution in phosphoric 
acid is especially interesting here, since experiments were carefully conducted in the 
1990s from which a global model was obtained and validated using a topological 
approach [14]. The time series used in the present work comes from the same 
experiment. This experiment was designed and studied in �-�R�K�Q���+�X�G�V�R�Q�¶�V���J�U�R�X�S���D�W���W�K�H��
University of Virginia [38]. The experimental setup consists in a copper cylinder 
(8.26 mm in diameter), inserted inside a tube of Teflon (20 mm in diameter) and 
rotating at a moderate speed of 4400 rotations per minute in an 85.7% (by mass) 
solution of phosphoric acid. A water bath was used to maintain the temperature at 
20°C. The moderate value of rotation speed was justified by the necessity to facilitate 
the contact between the reactants on the one hand and to avoid turbulences on the 
other hand [39]. The time evolution of the dissolution current I(t) was measured 
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relatively to a reference electrode, which was separated from the solution by a 
capillary. 

The sampling recording was characterized by large-amplitude oscillations of +/- 
15 mA (see Figure 3) exhibiting a chaotic phase portrait suggested by its first-return 
map. A 3-dimensional model was obtained from the data using the global approach 
[14]. The model function was a fifth -degree polynomial of 52 terms. The object of 
this revisited analysis is to check the ability of our tool to reach a similar or a more 
compact model. 

 

4.3 Vegetation index 
 
The Normalized Difference Vegetation Index (NDVI) product from the Global 

Inventory Modelling and Mapping Study (GIMMS) of the Global Land Cover Facility 
is used in this study [40], during the period 1982�±2008. It is based on the Advanced 
Very High Resolution Radiometer sensor onboard National Oceanic Atmospheric 
Administration satellites. The NDVI is an efficient index for monitoring and modeling 
of grasslands and grain crops in semiarid regions [41-43]. The product used here has a 
10-day sampling and an 8 × 8-km2 resolution. It is corrected from sensor degradation 
over time and also accounts for atmospheric aerosols resulting from the eruptions of 
the El Chichon (in April 1982) and Mt Pinatubo (in June 1991). 

The geographic area of the study is located in northern Morocco. It is defined by 
a window ranging from 6.2°W to 5.4°W in longitude and from 34.6°N to 35.4°N in 
latitude. Although this area includes one part of irrigated crops, rainfed production 
remains the dominant part of the area of study. A selection based on the land cover 
type has been applied to the data in order to obtain a more representative signal. The 
GLC2000 land cover map [44] was used for this purpose. Once the selection applied, 
the signal was spatially aggregated at the scale of the whole province by spatially 
averaging the data in order to reduce the effect of noise. A Savitzky-Golay method 
[45] was then applied with a 14-decade window to filter the resulting time series and 
to compute the successive derivatives with a 3-day resampling. The resulting series is 
shown in Figure 4. 

 
 

5 Results and discussion 
 

5.1 Rössler system 
 
The object of this first application to the Rössler system is to show the efficacy 

of the tool when considering three variables 2x , 1x , and 3x  (see Eq. 4) enabling a 
decreasing level of observability of the original system. For this reason, the three 
variables are considered separately. 

Variable 2x  provides the best observability of the Rössler system which results 
from the linear relation between 2x��  and variables �� ��321 ,, xxx  and can be deduced 
from Eqs. (4) and (5) (see [35]). Moreover, this variable also allows for a formally 
exact and even basic polynomial solution. For this reason, this first analysis can be 
considered as a potentially prohibitive test since it should absolutely be passed. The 
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best model obtained (lower Akaike Information Criterion) from 2x  is obtained for 
maximal polynomial degree q = 2 and corresponds exactly to the polynomial structure 

�� ��nXXXF ,..,, 212  of the formal solution (see Eq. 6). Starting the structure search from 
2� q  or 3� q , it can be obtained by using PoMoS or by simply removing terms of 

smaller contribution one by one. Phase portraits reconstructed from the original data 
�� ��222 ,, xxx ������  are shown in Figure 5a together with the simulation obtained from the 
global models Figures 5c and 5e. Global modeling often produces reliable model 
structures with imperfect parameterization [12]. In the first case, a 9-term model 
corresponding to the canonical solution (Eq. 6) was obtained. The development of its 
dynamical behavior appears fully retrieved as illustrated by the first return maps 
highlighting a quite good matching (Figures 5d). This is confirmed by the transition 
matrices (see Section 1.1 in [36]) and by the analysis of the populations of unstable 
periodic orbits for which symbolic sequences are fully retrieved (100% of the 
sequences match) until 3-symbol-length sequences (see Table 3). None significant 
improvement could be obtained by tuning the parameters by hand (not shown). Such 
improvement may be obtained by developing an optimization approach dedicated to 
this problem. Surprisingly, a 7-term model, thus smaller than the analytic solution (see 
Eq. 6), was also obtained (Figure 5e) by removing terms b and 2X  from 

�� ��nXXXF ,..,, 212 , suggesting a compensative contribution of these two terms. 
However, the phase portrait associated with this model of smaller size appears 
incomplete, and it should be noted that it was not found possible to adjust the 
dynamics to the original behavior by tuning the parameters. The transition matrix of 
this 7-term model is incomplete, leading to a short horizon of confidence 
corresponding to a 1-symbol length sequence only, which is quite poor. Although 
poor in quality, this smaller model is interesting in this analysis. Indeed, it shows that 
an approximate model can lead to a viable attractor (although incompletely reliable) 
of approximate dynamics characterized by a not fully developed (and not fully 
developable) dynamics. This does not prevent from obtaining a numerically robust 
(although approximate) model for the original dynamics. This model of smaller size 
(7 terms instead of the 9 analytic ones) is also interesting since it shows that, by 
oversimplifying the canonical system, some behaviors of the original system cannot 
be retrieved. Indeed, some behaviors provided by the two missing terms are obviously 
lost. This, also illustrates that the principle of parsimony can apply here, but should be 
applied with some caution. There is no reason to choose the smaller solution 
exclusively because it is smaller; but rather, when two solutions exhibit same 
behaviors, then the smaller one should be preferred since there is no reason to choose 
a more complicate one. In the present context, the 9-term model should assuredly be 
preferred. These results also show that a refined validation based on the comparison 
of the populations of periodic orbits can be a powerful approach. 

Variable 1x  provides a moderate observability of the Rössler system. The 
analytical formulation of �� ��nXXXF ,..,, 211  also exists for this variable and is rational 
(see Eq. 6). The moderate level of observability results from the nonlinear relation 
existing between 1x��  and variables �� ��321 ,, xxx  and can be obtained from Eqs. (4) and 
(5) (see [35]). Since only a polynomial formulation for the approximating function F 
is permitted in the present version of the algorithm, an exact formulation of the global 
model cannot be expected. However, despite the presence of rational terms, 
approximate functions of small size can be expected, and were obtained with degree 3 
and 4 polynomials. Phase portraits reconstructed from the original data set and from 
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the global models are given in Figures 6a, 6c, 6f and 6h. None of these models allows 
for an accurate reconstruction of the phase portraits, as confirmed by the first return 
maps (see Figures 6b, 6d, 6g and 6i). At first sight, the best solution is obtained with 
the 13-term model (of maximum degree q = 4) for which three of the four branches of 
the first return map are directly and clearly retrieved (see Figure 6d). A slightly less 
developed dynamics is obtained for the 10-term model (of maximum degree q = 3, 
Figure 6i), whereas the 9-term model (of maximum degree q = 4) poorly exhibits 
three branches, the third one being extremely small (Figure 6g, respectively). The 
�P�R�G�H�O�V�¶���L�Q�D�F�F�X�U�D�F�\���L�V also readable in the transition matrices (see Section 1.2 in [36]). 
By tuning one parameter of each of these three models, it was found that the 10-term 
model was obviously the best approximation (Figure 6j). Indeed, the full development 
of the 13-term (q = 4) �P�R�G�H�O�¶�V�� �G�\�Q�D�P�L�F could only be partial and associated with 
discontinuities in the first return map (Figure 6e); and it was found not possible to 
tune the 9-term model (not shown). Contrarily, although not fully matching the 
original first return map, a gentle development of the dynamics was obtained with the 
10-term model (q = 3), including a small discontinuity only (Figure 6j). Moreover, it 
was found possible to fully retrieve 2-symbol length sequences with this latter (see 
Table 3), whereas sequences of only 1-symbol-length could be retrieved with the 13-
term model and none with the 9-term model (see Section 1.2 also in [36]). 

Finally, variable 3x  provides the lower observability of the Rössler system. This 

low observability results from the nonlinear relations between 3x��  and variables 

�� ��321 ,, xxx  and can be obtained from Eq. (4) and (5) (see [35]). The analytical 

formulation of �� ��nXXXF ,..,, 213  also exists, it is rational (see Eq. 8), and includes 
degree 2 terms at the denominator. From the differential embedding (Fig. 7a), this 
variable exhibits a very spiky structure that makes global modelling especially 
difficult [46]. Several solutions were yet obtained in the past by using an over 
dimensioned 4D formulation [47], by using an ad hoc approach based on fixed points 
coordinates [48], or by using a very constraining structure selection with the Ansatz 
library [46]. However, none direct 3D global model could be obtained yet. This 
difficult context is further complicated here by the use of a phase noncoherent 
dynamics. 

Despite the low observability and the spiky structure, a fifth degree polynomial 
approximation of 30 terms was obtained. Phase portraits and first return maps 
reconstructed from the initial data set and from the model are shown in Figures 7a & 
7c. The chaotic behavior of the global model is confirmed by the first return map 
(Figure 7d). Three branches are obtained which means that a phase noncoherent 
regime is directly retrieved. However, the full development of the chaos is not 
obtained since only three branches appear, the third one being partly truncated. These 
characteristics are directly readable in the transition matrices (see Section 1.3 in [36]). 
A rather gentle development of the chaos was obtained by tuning one of the 
parameters (Figure 7e) giving rise to the full development of the four branches of the 
original data set.  As a result, transition matrices could become reliable and even, a 
full agreement of the symbols sequences is found until 2-symbol length sequences 
(see Table 3). Some imperfections can be noted, however. A fuzzy behavior is visible 
in the first return map, on the left side of the pattern, corresponding to the faster 
oscillations, more difficult to detect. These imperfections are likely to result from the 
especially acid situation characterized by a spiky structure in a context of low 
observability and further complicated by the two timescales of the phase noncoherent 
regime. It is therefore a very convincing result since, at present, no 3-dimensional 
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model could be obtained yet from this difficult variable of the Rössler system without 
using strong structure selection. 

 

5.2 Electrodissolution of copper in Phosphoric acid 
 
The analysis of the time evolution of current intensity measured from the 

experiment introduced in Section 4.2 has led to a 21-term model of maximum 
polynomial degree q = 4. A phase portrait obtained from the measured signal (Figure 
8a) can be compared to the portrait obtained from the model Figure 8c. The retrieved 
model exhibits the same structure. The chaotic behaviour is confirmed in both cases 
from the double-branch pattern of the first return maps (Figures 8b & 8d). A larger 
central hole with a slight shift can however be noted in the model, leading to a poor 
development of the first branch of the first return map, and it was found not possible 
to significantly develop the dynamics by manually tuning one of the parameter (not 
shown). The direct consequence of the poor development of the dynamics is easily 
readable in the transition matrices (see Section 2 in [36]). 

Therefore, another solution (21-p.*) obtained by considering a shifted time series 
of longer length (see Figure 3) was also considered. For this reason, the two models 
have the same structure and only their parameterization differs. The second model 
exhibits a limit cycle (see Figure 8e) very close to a period-5 cycle as depicted in the 
first return map (see Figure 8f). Although less chaotic with its initial parameterization, 
this other model could be efficiently tuned up, leading to a developed chaos close to 
the original dynamics (Figure 8g). The transition matrix of the tuned version of this 
second model (21-p.* opt) is in agreement with the one obtained from the original 
signal. Further, symbol sequences resulting from this latter model are in agreement 
with the original sequences until 6-symbol-length sequences. 

When only one single variable is available, the observability coefficients of the 
system cannot be estimated. However, it can be noted that, unlike Rössler- 2x  or 
Rössler- 1x  and similar to Rössler- 3x , a model was hard to find for this application, 
and only a high degree polynomial solution could be obtained (q = 4). Moreover, as 
found with Rössler- 3x , a high sensitivity to the time series�¶���Z�L�Q�G�R�Z used to identify 
the model was noted. Such sensitivity �W�R���W�K�H���W�L�P�H���V�H�U�L�H�V�¶���V�L�]�H��is a common feature of 
global modeling. This sensitivity results from the identification process which is a 
diff icult task in a context of chaotic behavior. Indeed, when more data is available to 
identify the parameterization, a more precise parameterization may be expected. 
Unfortunately, more data will also lead to more complex shapes of the objective 
function. In the case of a chaotic behavior, the complexity of this shape will rapidly 
tend to fractal structures that simple identification approaches may not be able to 
overtake optimally. The difficulties in obtaining a satisfying model are likely to arise 
from the complex shape of the objective function complicated here by the 
intermediate or poor level of observability of the system as considered from the 
measurement of current intensity. This assumption may be investigated interestingly 
by reconsidering the dynamics in another experimental configuration which would 
involve several electrodes simultaneously, for comparison; or by considering other 
variables of the system. 
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5.3 Dynamics of rainfed wheat 
 
The time evolution of the vegetation index (Figure 4) introduced in Section 4.3 

has been analyzed, leading to one 15-term model. The phase portraits obtained from 
the original data set and from the retrieved model are shown in Figures 9a and 9b. 
Some differences are noticeable that include the filtering of short timescale events 
observed in the original portrait that may result from transitory effects associated with 
meteorological perturbations or to spatially differentiated behaviors of the region of 
study. Another emphasized difference comes from the higher density of trajectories 
observed in the center hole of the simulated trajectory, whereas the original phase 
portrait clearly exhibits an empty hole. Such differences may result from a suboptimal 
parameterization. Indeed, it is well known that global modeling may lead to a good 
structure (i.e. equivalent to the original one) but to an inaccurate identification of the 
regime: The attractor is generally not located exactly at the same place in a bifurcation 
diagram of the original system [12]. Despite the differences noticed, obtaining such a 
model is quite an important point since it clearly shows the robustness of the 
algorithm to get a satisfactory model from a rather jittery time series. It is also a quite 
important result from a thematic point of view since it brings a strong evidence of a 
deterministic component underlying the signal of rainfed wheat observed from space. 
More generally, to our knowledge, there was previously no such strong element of 
evidence of deterministic behavior underlying the dynamics of vegetation. 

The resulting attractor exhibits a complex structure, for which no simple first 
return map is accessible. Its unstable behavior is confirmed by a clearly positive first 
Lyapunov exponent 02.090.11 �r��� �O  [1]. These analyses provide a strong argument 
for a chaotic behavior in which instability is guaranteed by the first Lyapunov 
exponents and where determinism is ensured by obtaining the (deterministic) global 
model. The more in-depth analysis of the attractor will require a dedicated study. 

 

6 Conclusions 
 
PoMoS and GloMo, a couple of algorithms developed under R language and 

dedicated to global modeling, is presented and tested in this work. The tools are 
applied to three different systems in order to show their capacity in providing 
satisfying models of small size from single time series. Models of smaller size are 
preferred for two reasons. One reason is to avoid redundant terms that may bias the 
correspondence with the original dynamics. Indeed, it is well known that the addition 
of one single term in a dynamical system may completely change �W�K�H�� �V�\�V�W�H�P�¶�V 
behavior. Another reason is to remove spurious terms that may foster dynamical or 
numerical instabilities and potentially lead to a short- or long-term divergence. 
Obtaining a model of small size is thus a powerful sign of strength of the model. 
However, oversimplification should be avoided also. Nonetheless, from our 
experience, obtaining oversimplified models from global modeling appears rarer and 
may be considered with less apprehension since it may lead to simplified but more 
robust dynamics rather than spurious or numerically unstable ones. In other words, 
but depending on the context of application, oversimplification may lead to an 
interesting solution by default, especially if no better solution can be found. 

Various levels of validation are distinguished in the paper, and a validation 
method accounting for long-term dynamical behaviors is introduced. These various 
levels of validation were tested onto the global models obtained with the two 
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algorithms with the aim to have a significant overview of the results. The capacity of 
the two algorithms was thus evaluated not only based on their ability to reach viable 
models, but also on the reliability of the models obtained, reliability being evaluated 
with a refined validation technique, when possible. The quality of a model was 
estimated in terms of phase portrait, first return map, transition matrix, and population 
of unstable periodic orbits. The model�¶�V size was also considered as an interesting 
criterion for comparison to the analytic or previously published solutions. The ability 
of the tool was first tested on the Rössler system, which variables exhibit various 
levels of difficul ty ranging from very low to high when attempting a global modeling. 
The algorithms were also tested on two sets of real observations. One set relates to the 
electrodissolution of copper in phosphoric acid, which data was obtained under 
experimental conditions. Another set concerns the dynamics of rainfed wheat under 
semiarid climatic conditions observed by satellite remote sensing over northern 
Morocco. 

It was possible to get a global model for each of the cases considered in the 
study. Except for the dynamics of rainfed wheat, all the levels of validation could be 
achieved (often after applying an a posteriori parameter tuning): (a) Determinism was 
shown by obtaining a global model; (b) the first return map�¶�V�� �S�D�W�W�H�U�Q�V�� �F�R�X�O�G�� �E�H��
satisfyingly compared to the one reconstructed from the original data set (the same 
number of branches could be obtained); (c) the same development of the dynamics 
�F�R�X�O�G�� �E�H�� �F�K�H�F�N�H�G�� �T�X�D�O�L�W�D�W�L�Y�H�O�\�� ���Y�H�U�L�I�\�L�Q�J�� �W�K�H�� �E�U�D�Q�F�K�H�V�¶�� �O�H�Q�J�W�K�V������(d) the transition 
matrices could be satisfyingly compared; and (e) the symbols sequences could be 
checked (until 2-symbol-length sequences, at least). These models are more 
parsimonious compared to the previously published results. Surprisingly, although not 
fully reliable, a 7-term model was obtained for the first variable of the Rössler system 
while a formal solution of nine monomials is ideally known. The model obtained from 
the time evolution of a current measured in an experiment of electrodissotion also has 
a smaller size (21 parameters) than the previously published model of 52 parameters. 
The efficiency of the PoMoS and GloMo algorithms is powerfully exhibited by 
obtaining a 3-dimensional global model from the last variable of the Rössler system 
(noted x3 in the present work), which is characterized by a low observability. This 
result is especially significant since no 3D model could be directly obtained before, 
without using a very constraining selection technique or a priori knowledge. 

Validation could not be performed onto the model of rainfed wheat due to the 
jittery structure of the phase portrait resulting from the original signal which probably 
results from the noisy conditions. Nonetheless, these new tools have permitted the 
extraction of a deterministic component from the signal of vegetation index observed 
from space. This is an important result since, to our knowledge, the deterministic 
behavior has never been argued with such a strong element of evidence for any type 
of vegetation. This is also important since determinism is one of the two essential 
conditions for chaos. Since the dynamics captured from the vegetation index exhibits 
a relatively high level of complexity which is characterized by a chaotic regime, it 
offers a strong evidence for a chaotic behavior of rainfed wheat in northern Morocco. 

Finally, thanks to the two algorithms PoMoS and GloMo, it is shown that 
dynamics of quite complex behaviors can be modeled by global models of canonical 
form and of quite small size: 10 terms only for the Rössler-x1 variable, 30 terms only 
for the Rössler-x3 variable, 21 terms for the electrodissolution of copper in phosphoric 
acid; and 15 terms for the dynamics of rainfed wheat in northern Morocco. This latter 
model also suggests that relatively complex dynamical structures can be modeled with 
canonical formulation of rather small size. Developments of global modeling were 
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initiated in the early 1990s; the present results contribute to provide quite encouraging 
new illustrations of the potential of the approach. 

 

7 Appendix A 
 
Two main optimization criteria are provided in PoMoS. Each is expressed as the 

sum of two terms, one term evaluating the maximum likelihood, another term 
corresponding to the model size defined here �D�V�� �W�K�H�� �P�R�G�H�O�¶�V��number of parameter. 
These two terms are in competition since maximum likelihood invariably leads to 
�P�D�[�L�P�L�]�H���W�K�H���P�R�G�H�O�V�¶���V�L�]�H. The Akaike Information Criterion AICC  [49] is defined as 
follows: 

 
�� �� kLC 2ln2AIC �����          (9) 

 
where L is the likelihood and k is the number of parameters independently adjusted 
within the model. In practice, L is estimated from the residuals of the least-squares 
fitting. The Bayesian Information Criterion BICC  [50] allows for a stronger 
�S�H�Q�D�O�L�]�D�W�L�R�Q���R�I���W�K�H���P�R�G�H�O�¶�V���V�L�]�H���Whrough the following expression: 

 
�� �� �� ��0

BIC lnln2 nkLC �����         (10) 
 
where 0n  is the sample size (corresponding to the size of the time series). 

The theoretical backgrounds of the two criteria are different since AICC  aims at 
finding a satisfying trade-off between likelihood and model size, whereas BICC  aims 
at identifying the true or quasitrue model. Their efficacy can vary drastically 
depending on factors including the size of the sample, the presence of the true model 
in the model ensemble, and the size of this model ensemble. In practice, due to the 
stronger penalization of the model size in the BICC  criterion, BICC  may lead to sub-
dimensioned models, whereas AICC  will generally lead to over-dimensioned ones. 
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Tables 
 
 
 Analytic 

solution  
Polynomial 

solution 
 Rational solution  Previous 

3D-models 
 PoMoS & GloMo 

 
 existence # terms  Nominator Denominator  # terms  # terms degree 
    degree degree      
Rössler-x2 yes 9  2 0  9  7 2 
         9 2 
Rössler-x1 yes -  2 1  33  10 3 
         9 4 
         13 4 
Rössler-x3 yes -  2 2  none*  30 5 
I(t) no -  - -  52  21 4 
v(t) no -  - -  none  15 3 

 
Table 1: Synthetic presentation of the previously published and presently obtained 
global models in terms of �Q�X�P�E�H�U���R�I���P�R�Q�R�P�L�D�O���L�Q���W�K�H���D�Q�D�O�\�W�L�F���V�R�O�X�W�L�R�Q�����Q�R�P�L�Q�D�W�R�U�¶�V��
�D�Q�G���G�H�Q�R�P�L�Q�D�W�R�U�¶�V��maximum polynomial degree. 
 
*  None direct 3D global model could be obtained yet. However, solutions could be 
obtained by over dimensioning (4D) the model formulation [47], by using an ad hoc 
approach based on fixed points coordinates [48], or by using the very constraining 
Ansatz library [46]. 
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Variable Model Poincaré section 1st return 

  reference normal  abscissa ordinate selected  �P�D�S�¶�V��
axis 

  point vector n vector va vector vb zone  

Rössler-x2 origin. [-0.6; 0; 0] [-0.447; -0.894; 0.] [0.003; -0.001; 1.] [0.894; -0.447; -0.003] Rb > -0.3 vb 

 9-p. �³ �³ �³ �³ �³ �³ 

 7-p. �³ �³ �³ �³ Rb > +0.1 �³ 

Rössler-x1 origin. [0.; 0.; 0.] [-0.050; 0.999; 0.] [0.998; 0.050; 0.] [-0.019; -0.001; 1.] Ra < +0.3 vb 

 13-p. �³ �³ �³ �³ �³ �³ 

 13-p.opt. �³ �³ �³ �³ Ra < +0.2 �³ 

 9-p. �³ �³ �³ �³ Ra < +0.3 �³ 

 origin. [0.; 0.; 0.] [1.; 0.; 0.] [0.; 0.031; 1.] [0.; 1.; -0.031] Rb < 120 �³ 

 10-p. �³ �³ �³ �³ �³ �³ 

 10-p.opt �³ �³ �³ �³ Rb < 100 �³ 

Rössler-x3 origin. [0.; 0.; 0.] [0.; 1; 0.] [-1.; 0.; 0.002] [-0.002; 0.; -1.] Ra > -0.6 va 

 30-p. �³ �³ �³ �³ Ra > -0.49 �³ 

 30-p.opt �³ �³ �³ �³ �³ �³ 

I(t) origin. [44.2; 4; 0] [1; 0.020; 0] [-0.003; 0.128; 0.992] [-0.02; 0.991; -0.128] Ra > 0. va 

 21-p. �³ �³ �³ �³ - �³ 

 21-p.* �³ �³ �³ �³ - �³ 

 21-p.* opt �³ �³ �³ �³ - �³ 

 
Table 2: Definition of the Poincaré sections used to construct the first return maps of 
the original and global models presented in Figures 5, 6, 7 and 8. The Cartesian 
coordinates system �� ��baO vvn ,,,  used for each Poincaré section are provided, where 

n is the normal to the Poincaré section. The direction ( av  or bv ) chosen to construct 
the first return map is specified. Restrictions applied to the resulting plane are also 
provided, coordinates aR  and bR  referring to directions av  and bv , respectively.
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   Boundaries (along Ra or b)  % of sequence retrieved Symbols Maximum 

 Model  between symbols  �V�H�T�X�H�Q�F�H�¶�V���O�H�Q�J�W�K present / length 

   0 & 1 1 & 2 2 & 3  1 2 3 4 5 6  retrieved validated 
sequence 

Rössler-x2 origin.  1.17 2.42 2.99         {0; 1; 2; 3}  

 9-p.  1.19 2.41 3.01  100. 100. 100. 76.2 55.3 47.8  {0; 1; 2; 3} 3 

 7-p.  1.51 2.66 3.09  100. 93.8 37.5 - - -  {0; 1; 2; 3} 1 

Rössler-x1 origin.  66.0 118.5 142.5         {0; 1; 2; 3}  

 13-p.  63.0 117.7     -  75 50 - - - -  {0; 1; 2} 0 

 13-p.opt.  64.0 119.0 144.0  100. 93.7 84.3 53.9 - -  {0; 1; 2; 3} 1 

 9-p.     - 127.5 152.8  75 50 - - - -  {1; 2; (3)} 0 

 origin.  12.4 23.3 28.3         {0; 1; 2; 3}  

 10-p.  12.1 21.3     -  75 50 - - - -  {0; 1; 2} 0 

 10-p.opt  12.0 22.8 26.8  100. 100. 98.4 90.6 53.5 -  {0; 1; 2; 3} 2 

Rössler-x3 origin.  -0.36 -0.28 -0.26         {0; 1; 2; 3}  

 30-p.  -0.36 -0.20     -  75 50 - - - -  {0; 1} 0 

 30-p.opt  -0.36 -0.19 -0.16  100. 100. 96.9 90.6 56.25 -  {0; 1; 2; 3} 2 

I(t) origin.  330           {0; 1}  

 21-p.  590    100. 75. - - - -  {0; 1} 1 

 21-p.*  529    100. 75. - - - -  {0; 1} 1 

 21-p.* opt  490    100. 100. 100. 100. 100. 100.  {0; 1} 6 

 
Table 3: Boundary limits used when partitioning the first return maps, % of sequences 
retrieved by the model for symbol sequence of 1�± to 6�±symbol length sequences, 
symbols retrieved and length of the larger symbol sequences that could be validated.



 25 

Figure Caption  (co lor online only)  
 
Figure 1: Operating diagram of PoMoS algorithm: (1) a set of N0 initial models is 
randomly generated and put in basket 1; (2) if the number of model is large enough (N 
> N1), models are tested based on one chosen criterion (see the Appendix); (3) best 
models are selected, whereas bad ones are rejected into basket 2; (4) the best model is 
used to generate neighboring models (a model distance is defined for this purpose) 
which are added into basket 1; (5) stages (2) to (4) are repeated until the number of 
model in basket 1 becomes too low (�1���”���11); (6) the model research is thus stopped. 
 
Figure 2: Original signal from the Rössler system for variables 1x   (top), 2x   (middle) 
and 3x  (bottom). 
 
Figure 3: Selected windows of an experimental signal of current intensity �� ��tI  
measured in an experiment of electrodissolution of copper in phosphoric acid obtained 
�L�Q���-�R�K�Q���+�X�G�V�R�Q�¶�V���J�U�R�X�S��[38]. The complete data set is available on the atomosyd Web 
site (http://www.atomosyd.net/). 
 
Figure 4: Vegetation index signal �� ��tv  of rainfed wheat. The time series was derived 
from the NDVI product provided by the GIMMS [40] at 8 × 8-km2 resolution and 10-
day sampling. It was obtained by averaging the signal spatially over a window located 
in northern Morroco and by applying a Savitzky-Golay filtering (details are given in 
the text). 
 
Figure 5: Differential embeddings (left panels) and first return maps (right panels) 
reconstructed from the original variable 2x  of the Rössler system (top panels) and 
from two global models obtained from it: one 9-term model (middle panels) and one 
7-term model (bottom panels). 
 
Figure 6: Differential embeddings (left panels) and first return maps (middle column 
and right column panels) reconstructed from the original variable 1x  of the Rössler 
system (top panels) and from three global models obtained from it: one fourth degree 
13-term model (second line panels), one fourth degree 9-term model (third line 
panels), and one third degree 10-term model (bottom line panels). The first return 
maps reconstructed from the models directly obtained with GloMo algorithm are 
plotted in the middle column panels. The first return maps obtained after tuning one of 
the parameters are plotted (when available) in the right column panels. 
 
Figure 7: Differential embeddings (left panels) and first return maps (middle column 
and right column panels) reconstructed from the original variable 3x  of the Rössler 
system (top panels) and from the fifth degree 30-term global model obtained with 
GloMo (bottom panels). In the bottom panels, the middle panel corresponds to the 
first return map of the 30-term model directly obtained from GloMo algorithm, 
whereas the right panel corresponds to the modified version of the same model 
obtained by tuning one parameter. 
 
Figure 8: Differential embeddings (left panels) and first return maps (middle and right 
panels) reconstructed from the original current intensity I(t) measured from an 

http://www.atomosyd.net/
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experience of copper electrodissolution (top panel) and from the two global models 
obtained from it. Both have the same structure: fourth degree 21-term models. The 
parameterization of the first one (middle panel) was obtained from the shorter time 
series presented in Figure 3; and from the longer time series for the second one 
(bottom panel). First return maps directly obtained by applying GloMo algorithm are 
plotted in the middle column panels. First return maps obtained after tuning one 
parameter of the second model is plotted in the right column panel. 
 
 
Figure 9: Differential embeddings reconstructed from the original vegetation index 
v(t) (left panel) and from the third degree 15-term global model(right panel). 
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