Biological activities of triterpenoids from Poraqueiba sericea stems
Ilhem Zebiri, Mohamed Haddad, Laurent Duca, Michel Sauvain, Lucie Paloque, Billy Cabanillas, Elsa Rengifo, Jean-Bernard Behr, Laurence Voutquenne-Nazabadioko

To cite this version:
Ilhem Zebiri, Mohamed Haddad, Laurent Duca, Michel Sauvain, Lucie Paloque, et al.. Biological activities of triterpenoids from Poraqueiba sericea stems. Natural Product Research, Taylor Francis, 2016, <10.1080/14786419.2016.1241998>. <ird-01382564>

HAL Id: ird-01382564
http://hal.ird.fr/ird-01382564
Submitted on 17 Oct 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SHORT COMMUNICATION

Biological activities of triterpenoids from *Poraqueiba sericea* stems

Ilhem Zebiri\(^a\), Mohamed Haddad\(^b\), Laurent Duca\(^c\), Michel Sauvain\(^b\), Lucie Paloque\(^d,e\), Billy Cabanillas\(^f\), Elsa Rengifo\(^f\), Jean-Bernard Behr\(^a\) and Laurence Voutquenne-Nazabadioko\(^a\)

\(^a\)Institut de Chimie Moléculaire de Reims UMR 7312 CNRS, Université de Reims, Reims, France; \(^b\)UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France; \(^c\)Unité Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UMR CNRS 7369, Université de Reims, Reims, France; \(^d\)LCC (Laboratoire de Chimie de Coordonnation), CNRS, Toulouse, France; \(^e\)Université de Toulouse, UPS, INPT, Toulouse, France; \(^f\)Instituto de Investigación de la Amazonía Peruana (IIAP), Iquitos, Perú

ABSTRACT

Eleven compounds were isolated from *Poraqueiba sericea* stems and identified as niga-ichigoside-F1 (1), trachelosperoside B1 (2), 4-epi-niga-ichigoside (7), 19α-hydroxyasiatic acid (3), myrianthic acid (4), hyptatic acid (5), trachelosperogenin B (6), arjunolic acid (8), and trachelosperogenin E (9), secologanoside (10) and secoxyloganin (11). Compounds 1–11 were tested for their antileishmanial activities against *Leishmania infantum* promastigotes, 1–6 and 8–11 were tested for their cytotoxic activities on fibroblasts, 1–3, 5–6, 8–11 were evaluated for their anti-elastase and anti-acetylcholinesterase assays activities by a spectrophotometric method and 1–2, 5 and 7–10 were tested using bioautography for their β-glucosidase. No antileishmanial activity was detected; compounds 1, 2 and 11 showed a moderate cytotoxic activity with IC\(_{50}\) 17.7, 20.5 and 10.9 µg/mL, respectively; compounds 2, 8, 9 and 10 gave a percentage of inhibition ranging from 13 to 16% (at 50 µg/mL) and compounds 1 and 2 showed an inhibition zone on β-glucosidase and anti-acetylcholinesterase assays.

CONTACT
Mohamed Haddad \(\text{mohamed.haddad@ird.fr}\)

Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/14786419.2016.1241998.
1. Introduction

The genus *Poraqueiba* (Icacinaceae) is composed of three species: *Poraqueiba sericea* Tulp., *Poraqueiba guianensis* Aubl. and *Poraqueiba paraensis* Ducke, large trees growing exclusively in the Amazon. A literature survey showed very few reports on *P. sericea* Tulp, a tree grown initially by Native Americans and propagated by them in Bolivia, Brazil and Peru. This tree is cultivated in Peru for its edible fruit (named Umari in Peru), with a pleasant and a characteristic taste, consumed as such, or accompanied by cassava. It is also an ingredient in the soft drink composition called ‘Cahuana’ with tapioca starch. The oil extracted industrially from the mesocarp is a raw material for this region (food and frying). In industry, the Umari flour replaces wheat flour in the production of adhesives for laminated wood. The only medicinal use concerns the leaves that are used by some tribes as infusion to treat themselves against dysentery (Huamán et al. 2001). Phytochemical investigation of Icacinaceae has resulted in the isolation of indolomonoterpene alkaloids (Aiyama et al. 1988; Pirillo et al. 1995; Wu et al. 1995, 1996; Srinivas & Das 2003; Khan et al. 2013), flavonoids (Manga et al. 2013), diterpenes (On’okoko et al. 1985), pentacyclic triterpenes (Calderón et al. 2013) and monoterpenes iridoids (Braga de Oliveira 1995). The phytochemical study of *P. guianensis* showed the presence of the triterpene icacinic acid, two emmotine derivatives (Braga de Oliveira 1995), one lignan (Goulart et al. 1994) and a secologanoside (Goulart 1983). Until now, there is no phytochemical or biological study reported for *Poraqueiba sericea* stems. Indeed, only the oil extracted from the fruit has been the subject of study for the characterisation of these fatty acids (Silva 1997).

2. Results and discussion

The structures of the isolated compounds were determined mainly by means of extensive spectroscopic methods including 1D (1H and 13C NMR), 2D NMR (COSY, ROESY, HSQC, and HMBC) and HR-ESIMS, and by comparison with reported data in the related literature. They are identified as: niga-ichigoside-F1 (1) (Bowen-Forbes et al. 2009), trachelosperoside B1 (2) (Bowen-Forbes et al. 2009), 19α-hydroxysaiatic acid (3) (Bowen-Forbes et al. 2009), myrianthic acid (4) (Hirai et al. 2000), hyptatic acid (5) (Bowen-Forbes et al. 2009), trachelosperogenin B (6) (Abe & Yamauchi 1987), 4-epi-niga-ichigoside (7) and arjunolic acid (8) (Bowen-Forbes et al. 2009), trachelosperogenin E (9) (Nasser et al. 2006), secologanoside (10) and sec oxyloganin (11) (Calis & Sticher 1984) (Figure 1). Compounds 1–11 were tested for their antileishmanial activity against *Leishmania infantum* promastigotes but no activity was detected (at 100, 10, 1 and 0.1 μg/mL) (Sosa et al. 2016). Compounds 1–6 and 8–11 were also tested (concentration range of 10, 7.5, 5, 2.5 and 1 μg/mL) for their cytotoxicity against human dermal fibroblasts using a MTT assay. Compounds 1, 2 and 11 showed a very moderate activity with 19.5, 24.6 and 22.4% cell death, respectively, at 10 mg/mL (Table 1) and IC50 values of 17.7, 20.5 and 10.9 μg/mL, respectively. The positive control, α-hederin, possessed 71.3% cell death at the same concentration and an IC50 of 3.5 μg/mL. Compounds 1–3, 5–6, 8–11 were evaluated for their anti-elastase activity and four compounds (2, 8–10) gave a low inhibition percentage ranging from 13 to 16% at 50 μg/mL (Table 1), twofold less active than ursolic acid used as a standard (31% inhibition) corresponding to IC50 values of 24.5, 35.9, 31.0 and 42.0 μM, respectively (10.5 μM for ursolic acid). These compounds should be tested on other elastases because the activities of these enzymes deferred based on their
origin. Therefore, we could have a greater activity on other elastase types. Compounds 1–2, 5 and 7–10 were tested using bioautography (Camag, Switzerland) for their β-glucosidase and anti-acetylcholinesterase activities at 1 mg/mL (application of 2 μL in 8 mm band length). Only compounds 1 and 2 showed an inhibition zone on the β-glucosidase assay (Substrate: 2-naphthyl-β-glucopyranoside) with an inhibition zone of 11 and 7 mm respectively whereas the positive control, acarbose, showed an inhibition zone of 5 mm only. To verify the detected activity, we used other β and α-glucosidase (0.013 U/mL) tests in vitro for compounds 1 and 2 at 500 μg/mL but no activity was revealed by a spectrometrical quantification of the released p-nitrophenolate at 410 nm. This suggests that the activity detected on bioautography may be due to an excessive concentration and/or to a reaction of the two saponins with the substrate. The anti-acetylcholinesterase (6.66 U/mL) assay was performed using Fast Blue B salt as reagent, 1-naphthyl acetate as substrate and convallatoxin as positive control. Compounds 1 and 2 showed also an inhibition zone of 0.8 and 0.5 mm, respectively, and 0.4 mm for convallatoxin. Till then we could not verify this activity by in vitro tests because we did not have all the required elements.

Figure 1. Chemical structures of compounds 1–11.
Table 1. IC$_{50}$ values and cell (Fibroblasts) death (%) at 10 μg/mL of compounds 1–6 and 8–11 and Elastase inhibition (%), IC$_{50}$ by compounds 1–4, 6 and 8–11.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Elastase inhibition (%)</th>
<th>Cytoxicity assay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μg/mL</td>
<td></td>
</tr>
<tr>
<td>Niga-ishigoside F1 (1)</td>
<td>0.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Trachelosperoside B1 (2)</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>19α-hydroxyasiatic acid (3)</td>
<td>3.0</td>
<td>2.8</td>
</tr>
<tr>
<td>Myrianthic acid (4)</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Hyptatic acid (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachelosperogenin B (6)</td>
<td>3.1</td>
<td>4.9</td>
</tr>
<tr>
<td>Arjunolique acid (8)</td>
<td>4.9</td>
<td>9.8</td>
</tr>
<tr>
<td>Trachelosperogenin E (9)</td>
<td>0</td>
<td>5.5</td>
</tr>
<tr>
<td>Secologanoside (10)</td>
<td>2.6</td>
<td>5.7</td>
</tr>
<tr>
<td>Secoxyloganine (11)</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Ursolic acid</td>
<td>6.4</td>
<td>5.9</td>
</tr>
<tr>
<td>α-hederin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Experimental

See Supplementary material.

4. Conclusion

In this study, three triterpenoids saponins (1, 2, 7), six triterpenes (3–6, 8–9), and two seco-iridoids (10–11) were isolated and identified from P. sericea. Except for the two secologanosides (10–11) (Braga de Oliveira 1995), this is the first report of these triterpenoids in the genus Poraqueiba and the Icacinaceae family. Compounds 10 and 11 were considered as chemotaxonomic markers of Icacinaceae species. The isolated compounds was evaluated for several biological activities to valorise our phytochemical study. Compound 1, 2 and 10 showed moderate cytotoxicity on fibroblasts (IC$_{50}$: 17.7, 20.5 and 10.9 μg/mL respectively) and compounds 2, 8, 9 and 10 showed low antielastase activity with IC$_{50}$ of 24.5, 35.9, 31.0 and 42.0 μM, respectively. On bioautography, compounds 1 and 2 showed significant inhibition zones for anti-β-glucosidase and anti-acetylcholinesterase activities. Compounds 1–11 did not show any antileishmanial activity. This phytochemical and biological investigation helps us to extend the knowledge about the constituents of the unstudied Poraqueiba sericea plant.

Acknowledgements

The authors wish to express thanks to French Minister of Higher Education and Scientific Research for financial support and CNRS, Conseil Regional Champagne Ardenne, Conseil General de la Marne, Ministry of Higher Education and Research (MESR) and EU-programme FEDER to the PlAneT CPER project is gratefully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

