Contrasted land-surface processes along the West African rainfall gradient - Monsoon Multidisciplinary Analysis (AMMA): an integrated project for understanding of the West African climate system and its human dimension

To cite this version:

HAL Id: ird-02153235
http://hal.ird.fr/ird-02153235
Submitted on 12 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
After receipt of your corrections your article will be published initially within the online version of the journal.

PLEASE AIM TO RETURN YOUR CORRECTIONS WITHIN 48 HOURS OF RECEIPT OF YOUR PROOF, THIS WILL ENSURE THAT THERE ARE NO UNNECESSARY DELAYS IN THE PUBLICATION OF YOUR ARTICLE

READ PROOFS CAREFULLY

- Once published online or in print it is not possible to make any further corrections to your article

 - This will be your only chance to correct your proof
 - Please note that the volume and page numbers shown on the proofs are for position only

ANSWER ALL QUERIES ON PROOFS (Queries are attached as the last page of your proof.)

 - List all corrections and send back via e-mail to the production contact as detailed in the covering e-mail, or mark all corrections directly on the proofs and send the scanned copy via e-mail. Please do not send corrections by fax or post

CHECK FIGURES AND TABLES CAREFULLY

 - Check size, numbering, and orientation of figures
 - All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article
 - Review figure legends to ensure that they are complete
 - Check all tables. Review layout, title, and footnotes

COMPLETE COPYRIGHT TRANSFER AGREEMENT (CTA) if you have not already signed one

 - Please send a scanned signed copy with your proofs by e-mail. Your article cannot be published unless we have received the signed CTA

OFFPRINTS

 - Free access to the final PDF offprint or your article will be available via Author Services only. Please therefore sign up for Author Services if you would like to access your article PDF offprint and enjoy the many other benefits the service offers.

Additional reprint and journal issue purchases

 - Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided: http://offprint.cosprinters.com/cos/bw/
 - Corresponding authors are invited to inform their co-authors of the reprint options available.
 - Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permissionsuk@wiley.com
 - For information about ‘Pay-Per-View and Article Select’ click on the following link: http://olabout.wiley.com/WileyCDA/Section/id-404512.html
Contrasted land-surface processes along the West African rainfall gradient

L. Séguis,1* N. Boulain,1,2 B. Cappelaere,1 J.M. Cohard,3 G. Favreau,1 S. Galle,2 A. Guyot,3 P. Hiemaux,4 É. Mougin,4 C. Peugeot,1 D. Ramier,1,5 J. Seghien,1 F. Timouk,6 V. Demarez,6 J. Demarty,1 L. Descroix,3 M. Desloovere,3 M. Grippa,4 F. Guichard,7 B. S., Kamagate,8 L. Kergoat,4 T. Lebel,3 V. Le Dan_tac,5 M. Le Lay,9 S. Massuel10 and V. Trichon11

1HSM, IRD, France
2Climate Change Cluster, UTAS, Australia
3LTHÉ, Grenoble, France
4LATPG, Toulouse, France
5DREILaboratoire Régional de l'Ouest Parisien, Toulouse, France
6CNRM-GAME, Toulouse, France
7Sciences et Gestion de l'Environnement, Abidjan, Ivory Coast
8EDF-DTG, Grenoble, France
9EDF-DTG, Grenoble, France
10UNIVERSITÉ DE RÉGIONAL DE L'OUEST PARISIEN
11ECOLAB, Toulouse, France

*Correspondence to: L. Séguis, HydroSciences Montpellier, Université Montpellier II, CC-MSE, place Eugène Bataillon, 34905 Montpellier cedex, France. E-mail: luc.seguis@ird.fr

Abstract

We review the main results of land-surface studies obtained in the three sites of the long-term observing system AMMA-CATCH. Runoff in the Sahel enhances the variability of energy partitioning between non-infiltrative areas where sensible heat is dominant and infiltrative areas where soil water availability increases the latent flux. In terms of water resources, an increase in runoff over the past 50 years, already reported for the exoreic Sahel, was revealed in the endoreic Sahel. In the Sudanian domain, the subsurface origin of streamflow could explain its decrease over the same period. Copyright © 2010 Royal Meteorological Society

Keywords: energy fluxes; runoff; groundwater; Sahel; Sudanian climate; water resources

1. Introduction

As West Africa is located in the inter-tropical belt, it has a monsoon climate (Laf ere et al., 2011) and is subject to marked seasonal variability. Drought, with relative deficits in precipitation of 25–50%, was widespread in the Sahel (mean annual rainfall 100–700 mm) during the 1970s and 1980s. Wetter biogeographic zones such as the Sudanian (700–1400 mm) and Guinean belts (>1400 mm) were also affected. Since the 1990s, a return to relatively wetter conditions has been observed in much of West Africa (Lebel and Alli, 2009).

The most populated regions of West Africa lie along the coast and in the cultivated Sahel (400–700 mm rainfall belt). A great part of the Sudanian region is characterised by relatively low population density, which explains the wide extent of forest even today. However, over the past 60 years, forest clearing and the establishment of croplands have considerably expanded in sub-Saharan Africa to meet the demand for food and firewood of the growing population (FAO, 2004). And the duration of fallow in the traditional sustainable crop-long fallow cycle has been drastically shortened since 1970 (Valentin et al., 2004).

West Africa presents considerable regional evidence of the impacts of changes, particularly concerning water resources: despite a decrease in rainfall during the 1968–1995 period, streamflow has been increasing in most exoreic Sahelian basins (Mâhe and Paturel, 2009) over the last three decades. Conversely, in Sudanian regions, reduced rainfall has led to an even greater relative reduction in discharges (Descroix et al., 2009). As a result, the main West African rivers, such as the Niger and the Senegal, have undergone a significant decrease in flow because their discharges are mainly supplied by Sudanian and Guinean tributaries. Groundwater resources have also been affected: for instance since the early 1960s, the level of the aquifer has been continuously rising in endorheic areas of Sahelian West Niger (Favreau et al., 2009). As joint studies of water and energy fluxes are rare in West Africa, documenting the land-surface processes that drive the water and energy budgets was one of the goals of the AMMA project, which was designed to investigate the interactions between atmospheric, oceanic and terrestrial systems and their joint control of tropical monsoon dynamics in West Africa. This article highlights the most original results obtained thanks to the large
data set collected by the AMMA-Catch observing system.

2. Data and methods

The AMMA-CATCH long-term observing system (www.amma-catch.org; Lebel et al., 2009) is based on three meso-scale sites (Figure 1) that represent the West African eco-climatic gradient. Owing to the low annual rainfall (100–450 mm), the northern Sahelian Gourma-Mali site (Mougin et al., 2009) is mainly rangeland with semi-arid vegetation. It is divided into a sandy part with dunes and a crystalline part with large outcrops. The south-west Niger site (Cappelaere et al., 2009), with ~500 mm rainfall, is typical of the cultivated sandy Sahel with fallows and millet crops. The vegetation at the Upper Ouémé catchment site in crystalline Benin (1200–1300 mm) is composed of open forests interspersed with mosaics of crops and fallows. Observation of the continental water cycle is based on a multi-scale (spatial and temporal) approach, combining local sites and meso-scale basins, and long-term and enhanced observation periods. A particular effort was made to document water and energy fluxes on an extensive set of surface types.

The meso-scale instrumentation (raingauges, stream-gauges and well networks) is used to study the coupling of surface hydrology with regional atmospheric processes (Peugeot et al., 2010). Within each meso-scale site, local sites are used for the study of fine surface processes. These include soil water monitoring stations, piezometers, eddy-correlation flux stations, and vegetation monitoring. An intermediate observation scale between local and mesoscale is that of small catchments used to upscale and validate the elementary processes in hydrological and land-surface models.

3. Energy partitioning: soil water availability is a particularly limiting factor for latent heat flux in the Sahel

In the Sahelian region, net radiation (Rn) increases sharply during the short rainy season. This strong mono-modal seasonality results from the summertime concomitance of high incoming radiation caused by aerosol scavenging, with low outgoing radiation related to a decrease in both the albedo (vegetation growth) and the surface temperature (Ramier et al., 2009; Timouk et al., 2009). However, marked site-to-site variability of the seasonal cycle has been observed, in particular in Gourma, between bare soil and flooded-forest sites (Figure 2). It has been reported that both seasonal and spatial variability in energy partitioning is mostly influenced by soil water availability through evaportranspiration (ET) processes and vegetation growth. This pattern fails in the case of weak soil permeability or low annual rainfall (in north Sahel and at bare soil sites in Gourma) which is a direct consequence of soil degradation. During the rainy season, the latent heat flux replaces sensible, ground heat, and outgoing radiation fluxes, the first of which dominates during the rest of the year. Via ET, rainfall spatial heterogeneity and scarcity increase the variability of the energy budget from the event to the interannual scale.

Under the Sudanian bioclimate, the longer rainy season leads to smoother annual variations in Rn (Guyot, 2010). A local minimum occurs at the middle of the rainy season related to cloud cover and a limited decrease in potential incident radiation due to the position closed to the equator. In the dry season, net radiation is constrained not only by atmospheric optical depth (aerosols) but also by the warmer bare land surfaces, which produce higher outgoing long-wave radiation. During a 5-month period in the rainy season, actual ET was found to be close to ETo confirming that water availability is not a limiting factor for the latent heat flux during the rainy season. Both at the Sahelian and Sudanian sites, ET dominates the water balance. In cultivated Niger, Ramier et al., (2009) showed that millet evaporated less than fallow during two crop cycles. Over the year, ET on sandy soils with natural vegetation (fallow in Niger or grassland in Gourma) accounted for 65–85% of the rainfall whereas in the millet field, it only accounted for about half the rainfall. In the context of general land clearing in the cultivable area of the Sahel, this significant difference could have a major impact on the coupled land-atmosphere water cycle. In the Sudanian region, on a mixed cover of shrub savannah and fallow-crop at a small catchment scale, ET at a small catchment scale (deduced from a scintillometer (Guyot et al., 2009)) represented 83% of the annual rainfall.

4. Pre-eminence of surface runoff in the Sahel versus subsurface exfiltration in Sudanian regions and links with heat fluxes and energy balance

Major differences in flow generation were revealed at our Sahelian and Sudanian sites. Endoreic Sahelian sites are composed of patches with contrasted infiltration capacity. In low infiltrative areas, surface flow is...
Contrasted land-surface processes

Figure 2. Course of 24-h average net radiation and latent heat flux for three surfaces of the Gourma site (bare soil with runoff and no vegetation, grassland with vegetation and a moderate soil water availability and a forested seasonally flooded depression) (from Timouk et al., 2009).

produced by Hortonian runoff determined by rainfall intensity and by the infiltration capacity of the surface soil. Water is routed to either highly-infiltrative depressions (temporally flooded ponds like in Niger or in sandy Gourma) or poorly-infiltrative depressions flooded for longer periods (like in crystalline Gourma) (Cappelaere et al., 2009; Mougin et al., 2009). In sandy areas in Gourma, water routing is local from dune hillslopes to inter-dune depressions. In crystalline Gourma, water produced on shallow soils is routed over longer, but also ends up in depressions. At the cultivated and wetter Niger site, runoff from the patchwork of surfaces is channelled down the slope in sandy gullies and ends up in ponds where water accumulates before recharging the sedimentary aquifer (Cappelaere et al., 2009).

In the Sahel region, surface water redistribution by runoff exerts strong control over the seasonal cycle of heat fluxes and radiation balance. On outcrops or extensively crusted soils, water is lost by runoff and most Rn is converted into sensible heat flux. Conversely, infiltrating surfaces and depressions exhibit a significant seasonal cycle in soil moisture and plant growth, resulting in marked variation in Rn, sensible and latent heat fluxes (Timouk et al., 2009). When rainfall events are particularly intense and concentrated, infiltration can exceed ET and deep drainage can occur. On a millet cover in Niger, Ramier et al. (2009) observed variations in humidity at a depth of 2.5 m.

In the sub-humid zones of West Africa, infiltration rates are generally higher than in the Sahel due to the higher organic matter content of the top soils (Valentin et al., 2004). At the hillslope scale, previous studies showed that most infiltration excess water infiltrates before reaching an expanse of open water (van de Giesen et al., 2000; Masiyandima et al., 2003; Giertz et al., 2006). Consequently, Hortonian runoff should contribute little to total streamflow. At the Ouémé site, two saturated ground layers coexist from July to September. The deeper one is the permanent water table located on the saprolite of the crystalline bedrock. It is recharged during this period and is then depleted slowly and regularly from September to the following June. The general drying up of rivers in October–November follows the end of the rains but does not coincide with the lowest level of the water table (June), reflecting the weakness or even absence of
permanent groundwater inputs to the base flow (Kamagaté et al., 2007). The second seasonally saturated layer is located close to the surface. It emerges locally in the headwaters (called bas-fonds) of the hydrograph networks. Streamflow can be explained by drainage of these seasonal shallow groundwaters and excess runoff on saturated areas around the waterlogged bas-fonds (Figure 3). In the upper Ouémé, the drainage of the shallow groundwaters into the bas-fonds represents 60–80% of the annual discharge (Kamagaté et al., 2007).

The absence of drainage from the permanent groundwater into the hydrographic network from local to mesoscale meant that another process was needed to explain its depletion during the dry season. One suggested hypothesis is tree transpiration (Kamagaté et al., 2007). In a detailed analysis of ET after an isolated rainfall event in the dry season, Guyot et al. (2009) demonstrated that one month after the rainfall event, observed ET had emptied available water in the instrumented first metre of soil. Consequently, the subsequently observed continuing ET could only be explained by the contribution of water uptake from vadose or saturated layers by vegetation.

5. Surface changes, causes of the historical evolution of Sahelian water resources, new evidence revealed by remote sensing and coupled modelling

At the cultivated Niger site, a continuous rise of the water table has occurred since the 1960s, with an acceleration of the rise starting from the middle of the 1980s (Favreau et al., 2009) (Figure 4d). Land clearance in favour of an intensive crop-fallow system is thought to produce more runoff. Unfortunately, no long-term records of runoff exist for this area. At the rangeland Gourma site, a potential change in water resources had not been investigated before the Amma Experiment. At both Sahelian sites, intensive use of historical remote sensing data provided evidence of an increase in runoff since 1950. At the Niger site, Leblanc et al. (2008) showed that the density of drainage lines retrieved from aerial photographs revealed a moderate increase between 1950 and 1975, and a doubling from 1975 to 1992 (Figure 4c). In the pastoral Gourma region, Gardelle et al. (2010) combined satellite and aerial remote sensing information and revealed a marked increase in the area of surface water, starting from the 1970s and accelerating in the mid-1980s (Figure 5). This long-term increase in pond surface area is an indication of intensification in runoff triggered by the lasting impact of the 1970–1980s droughts on the vegetation over the shallow soils prevailing over a third of Gourma. Changes in land cover due to human pressure (Niger) or to water stress (Gourma) both resulted in increasing runoff. The same phenomenon of runoff intensification has also been observed outside the two Sahelian meso-scale sites, particularly in large exoreic catchments where long time series are available (upper catchment of Volta, Sahelian tributaries of Niger) (Descroix et al., 2009; Karambiri et al., 2011).

Modelling is needed for water balance quantification under changing land use and climate conditions. By coupling a physically based spatially distributed hydrological model with an explicit model of vegetation dynamics over a small catchment (~2 km²)
Contrasted land-surface processes

Figure 4. Historical trends in annual water cycle in the Niger site (reprinted from Cappelaere et al., 2009): (a) rainfall; (b) rainy-season evapotranspiration (ET); (c) catchment runoff (line) and drainage density (dots), and (d) water table level. Dots correspond to field data: at Niamey airport for rainfall (courtesy DMN Niger); in a 500-km² section of Niger site for drainage density (Leblanc et al., 2008); areal mean difference with 1963 for water table (Favreau et al., 2009). Lines for ET and runoff are simulations for a small intensive catchment (Boulain et al., 2009).

6. Discussion and conclusion

Studies of the changes in landscape by remote sensing undertaken during the experiment provided evidence for an increase in runoff in endorheic regions of the Sahel. The complex interactions between vegetation and hydrology in a changing context were modelled...
at the scale of a small catchment paving the way for
modelling both the water balance and vegetation at
larger scales.

Although both Sahelian and Sudanian regions are
facing a decrease in precipitation, their responses in
terms of water resources are quite different: the annual
flow of Sudanian rivers declined while discharge,
surface water stored in ponds and the recharge of the
ground water increased in the Sahel. Runoff influenced
by surface features governs streamflow in the Sahel,
while at the Sudan site, annual streamflow is mainly
composed of subsurface flux exfiltration, and runoff
(Hortonian runoff) (Valentin et al., 2004). In Sudanian zones, due to the predominance
of shallow groundwater exfiltration in the streamflow,
the decrease in streamflow is not counterbalanced by
an increase in the Hortonian runoff capacity due to
high land-surface degradation like in the Sahel. The
contrast of change in the two climatic regions could
result from differences in the nature of the dominant
streamflow generation process and of the land-surface
characteristics combined. Sudanian land covers are
less degraded than Sahelian ones. There are many
reasons for this including weaker human pressure,
better structural stability due to higher organic matter
and clay contents of Sudanian soils (Valentin et al.,
2004). In Sudanian zones, due to the predominance
of shallow groundwater exfiltration in the streamflow,
the change in streamflow is not counterbalanced by
an increase in the Hortonian runoff capacity due to
high land-surface degradation like in the Sahel. The
surface water storage is dependent on the saturation level
of the upper layers which are highly influenced by
ET and rainfall intermittency. Mechanisms controlling
the change in water resource have been identified and
their modelling is in progress in the Sahel. In the
Sudanian region, we have not yet reached a thorough
understanding of the redistribution of surface water.
Mechanisms identified in Ouémé need to be validated
in other Sudanian zones before being generalised.

During the rainy season ET is the major component
of the surface water budget in both Sahelian and
Sudanian regions. Pluri-annual monitoring of energy
and water budgets shed new light on the interactions
between the land surface and the atmosphere. In the
energy balance, the latent heat flux influenced by
soil water availability (as forcing radiation is not a
limiting factor in the Sahel) supplants the sensible
heat flux during the rainy season. First rainfall amount
and distribution govern soil humidity. The interannual
variability of rainfall has a direct impact on the
radiation distribution between latent and sensible heat
fluxes. But our understanding of exchanges between
the land surface and the atmosphere cannot be limited
to strictly vertical processes. In the cultivated or
dry pastoral Sahel, runoff redistribution controlled
by soil surface is also a key factor to explain spatial
variability of the energy balance. If runoff and runon
surfaces comprise large landscape units as is the case
in Gourma, their contrasts in energy partitioning could
create horizontal gradients of surface heat flux which
persist throughout the rainy season and have an impact
on meso-scale atmospheric circulations.

Clearance will go on. Thanks to the AMMA Exper-
iment advances in our understanding of land-surface
processes will enable us to suggest possible changes
in the future. In the cultivated Sahel, the weaker evap-
oration of crops or degraded surfaces could lead to
less water returning to the atmosphere which could
have a general impact on the monsoon (Taylor et al.,
2011). In the Sudanian region, the process involved in
streamflow generation reduces the role of soil surface
features. Surface water resources influenced by the
storage of the shallow groundwater with low capac-
ity depend directly on the distribution and frequency
of major rainfall events. With the increase in defor-
estation, the tree water uptake could be reduced and
if, as assumed, the annual depletion of the permanent
groundwater is controlled by tree uptake, the water
table could thus end up rising as it did in the Sahel.
However, all these scenarios are still largely hypothet-
cal and call for the continuation of surface water cycle
observations at dedicated sites.

References

Water balance and vegetation change in the Sahel: a case study
at the watershed scale with an eco-hydrological model. Journal of
Arid Environments 73: 1125–1135.

experiment in the cultivated Sahelian area of south-west Niger
investigating water cycle response to a fluctuating climate and

of hydrological regimes around the boundaries between Sahelian and
Sudanian areas of West Africa: a synthesis. Journal of Hydrology

FAO. 2004. FAOSTAT, Food and Agriculture Organization of the

climate variability and water resources increase in semiarid
DOI: 10.1029/2007WR006785.
Contrasted land-surface processes

QUERIES TO BE ANSWERED BY AUTHOR

IMPORTANT NOTE: Please mark your corrections and answers to these queries directly onto the proof at the relevant place. Do NOT mark your corrections on this query sheet.

Queries from the Copyeditor:

AQ1 “We have provided “Contrasted land surface processes” as the “Running head” for this article. It will appear on the top of the third page and all the recto pages of the article. Please confirm if this is appropriate.”

AQ2 Please provide city for affiliations (1, 2, and 10).

AQ3 Please provide city and country for affiliation (5).

AQ4 Please provide the department for all the affiliations.

AQ5 As per the journal style the captions of figures (2–5) need to indicate the exact source (not just the reference citation), that we have permission to use the artwork, and who the copyright holder is, as they been published in another source. Please check and provide.

AQ6 The reference citation (Masayandima et al., 2004) has been changed to (Masiyandima et al., 2003) in order to match with the reference list. Please check and confirm whether this is correct.

AQ7 This reference Gardelle et al. (2010) has not been listed in the reference list. Please provide the reference details.

AQ8 Please provide all the authors’ names for the following references: (Cappelaere, et al., 2009; Descroix, et al., 2009; Favreau, et al., 2009; Guyot, et al., 2009; Kamagate, et al., 2007; Karambiri, et al., 2011; Lafore, et al., 2010; Lebel, et al., 2009; Leblanc, et al., 2008; Mougin, et al., 2009; Peugeot, et al., 2010; Ramier, et al., 2009; Taylor, et al., 2010; and Timouk, et al., 2009).

AQ9 Please provide the accessed date for the reference (FAO 2004).
WILEY AUTHOR DISCOUNT CLUB

We would like to show our appreciation to you, a highly valued contributor to Wiley’s publications, by offering a unique 25% discount off the published price of any of our books*.

All you need to do is apply for the Wiley Author Discount Card by completing the attached form and returning it to us at the following address:

The Database Group (Author Club)
John Wiley & Sons Ltd
The Atrium
Southern Gate
Chichester
PO19 8SQ
UK

Alternatively, you can register online at www.wileyeurope.com/go/authordiscount
Please pass on details of this offer to any co-authors or fellow contributors.

After registering you will receive your Wiley Author Discount Card with a special promotion code, which you will need to quote whenever you order books direct from us.

The quickest way to order your books from us is via our European website at:

http://www.wileyeurope.com

Key benefits to using the site and ordering online include:
- Real-time SECURE on-line ordering
- Easy catalogue browsing
- Dedicated Author resource centre
- Opportunity to sign up for subject-orientated e-mail alerts

Alternatively, you can order direct through Customer Services at: cs-books@wiley.co.uk, or call +44 (0)1243 843294, fax +44 (0)1243 843303

So take advantage of this great offer and return your completed form today.

Yours sincerely,

Verity Leaver
Group Marketing Manager
author@wiley.co.uk

*TERMS AND CONDITIONS
This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books for their personal use. There must be no resale through any channel. The offer is subject to stock availability and cannot be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to amend the terms of the offer at any time.
To enjoy your 25% discount, tell us your areas of interest and you will receive relevant catalogues or leaflets from which to select your books. Please indicate your specific subject areas below.

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td></td>
</tr>
<tr>
<td>• Public</td>
<td></td>
</tr>
<tr>
<td>• Corporate</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>• Analytical</td>
<td></td>
</tr>
<tr>
<td>• Industrial/Safety</td>
<td></td>
</tr>
<tr>
<td>• Organic</td>
<td></td>
</tr>
<tr>
<td>• Inorganic</td>
<td></td>
</tr>
<tr>
<td>• Polymer</td>
<td></td>
</tr>
<tr>
<td>• Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Encyclopedia/Reference</td>
<td></td>
</tr>
<tr>
<td>• Business/Finance</td>
<td></td>
</tr>
<tr>
<td>• Life Sciences</td>
<td></td>
</tr>
<tr>
<td>• Medical Sciences</td>
<td></td>
</tr>
<tr>
<td>• Physical Sciences</td>
<td></td>
</tr>
<tr>
<td>• Technology</td>
<td></td>
</tr>
<tr>
<td>Earth & Environmental Science</td>
<td></td>
</tr>
<tr>
<td>Hospitality</td>
<td></td>
</tr>
<tr>
<td>Genetics</td>
<td></td>
</tr>
<tr>
<td>• Bioinformatics/Computational Biology</td>
<td></td>
</tr>
<tr>
<td>• Proteomics</td>
<td></td>
</tr>
<tr>
<td>• Genomics</td>
<td></td>
</tr>
<tr>
<td>• Gene Mapping</td>
<td></td>
</tr>
<tr>
<td>• Clinical Genetics</td>
<td></td>
</tr>
<tr>
<td>Medical Science</td>
<td></td>
</tr>
<tr>
<td>• Cardiovascular</td>
<td></td>
</tr>
<tr>
<td>• Diabetes</td>
<td></td>
</tr>
<tr>
<td>• Endocrinology</td>
<td></td>
</tr>
<tr>
<td>• Imaging</td>
<td></td>
</tr>
<tr>
<td>• Obstetrics/Gynaecology</td>
<td></td>
</tr>
<tr>
<td>• Oncology</td>
<td></td>
</tr>
<tr>
<td>• Pharmacology</td>
<td></td>
</tr>
<tr>
<td>• Psychiatry</td>
<td></td>
</tr>
<tr>
<td>Non-Profit</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>Business/Management</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
</tr>
<tr>
<td>• Database/Data Warehouse</td>
<td></td>
</tr>
<tr>
<td>• Internet Business</td>
<td></td>
</tr>
<tr>
<td>• Networking</td>
<td></td>
</tr>
<tr>
<td>• Programming/Software Development</td>
<td></td>
</tr>
<tr>
<td>• Object Technology</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>• Civil</td>
<td></td>
</tr>
<tr>
<td>• Communications Technology</td>
<td></td>
</tr>
<tr>
<td>• Electronic</td>
<td></td>
</tr>
<tr>
<td>• Environmental</td>
<td></td>
</tr>
<tr>
<td>• Industrial</td>
<td></td>
</tr>
<tr>
<td>• Mechanical</td>
<td></td>
</tr>
<tr>
<td>Finance/Investing</td>
<td></td>
</tr>
<tr>
<td>• Economics</td>
<td></td>
</tr>
<tr>
<td>• Institutional</td>
<td></td>
</tr>
<tr>
<td>• Personal Finance</td>
<td></td>
</tr>
<tr>
<td>Life Science</td>
<td></td>
</tr>
<tr>
<td>Landscape Architecture</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Materials Science</td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td></td>
</tr>
<tr>
<td>• Clinical</td>
<td></td>
</tr>
<tr>
<td>• Forensic</td>
<td></td>
</tr>
<tr>
<td>• Social & Personality</td>
<td></td>
</tr>
<tr>
<td>• Health & Sport</td>
<td></td>
</tr>
<tr>
<td>• Cognitive</td>
<td></td>
</tr>
<tr>
<td>• Organizational</td>
<td></td>
</tr>
<tr>
<td>• Developmental & Special Ed</td>
<td></td>
</tr>
<tr>
<td>• Child Welfare</td>
<td></td>
</tr>
<tr>
<td>• Self-Help</td>
<td></td>
</tr>
<tr>
<td>Physics/Physical Science</td>
<td></td>
</tr>
</tbody>
</table>

Please complete the next page /
I confirm that I am (*delete where not applicable):

a Wiley Book Author/Editor/Contributor* of the following book(s):

ISBN:
ISBN:

a Wiley Journal Editor/Contributor/Editorial Board Member* of the following journal(s):

SIGNATURE: …………………………………………………………………………………… Date: ………………………………………

PLEASE COMPLETE THE FOLLOWING DETAILS IN BLOCK CAPITALS:

TITLE: (e.g. Mr, Mrs, Dr) …………………… FULL NAME: ……………………………………………………………………………………

JOB TITLE (or Occupation): ……

DEPARTMENT: ………

COMPANY/INSTITUTION: ………

ADDRESS: ………

……

TOWN/CITY: ………

COUNTY/STATE: ………

COUNTRY: ……

POSTCODE/ZIP CODE: ………

DAYTIME TEL: ………

FAX: ………

E-MAIL: ………

YOUR PERSONAL DATA

We, John Wiley & Sons Ltd, will use the information you have provided to fulfil your request. In addition, we would like to:

1. Use your information to keep you informed by post of titles and offers of interest to you and available from us or other Wiley Group companies worldwide, and may supply your details to members of the Wiley Group for this purpose. [] Please tick the box if you do NOT wish to receive this information

2. Share your information with other carefully selected companies so that they may contact you by post with details of titles and offers that may be of interest to you.

 [] Please tick the box if you do NOT wish to receive this information.

E-MAIL ALERTING SERVICE

We also offer an alerting service to our author base via e-mail, with regular special offers and competitions. If you DO wish to receive these, please opt in by ticking the box [].

If, at any time, you wish to stop receiving information, please contact the Database Group (databasegroup@wiley.co.uk) at John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, PO19 8SQ, UK.

TERMS & CONDITIONS

This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books for their personal use. There should be no resale through any channel. The offer is subject to stock availability and may not be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to vary the terms of the offer at any time.

PLEASE RETURN THIS FORM TO:

Database Group (Author Club), John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, PO19 8SQ, UK author@wiley.co.uk

Fax: +44 (0)1243 770154