, gambiense secretome down regulated cytokines production by LPS-activated Mo-DCs

B. Stijlemans, G. Caljon, J. Van-den-abbeele, V. Ginderachter, J. A. Magez et al., Immune evasion strategies of Trypanosoma brucei within the mammalian host: progression to pathogenicity. Front Immunol, vol.7, p.233, 2016.

D. Malvy, F. Chappuis, A. L. Carvalho-kelly, L. F. Dick, C. F. Meyer-fernandes et al., Innate immunomodulation to trypanosomatid parasite infections, Clin Microbiol Infect, vol.17, issue.3, pp.67-75, 2011.

E. Garzon, P. Holzmuller, and R. Bras-gonçalves, The Trypanosoma brucei gambiense secretome impairs lipopolysaccharide-induced maturation, cytokine production, and allostimulatory capacity of dendritic cells, Infect. Immun, pp.3300-3308, 201381.

H. T. Mansfield, J. M. Paulnock, and D. , CpG oligodeoxynucleotide treatment enhances innate resistance and acquired immunity to African trypanosomes, Infect. Immun, 200775.

J. Banchereau and R. M. Steinman, Dendritic cells and the control of immunity, Nature, vol.392, pp.245-252, 1998.

N. Sukhbaatar, M. Hengstschläger, and T. Weichhart, mTOR-Mediated Regulation of Dendritic Cell Differentiation and Function, Trends Immunol, vol.7, 2016.

K. Pletinckx, B. Stijlemans, and V. Pavlovic, Similar inflammatory DC maturation signatures induced by TNF or Trypanosoma brucei antigens instruct default Th2-cell responses, Eur. J. Immunol, vol.41, pp.3479-3494, 2011.
DOI : 10.1002/eji.201141631

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/eji.201141631

T. Bosschaerts, M. Guilliams, B. Stijlemans, Y. Morias, D. Engel et al., Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling, PLoS Pathog, vol.6, 2010.
DOI : 10.1371/journal.ppat.1001045

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1001045&type=printable

T. R. Dagenais, B. E. Freeman, K. P. Demick, D. M. Paulnock, and J. M. Mansfield, Processing and presentation of variant surface glycoprotein molecules to T cells in African trypanosomiasis, J. Immunol, vol.183, pp.3344-3355, 2009.

J. D. Lonsdale-eccles and D. J. Grab, Trypanosome hydrolase and the blood-brain barrier, Trends Parasitol, vol.18, pp.17-19, 2002.

P. Holzmuller, D. G. Biron, P. Courtois, M. Koffi, R. Bras-goncalves et al., Virulence and pathogenicity patterns of Trypanosoma brucei gambiense field isolates in experimentally infected mouse: differences in host immune response modulation by secretome and proteomics. Microbes Infect, vol.10, pp.79-86, 2008.

A. Geiger, C. Hirtz, T. Bécue, E. Bellard, C. Centeno et al., Exocytosis and protein secretion in Trypanosoma, BMC Microbiology, vol.10, p.20, 2010.
DOI : 10.1186/1471-2180-10-20

URL : https://bmcmicrobiol.biomedcentral.com/track/pdf/10.1186/1471-2180-10-20

A. Nten, C. M. Sommerer, N. Rofidal, V. Hirtz, C. Rossignol et al., Excreted/secreted proteins from trypanosome procyclic strains, J Biomed Biotechnol, p.212817, 2010.

S. M. Lanham and D. G. Godfrey, Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose, Exp. Parasitol, vol.28, pp.521-534, 1970.

F. Sallusto and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, J Exp Med, vol.179, pp.1109-1127, 1994.

J. H. Peters, H. Xu, J. Ruppert, D. Ostermeier, D. Friedrichs et al., Signals required for differentiating dendritic cells from human monocytes in vitro, Adv Exp Med Biol, vol.329, pp.275-80, 1993.

B. Namangala, L. Brys, and S. Magez, Trypanosoma brucei brucei infection impairs MHC Class II antigen presentation capacity of macrophages, Parasite Immunol, vol.22, pp.361-370, 2000.
DOI : 10.1046/j.1365-3024.2000.00314.x

URL : https://biblio.ugent.be/publication/8615025/file/8615027.pdf

B. Namangala, How the African trypanosomes evade host immune killing, Parasite Immunol, vol.33, pp.430-437, 2011.

M. Q. Shi, G. J. Wei, and H. Tabel, Trypanosoma congolense infections: MHC class II-restricted immune responses mediate either protection or disease, depending on IL-10 function, Parasite Immunol, vol.29, pp.107-118, 2007.

P. Holzmuller, P. Nirdé, F. Vezilier, and P. Chuchana, The transcriptomic analytical level determines the human monocyte-derived macrophage response toward either the infectious agent or the host, Infect Genet Evol, vol.45, pp.426-433, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594519

T. R. Dagenais, B. E. Freeman, and K. P. Demick, Processing and presentation of variant surface glycoprotein molecules to T cells in African trypanosomiasis, J Immunol, vol.183, pp.3344-3355, 2009.

T. Kobayashi, P. T. Walsh, M. C. Walsh, K. M. Speirs, E. Chiffoleau et al., TRAF6 is a critical factor for dendritic cell maturation and development, Immunity, vol.19, pp.353-363, 2003.
DOI : 10.1016/s1074-7613(03)00230-9

URL : https://doi.org/10.1016/s1074-7613(03)00230-9

L. Van-overtvelt, N. Vanderheyde, V. Verhasselt, J. Ismaili, D. Vos et al., Trypanosoma cruzi infects human dendritic cells and prevents their maturation: inhibition of cytokines, HLA-DR, and costimulatory molecules, Infect. Immun, vol.67, pp.4033-4040, 1999.

A. B. Figueiredo, T. D. Serafim, E. A. Marques-da-silva, J. R. Meyer-fernandes, and L. C. Afonso, Leishmania amazonensis impairs DC function by inhibiting CD40 expression via A2B adenosine receptor activation, Eur. J. Immunol, vol.42, pp.1203-1215, 2012.
DOI : 10.1002/eji.201141926

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/eji.201141926

S. J. Green, M. S. Meltzer, J. B. Hibbs, J. , and C. A. Nacy, Activated macrophages destroy intracellular Leishmania major amastigotes by an L-argininedependentkilling mechanism, J. Immunol, vol.144, pp.278-283, 1990.

P. Vincendeau, S. Daulouède, and S. , Macrophage cytostatic effect on, 1991.

, Trypanosoma musculi involves an L-arginine-dependent mechanism, J. Immunol, vol.146, pp.4338-4343

C. Bogdan, Nitric oxide synthase in innate and adaptive immunity: an update, 2015.
DOI : 10.1016/j.it.2015.01.003

, Trends Immunol, vol.36, pp.161-178

A. P. Gobert, S. Daulouede, M. Lepoivre, J. L. Boucher, and B. Bouteille, LArginine availability modulates local nitric oxide production and parasite killing in experimental trypanosomiasis, Infect. Immun, vol.68, pp.4653-4657, 2000.
DOI : 10.1128/iai.68.8.4653-4657.2000

URL : https://iai.asm.org/content/68/8/4653.full.pdf

B. Namangala, P. De, W. Baetselier, L. Noël, A. Brys et al., Alternative versus classical macrophage activation during experimental African trypanosomosis, J. Leukoc. Biol, vol.69, pp.387-396, 2001.

G. Raes, L. Brys, B. K. Dahal, J. Brandt, J. Grooten et al.,

P. Noël, T. Bogaert, and . Boonefaes, Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation, J. Leukoc. Biol, vol.77, pp.321-327, 2005.

L. Flohé, The trypanothione system and its implications in the therapy of trypanosomatid diseases, Int. J. Med. Microbiol, vol.302, pp.216-220, 2012.

A. Mantovani, S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati, , 2013.

, Macrophage plasticity and polarization in tissue repair and remodelling, J. Pathol, vol.229, pp.176-185

R. Nzoumbou-boko, M. Dethoua, F. Gabriel, A. Buguet, R. Cespuglio et al.,

B. Daulouède, S. Bouteille, G. Ngampo, and . Mpandzou, Serum arginase, a biomarker of treatment efficacy in human African trypanosomiasis, J. Clin. Microbiol, vol.51, pp.435-2379, 2013.

S. Duleu, P. Vincendeau, P. Courtois, S. Semballa, I. Lagroye et al.,

K. T. Boucher, B. Wilson, A. P. Veyret, and . Gobert, Mouse strain susceptibility to trypanosome infection: an arginase-dependent effect, J. Immunol, vol.172, pp.6298-6303, 2004.

G. De-muylder, S. Daulouède, L. Lecordier, P. Uzureau, Y. Morias et al.,

G. Abbeele, M. Caljon, P. Hérin, S. Holzmuller, and . Semballa, A Trypanosoma brucei kinesin heavy chain promotes parasite growth by triggering host arginase activity, 2013.

, PloS Pathog, vol.9, issue.10, p.1003731

Y. Hai, E. J. Kerkhoven, M. P. Barrett, and D. W. Christianson, Crystal structure of an arginase-like protein from Trypanosoma brucei that evolved without a binuclear manganese cluster, Biochemistry, vol.54, pp.458-71, 2015.

P. Viens, G. A. Targett, R. Leuchars, and A. J. Davies, The immunological response of CBA mice to Trypanosoma musculi. I. Initial control of the infection and the effect of T cell deprivation, Clin. Exp. Immunol, vol.16, pp.279-293, 1974.

P. Vincendeau, A. Caristan, and R. Pautrizel, Macrophage functions during Trypanosoma musculi infection in mice, Infect. Immun, vol.34, pp.378-381, 1981.

P. Vincendeau, M. Daëron, and S. Daulouède, Identification of antibody classes and Fc receptors responsible for phagocytosis of Trypanosoma musculi by mouse macrophages, Infect. Immun, vol.53, pp.600-605, 1986.

J. W. Albright and J. F. Albright, Immune and nonimmune regulation of the population of Trypanosoma musculi in infected host mice, Infect. Immun, vol.58, pp.1757-1762, 1990.

H. E. Krampitz, Verbreitung wirt-parasit-beziehungen und vermehrung sizilianischer Stämme von Trypanosoma (Herpetosoma) duttoni Thiroux.1905 (Protozoa, Trypanosomatidae), Z. Parasitenkd, vol.32, pp.297-315, 1969.

S. M. Lanham, Separation of trypanosomes from the blood of infected rats and mice by anion-exchangers, Nature, vol.218, issue.5148, pp.1273-1274, 1968.

P. Holzmuller, D. G. Biron, P. Courtois, M. Koffi, R. Bras-gonçalves et al., Virulence and pathogenicity patterns of Trypanosoma brucei gambiense field isolates in experimentally infected mouse: differences in host immune response modulation by secretome and proteomics, Microbes Infect, vol.10, pp.79-86, 2008.

U. K. Laemmli, Cleavage of structural proteins during the assembly of head of bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

S. Semballa, M. C. Okomo-assoumou, P. Holzmuller, P. Büscher, S. Magez et al.,

S. Lemesre, P. Daulouede, M. Courtois, P. Geffard, and . Vincendeau, Identification of a tryptophan-like epitope borne by the variable surface glycoprotein (VSG) of African trypanosomes, Exp. Parasitol, vol.115, pp.173-180, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00163391

R. Bras-gonçalves, E. Petitdidier, J. Pagniez, R. Veyrier, P. Cibrelus et al., Identification and characterization of new Leishmania promastigote surface antigens, LaPSA-38S and LiPSA-50S, as major immunodominant excreted/secreted components of L. amazonensis and L. infantum, Infect. Genet. Evol, vol.24, pp.1-14, 2014.

J. W. Albright and J. F. Albright, In vitro growth of Trypanosoma musculi in cell free medium conditioned by rodent macrophages and mercaptoethanol, Int. J. Parasitol, vol.10, pp.137-142, 1980.

P. Vincendeau, B. Guillemain, S. Daulouède, and C. Ripert, In vitro growth of Trypanosoma musculi: requirements of cells and serum-free culture medium, Int. J. Parasitol, vol.16, pp.387-390, 1985.

I. M. Corraliza, M. L. Campo, G. Soler, and M. Modolell, Determination of arginase activity in macrophages: a micromethod, J. Immunol. Methods, vol.174, pp.231-235, 1994.

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Mol. Biol. Evol, vol.30, pp.2725-2729, 2013.

A. H. Fairlamb and A. Cerami, Metabolism and functions of trypanothione in the Kinetoplastida, Annu. Rev. Microbiol, vol.46, pp.695-729, 1992.

G. Priotto, S. Kasparian, W. Mutombo, D. Ngouama, S. Ghorashian et al.,

E. Ghabri, V. Baudin, S. Buard, and . Kazadi-kyanza, Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial, Lancet, vol.374, issue.9683, pp.56-64, 2009.

L. M. Van-den-berg, S. I. Gringhuis, and T. B. Geijtenbeek, An evolutionary perspective on C-type lectins in infection and immunity, Ann. N. Y. Acad. Sci, vol.1253, pp.149-58, 2012.

M. Wüthrich, G. S. Deepe, J. Klein, and B. , Adaptive immunity to fungi, Annu. Rev. Immunol, vol.30, pp.115-148, 2012.

A. Engering, T. B. Geijtenbeek, and Y. Van-kooyk, Immune escape through Ctype lectins on dendritic cells, Trends Immunol, vol.23, pp.480-485, 2002.

L. Lefèvre, G. Lugo-villarino, E. Meunier, A. Valentin, D. Olagnier et al.,

C. Duval, J. Dardenne, J. Bernad, and . Lemesre, The C-type lectin receptors dectin-1, MR, and SIGNR3 contribute both positively and negatively to the macrophage response to Leishmania infantum, Immunity, vol.38, pp.1038-1049, 2013.

L. Martinez-pomares, The mannose receptor, J. Leukoc. Biol, vol.92, pp.1177-1186, 2012.

V. V. Garrido, L. R. Dulgerian, C. C. Stempin, and F. M. Cerbán, The increase in mannose receptor recycling favors arginase induction and Trypanosoma cruzi survival in macrophages, Int. J. Biol. Sci, vol.7, pp.1257-1272, 2011.

J. L. Lemesre, P. Holzmuller, R. Bras-gonçalves, G. Bourdoiseau, C. Hugnet et al.,

G. Cavaleyra and . Papierok, Long-lasting protection against canine visceral leishmaniasis using the LiESAp-MDP vaccine in endemic areas of France: double-blind randomised efficacy field trial, Vaccine, vol.25, pp.4223-4234, 2007.

L. V. Athanasiou, V. I. Kontos, M. N. Saridomichelakis, T. S. Rallis, and A. Diakou,

, A cross-sectional sero-epidemiological study of canine leishmaniasis in Greek mainland, Acta Trop, vol.122, pp.291-295

G. Bourdoiseau, C. Hugnet, R. Bras-gonçalves, F. Vezilier, E. Petit-didier et al., Effective humoral and cellular immunoprotective responses in, 2009.

, Li ESAp-MDP vaccinated protected dogs, Vet. Immunol. Immunopathol, vol.128, pp.71-78

J. R. Stevens, W. Gibson, and W. , The molecular evolution of trypanosomes, 1999.

, Parasitol. Today, vol.15, pp.432-439

D. Silva, F. M. , H. Noyes, M. Campaner, A. C. Junqueira et al.,

J. R. Shaw, M. M. Stevens, and . Teixeira, Phylogeny, taxonomy and grouping of Trypanosoma rangeli isolates from man, triatomines and sylvatic mammals from widespread geographical origin based on SSU and ITS ribosomal sequences, Parasitology, vol.129, pp.549-561, 2004.

S. I. Cazorla, F. M. Frank, P. D. Becker, M. Arnaiz, G. A. Mirkin et al., Redirection of the immune response to the functional catalytic domain of the cystein proteinase cruzipain improves protective immunity against Trypanosoma cruzi infection, J. Infect. Dis, vol.202, pp.136-144, 2010.

J. Scharfstein and A. P. Lima, Roles of naturally occurring protease inhibitors in the modulation of host cell signaling and cellular invasion by Trypanosoma cruzi, Subcell Biochem, vol.47, pp.140-154, 2008.

L. Greca, F. , and S. Magez, Vaccination against trypanosomiasis: can it be done or is the trypanosome truly the ultimate immune destroyer and escape artist?, Hum. Vaccin, vol.7, pp.1225-1233, 2011.

A. M. Gimenez, K. S. Françoso, J. Ersching, M. Y. Icimoto, V. Oliveira et al., A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a1, MSA-2b and MSA-2c elicits invasion-inhibitory antibodies 540 and IFN? producing cells, Parasit. Vectors, vol.9, p.577, 2016.

B. Acosta-serrano, A. Vassella, E. Liniger, M. Kunz-renggli, C. Brun et al., The surface coat of procyclic Trypanosoma brucei: programmated expression and proteolytic cleavage of procyclin in the tsetse fly, Proc Natl Acad Sci U S A, vol.98, pp.1513-1521, 2001.

H. M. Al-abdely, J. R. Graybill, D. Loebenberg, and P. C. Melby, Efficacy of the triazole SCH 56592 against Leishmania amazonensis and Leishmania donovani in experimental murine cutaneous and visceral leishmaniases, Antimicrob Agents Chemother, vol.43, pp.2910-2914, 1999.

A. M. Albarrag, M. J. Anderson, S. J. Howard, G. D. Robson, P. A. Warn et al., Interrogation of related clinical pan-azole-resistant Aspergillus fumigatus strains: G138C, Y431C, and G434C single nucleotide polymorphisms in cyp51A, upregulation of cyp51A, and integration and activation of transposon Atf1 in the cyp51A promoter, Antimicrob Agents Chemother, vol.55, pp.5113-5134, 2011.

E. Alirol, D. Schrumpf, A. Heradi, J. Riedel, A. De-patoul et al., Nifurtimoxeflornithine combination therapy for second-stage gambiense human African trypanosomiasis: Medecins Sans Frontieres experience in the Democratic Republic of the Congo, Clin Infect Dis, vol.56, pp.195-203, 2013.

S. Alsford, D. J. Turner, S. O. Obado, A. Sanchez-flores, L. Glover et al., High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome, Genome Research, vol.21, pp.915-939, 2011.

A. Amiguet-vercher, D. Pérez-morga, A. Pays, P. Poelvoorde, H. Van-xong et al., Loss of the mono-allelic control of the VSG expression sites during the development of Trypanosoma brucei in the bloodstream, Mol. Microbiol, vol.51, pp.1577-1588, 2004.

D. N. Amin, S. K. Vodnala, W. Masocha, B. Sun, K. Kristensson et al., Distinct Toll-like receptor signals regulate cerebral parasite load and interferon ?/? and tumor necrosis factor ?-dependent T-cell infiltration in the brains of Trypanosoma brucei-infected mice, J Infect Dis, vol.2, pp.320-352, 2012205.

V. V. Andrade-neto, H. L. De-matos-guedes, D. C. De-oliveira-gomes, M. M. Cantocavalheiro, B. Rossi-bergmann et al., The stepwise selection for ketoconazole resistance induces upregulation of C14-demethylase (CYP51) in Leishmania amazonensis, Mem Inst Oswaldo Cruz, vol.107, pp.416-419, 2012.

P. Autissier, C. Soulas, T. H. Burdo, and K. C. Williams, Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans, Cytometry A, vol.77, pp.410-419, 2010.

C. J. Bacchi, H. C. Nathan, S. H. Hutner, P. P. Mccann, and A. Sjoerdsma, Polyamine metabolism: a potential therapeutic target in trypanosomes, Science, vol.210, pp.332-334, 1980.

M. T. Bahia, A. F. Nascimento, A. L. Mazzeti, L. F. Marques, and K. R. Goncalves, Antitrypanosomal activity of fexinidazole metabolites, potential new drug candidates for Chagas disease, Antimicrob Agents Chemother, vol.58, pp.4362-4370, 2014.

M. Balasegaram, H. Young, F. Chappuis, G. Priotto, M. E. Raguenaud et al., Effectiveness of melarsoprol and eflornithine as first-line regimens for gambiense sleeping sickness in nine Medecins Sans Frontières programmes, Trans R Soc Trop Med Hyg, vol.103, pp.280-290, 2009.

J. Banchereau and J. Steinman, Dendritic cells and the control of immunity, Nature, vol.392, pp.245-252, 1998.

K. Barrett-bee and N. Ryder, Biochemical aspects of ergosterol biosynthesis inhibition in Emerging Targets in Antibacterial and Antifungal Chemotherapy, pp.410-436, 1992.

M. P. Barrett, A. Mcleod, J. Tovar, J. P. Sweetman, A. Tait et al., A single locus minisatellite sequence which distinguishes between Trypanosoma brucei isolates, Mol Biochem Parasitol, vol.86, pp.95-104, 1997.

P. Bastin, T. Sherwin, and K. Gull, Paraflagellar rod is vital for trypanosome motility, Nature, vol.391, p.548, 1998.

M. Berberof, D. Pérez-morga, and E. Pays, A receptor-like flagellar pocket glycoprotein specific to Trypanosoma brucei gambiense, Mol. Biochem. Parasitol, vol.113, pp.127-138, 2001.

H. Bergson, L'évolution créatrice. 1907. Collection Quadrige, PUF

J. D. Bergstrom, C. Dufresne, G. F. Bills, M. Nallin-omstead, and K. Byrne, Discovery, biosynthesis, and mechanism of action of the zaragozic acids: potent inhibitors of squalene synthase, Annual Review of Microbiology, vol.49, pp.607-639, 1995.

D. Berthier, S. F. Brenière, R. Bras-gonçalves, J. L. Lemesre, V. Jamonneau et al., Tolerance to Trypanosomatids: A Threat, or a Key for Disease Elimination?, Trends Parasitol, vol.32, pp.157-68, 2016.

M. Berriman, E. Ghedin, C. Hertz-fowler, G. Blandin, H. Renauld et al., Science, vol.309, pp.416-438, 2005.

G. Benaim, J. M. Sanders, and T. Garcia-marchan, Amiodarone has intrinsic antiTrypanosoma cruzi activity and acts synergistically with posaconazole, Journal of Medicinal Chemistry, vol.49, pp.892-899, 2006.

N. Biteau, F. Bringaud, W. Gibson, P. Truc, and T. Baltz, Characterization of Trypanozoon isolates using a repeated coding sequence and microsatellites markers, Mol Biochem Parasitol, vol.105, pp.185-201, 2000.

S. J. Black, P. Guirnalda, D. Frenkel, C. Haynes, and V. Bockstal, Induction and regulation of Trypanosoma brucei VSG-specific antiboby response, Parasitology, vol.14, pp.2041-2049, 2010.

T. Blisnick, J. Buisson, S. Absalon, A. Marie, N. Cayet et al., The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions, Mol Biol Cell, vol.25, pp.2620-2653, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01301215

M. Bonhivers, S. Nowacki, N. Landrein, and D. R. Robinson, Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated, PLoS Biol, vol.6, p.105, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00318588

P. Borst, Antigenic variation and allelic exclusion, Cell, vol.109, pp.5-8, 2002.

J. L. Boucher, J. Custot, S. Vadon, M. Delaforge, M. Lepoivre et al., N omega-hydroxyl-L-arginine, an intermediate in the L-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase, Biochem Biophys Res Commun, vol.203, pp.1614-1635, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00315248

P. Boya and G. Kroemer, Lysosomal membrane permeabilization in cell death, Oncogene, vol.27, pp.6434-6451, 2008.

M. V. Braga, J. A. Urbina, and W. De-souza, Effects of squalene synthase inhibitors on the growth and ultrastructure of Trypanosoma cruzi, International Journal of Antimicrobial Agents, vol.24, pp.72-78, 2004.

F. Bringaud, M. Biran, Y. Millerioux, M. Wargnies, S. Allmann et al., Combining reverse genetics and nuclear magnetic resonance-based metabolomics unravels trypanosome-specific metabolic pathways, Molecular Microbiology, vol.96, pp.917-926, 2015.

T. Bromidge, W. Gibson, K. Hudson, and P. Dukes, Identification of Trypanosoma brucei gambiense by PCR amplification of variant surface glycoprotein genes, Acta Trop (Basel), vol.53, pp.107-126, 1993.

M. Brown and C. Wittwer, Flow cytometry: principles and clinical applications in hematology, Clin Chem, vol.46, pp.1221-1230, 2000.

F. Buckner, K. Yokoyama, J. Lockman, K. Aikenhead, J. Ohkanda et al., A class of sterol 14-demethylase inhibitors as anti-Trypanosoma cruzi agents, Proc Natl Acad Sci U S A, vol.100, pp.15149-53, 2003.

C. Burri, S. Nkunku, A. Merolle, T. Smith, J. Blum et al., Efficacy of new, concise schedule for melarsoprol in treatment of sleeping sickness caused by Trypanosoma brucei gambiense a randomised trial, Lancet, vol.355, pp.1419-1425, 2000.

C. Burri, Chemotherapy against human African trypanosomiasis: is there a road to success?, Parasitology, vol.137, pp.1987-1994, 2010.

E. Bustos-morán, N. Blas-rus, N. B. Martín-cófreces, and F. Sánchez-madrid, Orchestrating lymphocyte polarity in cognate Immune Cell-Cell Interactions, Int Rev Cell Mol Biol, vol.327, pp.195-261, 2016.

M. Cachon and M. P. Cosson, Ciliary and flagellar apparatuses and their associated structures, Biol Cell, vol.63, p.115, 1988.

G. Caljon, N. Van-reet, D. Trez, C. Vermeersch, M. Pérez-morga et al., The Dermis as a Delivery Site of Trypanosoma brucei for tsetse flies, PLoS Pathog, vol.12, p.1005744, 2016.

S. B. Cammerer, C. Jiménez-jiménez, and S. Jones, Quinuclidine derivatives as potential antiparasitics, Antimicrobial Agents and Chemotherapy, vol.51, pp.4049-4061, 2007.

P. Cameron, Inhibition of lipopolysaccharide induced macrophage IL-12 production by Leishmania mexicana amastigotes: the role of cysteine proteases and the NF?B signaling pathway, J. Immunol, vol.173, pp.3297-3304, 2004.

M. A. Campos, Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite, J. Immunol, vol.167, pp.416-423, 2001.

M. A. Campos, Impaired production of proinflammatory cytokines and host resistance to acute infection with Trypanosoma cruzi in mice lacking functional myeloid differentiation factor 88, J. Immunol, vol.172, pp.1711-1718, 2004.

E. Cama and D. M. Colleluori, Human arginase II: crystal structure and physiological role in male and female sexual arousal, Biochemistry, vol.42, pp.8445-51, 2003.

P. Capewell, The TgsGP gene is essential for resistance to human serum in Trypanosoma brucei gambiense, PLoS Pathog, vol.9, p.1003686, 2013.

P. Capewell, C. Cren-travaillé, F. Marchesi, P. Johnston, C. Clucas et al., The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes, Elife, vol.5, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01371190

F. Chappuis, N. Udayraj, K. Stietenroth, A. Meussen, and P. A. Bovier, Eflornithine is safer than melarsoprol for the treatment of second-stage Trypanosoma brucei gambiense human African trypanosomiasis, Clin Infect Dis, vol.41, pp.748-751, 2005.

C. K. Chen, S. S. Leung, C. Guilbert, M. P. Jacobson, and J. H. Mckerrow, Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole, PLoS Negl Trop Dis, vol.4, p.651, 2010.

T. S. Cherkesova, T. Y. Hargrove, M. C. Vanrell, I. Ges, and S. A. Usanov, Sequence variation in CYP51A from the Y strain of Trypanosoma cruzi alters its sensitivity to inhibition, Febs Letters, vol.588, pp.3878-3885, 2014.

S. P. Coller, J. M. Mansfield, and D. M. Paulnock, Glycosylinositolphosphate soluble variant surface glycoprotein inhibits IFN-gamma-induced nitric oxide production via reduction in stat1 phosphorylation in African trypanosomiasis, Journal of immunology, vol.171, pp.1466-1472, 2003.

I. Coppens, P. Baudhuin, F. R. Opperdoes, and P. J. Courtoy, Receptors for the host low density lipoproteins on the hemoflagellate Trypanosoma brucei: purification and involvement in the growth of the parasite, Proc Natl Acad Sci U S A, vol.85, pp.6753-6757, 1988.

J. D. Cox, N. N. Kim, A. M. Traish, and D. W. Christianson, Arginase-boronic acid complex highlights a physiological role in erectile function, Nat Struct Biol, vol.6, pp.1043-1050, 1999.

T. R. Dagenais, B. E. Freeman, K. P. Demick, D. M. Paulnock, and J. M. Mansfield, Processing and presentation of variant surface glycoprotein molecules to T cells in African trypanosomiasis, J. Immunol, vol.183, pp.3344-3355, 2009.

C. Dahl, H. P. Biemann, and J. Dahl, A protein kinase antigenically related to pp60v-src possibly involved in yeast cell cycle control: positive in vivo regulation by sterol, Proc Natl Acad Sci USA, vol.84, pp.4012-4016, 1987.

E. Dejesus, R. Kieft, B. Albright, N. A. Stephens, and S. L. Hajduk, A single amino acid substitution in the group 1 Trypanosoma brucei gambiense haptoglobinhaemoglobin receptor abolishes TLF-1 binding, PLoS Pathog, p.1003317, 2013.

D. Jong, E. C. Smits, H. H. Kapsenberg, and M. L. , Dendritic cell-mediated T cell polarization, Springer Semin Immunopathol, vol.3, pp.289-307, 200526.

D. Koning, H. P. Jarvis, and S. M. , Uptake of pentamidine in Trypanosoma brucei brucei is mediated by the P2 adenosine transporter and at least one novel, unrelated transporter, Acta Trop, vol.80, pp.245-250, 2001.

D. Macedo-silva, S. T. Urbina, J. A. De-souza, W. Rodrigues, and J. C. , In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis, PLoS One, vol.8, p.83247, 2013.

G. De-muylder, S. Daulouède, L. Lecordier, P. Uzureau, Y. Morias et al., A Trypanosoma brucei kinesin heavy chain promotes parasite growth by triggering host arginase activity, PLoS Pathog, vol.9, p.1003731, 2013.

P. W. Denny, M. C. Field, and D. F. Smith, GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida, Febs letters, vol.491, pp.148-53, 2001.

D. Souza, W. D. Rodrigues, and J. , Sterol biosynthesis pathway as target for antitrypanosomatid drugs, Interdiscip. Perspect. Infect. Dis, pp.1-19, 2009.

D. V. Devine, R. J. Falk, and A. E. Balber, Restriction of the alternative pathway of human complement by intact Trypanosoma brucei sub sp. gambiense, Infect Immun, vol.52, pp.223-232, 1986.

D. 'hondt, J. Van-meirvenne, N. Moens, L. Kondo, and M. , Ca 2+ is essential cofactor of trypanocidal activity of normal human serum, Nature, vol.282, pp.613-615, 1979.

M. J. Donovan, V. Tripathi, M. A. Favila, N. S. Geraci, M. C. Lange et al., Indoleamine 2,3-dioxygenase (IDO) induced by Leishmania infection of human dendritic cells, Parasite Immunol, vol.34, pp.464-72, 2012.

J. Drain, J. R. Bishop, and S. L. Hajduk, Haptoglobin-related protein mediates trypanosome lytic factor binding to trypanosomes, J. Biol. Chem, vol.276, pp.30254-30260, 2001.

M. B. Drennan, B. Stijlemans, and J. Van-den-abbeele, The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88-dependent, J Immunol, vol.175, pp.2501-2509, 2005.

S. Duleu, P. Vincendeau, P. Courtois, S. Semballa, I. Lagroye et al., Mouse Strain Susceptibility to Trypanosome Infection: An Arginase-Dependent Effect, J Immunol, vol.172, pp.6298-303, 2004.

J. E. Dutton, Note on a Trypanosoma occurring in the blood of man, British Medical Journal, vol.2177, pp.881-884, 1902.

P. A. Edwards and J. Ericsson, Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway, Annu Rev Biochem, vol.68, pp.157-185, 1999.

N. M. El-sayed, P. J. Myler, G. Blandin, M. Berriman, J. Crabtree et al., Comparative genomics of trypanosomatid parasitic protozoa, Science, vol.309, pp.404-409, 2005.

M. C. Field and M. Carrington, The trypanosome flagellar pocket, Nat Rev Microbiol, vol.7, pp.775-786, 2009.

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, vol.391, pp.806-817, 1998.

J. F. Flandin, F. Chano, and A. Descoteaux, RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-?primed macrophages, Eur. J. Immunol, vol.36, pp.411-420, 2006.

R. M. Forde, The discovery of the human Trypanosoma, British Medical Journal, vol.2187, p.1741, 1902.

V. V. Garrido, L. R. Dulgerian, C. C. Stempin, and F. M. Cerbán, The increase in mannose receptor recycling favors arginase induction and Trypanosoma cruzi survival in macrophages, Int J Biol Sci, vol.7, pp.1257-72, 2011.

E. Garzón, P. Holzmuller, R. Bras-gonçalves, P. Vincendeau, G. Cuny et al., The Trypanosoma brucei gambiense secretome impairs Lipopolysaccharide-induced maturation, cytokine production, and allostimulatory capacity of dendritic cells, Infection and Immunity, vol.8, pp.3300-3308, 2013.

N. J. Gay, M. F. Symmons, M. Gangloff, and C. E. Bryant, Assembly and localization of Tolllike receptor signalling complexes, Nat Rev Immunol, vol.14, pp.546-58, 2014.

R. T. Gazzinelli and E. Y. Denkers, Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism, Nat Rev Immunol, vol.12, issue.6, pp.895-906, 2006.

T. B. Geijtenbeek and S. I. Gringhuis, C-type lectin receptors in the control of T helper cell differentiation, Nat Rev Immunol, vol.7, pp.433-481, 201616.

A. Geiger, C. Hirtz, T. Bécue, E. Bellard, C. Centeno et al., Exocytosis and protein secretion in Trypanosoma, BMC Microbiology, vol.10, p.20, 2010.

W. C. Gibson, Will the real Trypanosoma gambiense please stand up, Parasitol Today, vol.2, pp.255-262, 1986.

W. Gibson, L. Nemetschke, and J. Ndung'u, Conserved sequence of the TgsGP gene in Group 1 Trypanosoma brucei gambiense, Infect. Genet. Evol, vol.10, pp.453-458, 2010.

C. Giroud, F. Ottones, V. Coustou, D. Dacheux, N. Biteau et al., Murine Models for Trypanosoma brucei gambiense disease progression-from silent to chronic infections and early brain tropism, PLoS Negl Trop Dis
URL : https://hal.archives-ouvertes.fr/hal-00426327

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw et al., The immunological synapse: a molecular machine controlling T cell activation, Science, vol.285, p.221, 1999.

V. Gros, M. Castillo-acosta, and C. J. Jiménez, New azasterols against Trypanosoma brucei: role of 24-sterol methyltransferase in inhibitor action, Antimicrobial Agents and Chemotherapy, vol.50, pp.2595-2601, 2006.

A. P. Gobert, S. Daulouede, M. Lepoivre, J. L. Boucher, B. Bouteille et al., L-Arginine availability modulates local nitric oxide production and parasite killing in experimental trypanosomiasis, Infect Immun, vol.68, pp.4653-4660, 2000.

J. L. Goldstein, R. A. Debose-boyd, and M. S. Brown, Protein sensors for membrane sterols, Cell, vol.124, pp.35-46, 2006.

P. Grébaut, P. Chuchana, J. P. Brizard, E. Demettre, M. Seveno et al., Identification of total and differentially expressed excreted-secreted proteins from Trypanosoma congolense strains exhibiting different virulence and pathogenicity, Int. J. Parasitol, vol.39, pp.1137-1150, 2009.

U. Grohmann, F. Fallarino, R. Bianchi, C. Vacca, C. Orabona et al., Tryptophan catabolism in nonobese diabetic mice, Adv Exp Med Biol, vol.527, pp.47-54, 2003.

B. Guilbert, G. Dighiero, and S. Avrameas, Naturally occurring antibodies against nine common antigens in human sera. I. Detection, isolation and characterization, J Immunol, vol.128, pp.2779-87, 1982.

M. Guilliams, G. Oldenhove, W. Noel, M. Hérin, L. Brys et al., African Trypanosomiasis: Naturally Occurring Regulatory T Cells Favor Trypanotolerance by Limiting Pathology Associated with Sustained Type 1, Inflammation J Immunol, vol.179, pp.2748-2757, 2007.

K. Gull, The cytoskeleton of trypanosomatid parasites, Annu Rev Microbiol, vol.53, pp.629-655, 1999.

K. M. Hager and S. L. Hajduk, Mechanism of resistance of African trypanosomes to cytotoxic human HDL, Nature, vol.385, pp.823-826, 1997.

J. Hall, H. Wang, and J. D. Barry, Mosaic VSGs and the Scale of Trypanosoma brucei Antigenic Variation, PLoS Pathog, vol.9, p.1003502, 2013.

M. Hamadien, N. Lycke, and M. Bakhiet, Induction of the trypanosome lymphocytetriggering factor (TLTF) and neutralizing antibodies to the TLTF in experimental african trypanosomiasis, Immunology, vol.96, pp.606-617, 1999.

M. Hamadien, M. Bakhiet, and R. A. Harris, Interferon-gamma induces secretion of trypanosome lymphocyte triggering factor via tyrosine protein kinases, Parasitology, vol.120, pp.281-288, 2000.

T. C. Hammarton, Cell cycle regulation in Trypanosoma brucei, Mol Biochem Parasitol, vol.153, pp.1-8, 2007.

T. C. Hammarton, S. Monnerat, and J. C. Mottram, Cytokinesis in trypanosomatids, Current Opinion in Microbiology, vol.10, pp.520-527, 2007.

T. Y. Hargrove, Z. Wawrzak, P. W. Alexander, J. H. Chaplin, M. Keenan et al., Complexes of Trypanosoma cruzi Sterol 14?-Demethylase (CYP51) with Two Pyridine-based Drug Candidates for Chagas Disease: structural basis for pathogen selectivity, J Biol Chem, vol.288, pp.31602-31615, 2013.

D. N. Hart, Dendritic cells: unique leukocyte populations which control the primary immune response, Blood, vol.90, pp.3245-3287, 1997.

B. A. Haubrich, U. K. Singha, M. B. Miller, C. R. Nes, H. Anyatonwu et al., Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth, Journal of Lipid Research, vol.56, pp.331-341, 2015.

F. Hawking, The differentiation of Trypanosoma rhodesiense from T. brucei by means of human serum, Trans R Soc Trop Med Hyg, vol.67, pp.517-527, 1973.

K. Hayashida, K. Kajino, L. Hachaambwa, B. Namangala, and C. Sugimoto, Direct Blood Dry LAMP: A Rapid, Stable, and Easy Diagnostic Tool for Human African Trypanosomiasis, PLoS Negl Trop Dis, vol.9, p.3578, 2015.

W. R. Heath, G. T. Belz, G. M. Behrens, C. M. Smith, S. P. Forehan et al., Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens, Immunol Rev, vol.199, pp.9-26, 2004.

C. Hertz-fowler, Telomeric expression sites are highly conserved in Trypanosoma brucei, Plos One, vol.3, p.3527, 2008.

G. Hide, P. Cattand, D. Leray, J. D. Barry, and A. Tait, The identification of Trypanosoma brucei subspecies using repetitive DNA sequences, Mol Biochem Parasitol, vol.39, pp.213-238, 1990.

C. A. Hoare, The trypanosomes of mammals. A zoological monograph, Blackwell Scientific Publications, 1972.

P. Holzmuller, D. G. Biron, P. Courtois, M. Koffi, R. Bras-goncalves et al., Virulence and pathogenicity patterns of Trypanosoma brucei gambiense field isolates in experimentally infected mouse: differences in host immune response modulation by secretome and proteomics, Microbes Infect, vol.10, pp.79-86, 2008.

D. Horn and J. D. Barry, The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes, Chromosome Res, vol.13, pp.525-533, 2005.

S. J. Howard, D. Cerar, M. J. Anderson, A. Albarrag, and M. C. Fisher, Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure, Emerg Infect Dis, vol.15, pp.1068-1076, 2009.

H. Ilboudo, V. Jamonneau, M. Koffi, J. Kaboré, R. Amoussa et al., Trypanosome-induced Interferon-? production in whole blood stimulation assays is associated with latent Trypanosoma brucei gambiense infections, Microbes Infect, vol.18, pp.436-476, 2016.

K. Ishida, J. Rodrigues, and M. D. Ribeiro, Growth inhibition and ultrastructural alterations induced by ?24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms, BMC Microbiology, vol.9, p.74, 2009.

V. Jamonneau, H. Ilboudo, J. Kaboré, D. Kaba, M. Koffi et al., Untreated human infections by Trypanosoma brucei gambiense are not 100% fatal, PLoS Negl Trop Dis, vol.6, p.1691, 2012.

C. Jiménez-jiménez, J. Carrero-lérida, M. Sealey-cardona, L. M. Ruiz-pérez, J. A. Urbina et al., ?24(25)-sterol methenyltransferase: intracellular localization and azasterol sensitivity in Leishmania major promastigotes overexpressing the enzyme, Molecular and Biochemical Parasitology, vol.160, pp.52-59, 2008.

D. C. Jones, B. J. Foth, M. D. Urbaniak, S. Patterson, and H. B. Ong, Genomic and Proteomic Studies on the Mode of Action of Oxaboroles against the African Trypanosome, PLoS Negl Trop Dis, vol.9, p.4299, 2015.

G. D. Kanmogne, J. R. Stevens, T. Asonganyi, and W. C. Gibson, Genetic heterogeneity in the Trypanosoma brucei gambiense genome analysed by random amplification of polymorphic DNA, Parasitol Res, vol.82, pp.535-576, 1996.

M. L. Kapsenberg, Dendritic-cell control of pathogen-driven T-cell polarization, Nat. Rev. Immunol, vol.3, pp.984-993, 2003.
DOI : 10.1038/nri1246

C. D. Kato, E. Matovu, C. M. Mugasa, A. Nanteza, and V. P. Alibu, The role of cytokines in the pathogenesis and staging of Trypanosoma brucei rhodesiense sleeping sickness, Allergy Asthma Clin Immunol, vol.12, p.4, 2016.

M. E. Khan, C. Borde, E. P. Rocha, V. Mériaux, V. Maréchal et al., TLR9 activation is triggered by the excess of stimulatory versus inhibitory motifs present in Trypanosomatidae DNA, PLoS Negl Trop Dis, vol.8, p.3308, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01342968

R. Kieft, P. Capewell, C. Turnerc, N. J. Veitchb, A. Macleodb et al., Mechanism of Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor, PNAS, vol.107, pp.16137-16141, 2010.

M. Kirrstetter, C. Lerin-lozano, H. Heintz, C. Manegold, W. L. Gross et al., Trypanosomiasis in a woman from Cameroon mimicking systemic lupus erythematosus, Dtsch. Med. Wochenschr, vol.129, pp.1315-1317, 2004.

G. Krishnegowda, A. M. Hajjar, J. Zhu, E. J. Douglass, S. Uematsu et al., Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity, J. Biol. Chem, vol.280, pp.8606-8616, 2005.

D. J. Lacount, S. Bruse, K. L. Hill, and J. E. Donelson, Double-stranded RNA interference in Trypanosoma brucei using head-to-head promoters, Mol Biochem Parasitol, vol.111, pp.67-76, 2000.

G. Langousis and K. L. Hill, Motility and more: the flagellum of Trypanosoma brucei, Nat Rev Microbiol, vol.12, pp.505-523, 2014.

K. Lazardi, J. A. Urbina, and W. De-souza, Ultrastructural alterations induced by two ergosterol biosynthesis inhibitors, ketoconazole and terbinafine, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi, Antimicrobial Agents and Chemotherapy, vol.34, pp.2097-2105, 1990.

G. Lecointre and H. Guyader, La classification phylogénétique du vivant, 2006.

L. Lefèvre, G. Lugo-villarino, E. Meunier, A. Valentin, D. Olagnier et al., The C-type lectin receptors dectin-1, MR, and SIGNR3 contribute both positively and negatively to the macrophage response to Leishmania infantum, Immunity, vol.38, pp.1038-1087, 201323.

G. I. Lepesheva, W. D. Nes, W. Zhou, G. C. Hill, and M. R. Waterman, CYP51 from Trypanosoma brucei is obtusifoliol-specific, Biochemistry, vol.43, pp.10789-10799, 2004.

G. I. Lepesheva, R. D. Ott, T. Y. Hargrove, Y. Y. Kleshchenko, I. Schuster et al., Sterol 14alpha-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth, Chem Biol, vol.14, pp.1283-1293, 2007.
DOI : 10.1016/j.chembiol.2007.10.011

URL : https://doi.org/10.1016/j.chembiol.2007.10.011

G. I. Lepesheva and M. R. Waterman, Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms, Biochim Biophys Acta, vol.1770, pp.467-477, 2007.
DOI : 10.1016/j.bbagen.2006.07.018

URL : http://europepmc.org/articles/pmc2324071?pdf=render

G. I. Lepesheva, H. W. Park, T. Y. Hargrove, B. Vanhollebeke, and Z. Wawrzak, Crystal structures of Trypanosoma brucei sterol 14alpha-demethylase and implications for selective treatment of human infections, J Biol Chem, vol.285, pp.1773-1780, 2010.

G. I. Lepesheva and M. R. Waterman, Sterol 14alpha-demethylase (CYP51) as a therapeutic target for human trypanosomiasis and leishmaniasis, Curr Top Med Chem, vol.11, pp.2060-2071, 2011.

G. I. Lepesheva, T. Y. Hargrove, G. Rachakonda, Z. Wawrzak, S. Pomel et al., VFV as a New Effective CYP51 structure-derived drug candidate for Chagas disease and visceral leishmaniasis, The Journal of Infectious Diseases, vol.212, pp.1439-1487, 2015.
DOI : 10.1093/infdis/jiv228

URL : http://europepmc.org/articles/pmc4601915?pdf=render

X. Li, N. Brown, A. S. Chau, J. L. Lopez-ribot, and M. T. Ruesga, Changes in susceptibility to posaconazole in clinical isolates of Candida albicans, J Antimicrob Chemother, vol.53, pp.74-80, 2004.

X. Liao, N. Sharma, F. Kapadia, G. Zhou, Y. Lu et al., Krüppel-like factor 4 regulates macrophage polarization, J Clin Invest, vol.121, pp.2736-2785, 2011.
DOI : 10.1172/jci45444

URL : http://www.jci.org/articles/view/45444/files/pdf

T. Liechtenstein, I. Dufait, C. Bricogne, A. Lanna, J. Pen et al., PDL1/PD-1 Co-Stimulation, a Brake for T cell Activation and a T cell Differentiation Signal, J Clin Cell Immunol, vol.30, p.12, 2012.

A. Liendo, G. Visbal, M. M. Piras, R. Piras, and J. A. Urbina, Sterol composition and biosynthesis in Trypanosoma cruzi amastigotes, Molecular and Biochemical Parasitology, vol.104, pp.81-91, 1999.
DOI : 10.1016/s0166-6851(99)00129-2

J. D. Lonsdale-eccles and D. J. Grab, Trypanosome hydrolase and the blood-brain barrier, Trends Parasitol, vol.18, pp.17-19, 2002.

S. O. Lorente, R. Gomez, and C. Jiménez-jiménez, Biphenylquinuclidines as inhibitors of squalene synthase and growth of parasitic protozoa, Bioorganic and Medicinal Chemistry, vol.13, pp.3519-3529, 2005.

C. S. Ma, N. Wong, G. Rao, A. Nguyen, D. T. Avery et al.,

B. Grimbacher, K. Warnatz, S. M. Holland, G. Uzel, J. L. Casanova et al., Unique and shared signaling pathways cooperate to regulate the differentiation of human CD4+ T cells into distinct effector subsets, J Exp Med, vol.213, pp.1589-608, 2016.

F. Magaraci, C. J. Jiménez, and C. Rodrigues, Azasterols as inhibitors of sterol 24methyltransferase in Leishmania species and Trypanosoma cruzi, Journal of Medicinal Chemistry, vol.46, pp.4714-4727, 2003.

S. Magez, M. Radwanska, A. Beschin, K. Sekikawa, D. Baetselier et al., Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections, Infect. Immun, vol.67, pp.3128-3132, 1999.

S. Magez, M. Radwanska, and M. Drennan, Interferon-gamma and nitric oxide in collaboration with antibodies are key protective host immune factors during trypanosome Tc13 infections, J Infect Dis, vol.193, pp.1575-1583, 2006.

D. Malvy and F. Chappuis, Sleeping sickness, Clin Microbiol Infect, vol.17, pp.986-995, 2011.

P. A. Mann, R. M. Parmegiani, S. Q. Wei, C. A. Mendrick, and X. Li, Mutations in Aspergillus fumigatus resulting in reduced susceptibility to posaconazole appear to be restricted to a single amino acid in the cytochrome P450 14alpha-demethylase, Antimicrob Agents Chemother, vol.47, pp.577-581, 2003.

L. Marcello and J. D. Barry, Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure, Genome Res, vol.17, pp.1344-1352, 2007.

K. Mariño, M. L. Güther, A. K. Wernimont, M. Amani, R. Hui et al., Identification, subcellular localization, biochemical properties, and high-resolution crystal structure of Trypanosoma brucei UDP-glucose pyrophosphorylase, Glycobiology, vol.20, pp.1619-1649, 2010.

K. R. Matthews, The developmental cell biology of Trypanosoma brucei, Journal of Cell Science, vol.118, pp.283-290, 2005.

A. L. Mellor and D. H. Munn, IDO expression by dendritic cells: tolerance and tryptophan catabolism, Nat Rev Immunol, vol.4, pp.762-74, 2004.
DOI : 10.1038/nri1457

L. I. Mccall, E. Aroussi, A. Choi, J. Y. Vieira, D. F. et al., Targeting Ergosterol biosynthesis in Leishmania donovani: essentiality of sterol 14 alphademethylase, PLoS Negl Trop Dis, vol.9, p.3588, 2015.

P. G. Mckean, Coordination of cell cycle and cytokinesis in Trypanosoma brucei, Curr Opin Microbiol, vol.6, pp.600-607, 2003.

A. F. Mcgettrick, S. E. Corcoran, P. J. Barry, J. Mcfarland, C. Crès et al., Trypanosoma brucei metabolite indolepyruvate decreases HIF-1? and glycolysis in macrophages as a mechanism of innate immune evasion, Proc Natl Acad Sci U S A, vol.113, pp.7778-7787, 2016.

P. Mcgregor, B. Szöor, and N. J. Savill, Matthews KR Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act, Nature reviews Microbiology, vol.10, pp.431-438, 2012.

C. Michelle, A. Nten, N. Sommerer, V. Rofidal, C. Hirtz et al., Excreted/secreted proteins from trypanosome procyclic strains; J of biomedicine and biotechnology, p.212817, 2010.

O. R. Millington, D. Lorenzo, C. Phillips, R. S. Garside, P. Brewer et al., Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoininduced failure of dendritic cell function, J. Biol, vol.5, p.5, 2006.

K. A. Mitropoulos, G. F. Gibbons, and B. E. Reeves, Lanosterol 14alpha-demethylase. Similarity of the enzyme system from yeast and rat liver, Steroids, vol.6, pp.821-829, 1976.

J. Molina, O. Martins-filho, Z. Brener, A. J. Romanha, and D. Loebenberg, Activities of the triazole derivative SCH 56592 (posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts, Antimicrob Agents Chemother, vol.44, pp.150-155, 2000.

M. P. Molina-portela, M. Samanovic, and J. Raper, Distinct roles of apolipoprotein components within the trypanosome lytic factor complex revealed in a novel transgenic mouse model, J. Exp. Med, vol.205, pp.1721-1728, 2008.

A. Montalvetti, A. Fernandez, and J. M. Sanders, Farnesyl pyrophosphate synthase is an essential enzyme in Trypanosoma brucei. In vitro RNA interference and in vivo inhibition studies, J Biol Chem, vol.278, pp.17075-83, 2003.

L. J. Morrison, L. Marcello, and R. Mcculloch, Antigenic variation in the African trypanosome: molecular mechanisms and phenotypic complexity, Cell. Microbiol, vol.11, pp.1724-1734, 2009.
DOI : 10.1111/j.1462-5822.2009.01383.x

URL : http://eprints.gla.ac.uk/8339/1/8339.pdf

T. R. Mosmann, M. W. Bond, R. L. Coffman, J. Ohara, and W. E. Paul, T-cell and mast cell lines respond to B-cell stimulatory factor 1, Proc Natl Acad Sci, vol.83, pp.5654-5662, 1986.
DOI : 10.1073/pnas.83.15.5654

URL : http://www.pnas.org/content/83/15/5654.full.pdf

T. R. Mosmann, T. Yokota, R. Kastelein, S. M. Zurawski, N. Arai et al., Speciesspecificity of T cell stimulating activities of IL 2 and BSF-1 (IL 4): comparison of normal and recombinant, mouse and human IL 2 and BSF-1 (IL 4), J Immunol, vol.138, pp.1813-1819, 1987.

S. A. Motyka and P. T. Englund, RNA interference for analysis of gene function in trypanosomatids, Curr Opin Microbiol, vol.7, pp.362-368, 2004.

M. Ngoyi, D. Lejon, V. Pyana, and P. , How to shorten patient follow-up after treatment for Trypanosoma brucei gambiense sleeping sickness, J Infect Dis, vol.201, pp.453-463, 2010.

M. Munder, Arginase: an emerging key player in the mammalian immune system, British Journal of Pharmacology, vol.158, pp.638-651, 2009.

B. Namangala, L. Brys, and S. Magez, Trypanosoma brucei brucei infection impairs MHC Class II antigen presentation capacity of macrophages, Parasite Immunol, vol.22, pp.361-370, 2000.

B. Namangala, C. Sugimoto, and N. Inoue, Effects of exogenous transforming factor b on Trypanosoma congolense infection in mice, Infect Immun, vol.75, pp.1878-1885, 2007.

B. Namangala, D. Baetselier, P. Beschin, and A. , Quantitative differences in immune responses in mouse strains that differ in their susceptibility to Trypanosoma brucei brucei infection, J Vet Med, vol.71, pp.951-956, 2009.

B. Namangala, How the African trypanosomes evade host immune killing, Parasite Immunology, vol.33, pp.430-437, 2011.

C. Napoli, C. Lemieux, and R. Jorgensen, Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans, Plant Cell, vol.2, pp.279-289, 1990.

M. Navarro and K. A. Gull, pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei, Nature, vol.414, pp.759-763, 2001.

M. Navarro, X. Penate, and D. Landeira, Nuclear architecture underlying gene expression in Trypanosoma brucei, Trends Microbiol, vol.15, pp.263-270, 2007.
DOI : 10.1016/j.tim.2007.04.004

W. R. Nes and M. L. Mckean, Biochemistry of Steroids and Other Isoprenoids, 1977.

C. R. Nes, U. K. Singha, J. Liu, K. Ganapathy, F. Villalta et al., Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms, Biochem J, vol.443, pp.267-277, 2012.

H. Ngô, C. Tschudi, K. Gull, and E. Ullu, Double-stranded RNA induces mRNA degradation in Trypanosoma brucei, Proc Natl Acad Sci U S A, vol.95, pp.14687-92, 1998.

M. Niemann, S. Wiese, J. Mani, A. Chanfon, C. Jackson et al., Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology, Mol Cell Proteomics, vol.12, pp.515-543, 2013.

Z. K. Njiru, A. S. Mikosza, T. Armstrong, J. C. Enyaru, J. M. Ndung'u et al., Loopmediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense, PLoS Negl Trop Dis, vol.6, p.147, 2008.

R. Nzoumbou-boko, M. Dethoua, F. Gabriel, A. Buguet, R. Cespuglio et al., Biomarker of Treatment Efficacy in Human African Trypanosomiasis Journal of Clinical Microbiology, vol.51, pp.2379-2381, 2013.

D. Okenu, K. N. Opara, R. I. Nwuba, and M. Nwagwu, Purification and characterisation of an extracellular released protease of Trypanosoma brucei, Parasitol. Res, vol.85, pp.424-428, 1999.

M. C. Okomo-assoumou, S. Daulouede, J. L. Lemesre, N. 'zila-mouanda, A. Vincendeau et al., Correlation of high serum levels of tumor necrosis factor-alpha with disease severity in human African trypanosomiasis, Am J Trop Med Hyg. 1 9, vol.9, pp.539-582

P. R. Ortiz-de-montellano and M. A. Correia, Inhibition of cytochrome P450 enzymes, Cytochrome P450: Structure, Mechanism, and Biochemistry, vol.3, pp.305-364, 1995.

E. Y. Osorio, B. L. Travi, A. M. Da-cruz, O. A. Saldarriaga, A. A. Medina et al., Growth factor and Th2 cytokine signaling pathways converge at STAT6 to promote arginase expression in progressive experimental visceral leishmaniasis, PLoS Pathog, vol.6, p.1004165, 201410.

A. L. Pauleau, R. Rutschman, R. Lang, A. Pernis, S. S. Watowich et al., Enhancer mediated control of macrophage-specific arginase I expression, J Immunol, vol.172, pp.7565-73, 2004.

E. Pays, B. Vanhollebeke, P. Uzureau, L. Lecordier, and D. Pérez-morga, The molecular arms race between African trypanosomes and humans, Nature reviews Microbiology, vol.12, pp.575-584, 2014.

L. W. Parks and W. M. Casey, Physiological implications of sterol biosynthesis in yeast, Annu Rev Microbiol, vol.49, pp.95-116, 1995.

D. M. Paulnock, B. E. Freeman, and J. Mansfield, Modulation of innate immunity by African trypanosomes, Parasitology, vol.137, pp.2051-2063, 2010.

D. Pérez-morga, Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes, Science, vol.309, pp.469-472, 2005.

D. Perdomo, M. Bonhivers, and D. R. Robinson, The trypanosome flagellar pocket collar and its ring forming protein-TbBILBO1, Cells, vol.5, p.9, 2016.

K. Pletinckx, B. Stijlemans, V. Pavlovic, R. Laube, C. Brandl et al., Similar inflammatory DC maturation signatures induced by TNF or Trypanosoma brucei antigens instruct default Th2-cell responses, Eur. J. Immunol, vol.41, pp.3479-3494, 2011.

S. Pomel, S. Cojean, and P. M. Loiseau, Targeting sterol metabolism for the development of antileishmanials, Trends in Parasitology, vol.31, pp.5-7, 2015.

G. Priotto, S. Kasparian, W. Mutombo, D. Ngouama, and S. Ghorashian, Nifurtimoxeflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial, Lancet, vol.374, pp.56-64, 2009.

S. Puhr, J. Lee, E. Zvezdova, Y. J. Zhou, and K. Liu, Dendritic cell development-History, advances, and open questions, Seminars in Immunology, vol.27, pp.388-396, 2015.

M. Radwanska, The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense, Am. J. Trop. Med. Hyg, vol.67, pp.684-690, 2002.

M. Radwanska, Novel primer sequences for a polymerase chain reactionbased detection of Trypanosoma brucei gambiense, Am. J. Trop. Med. Hyg, vol.67, pp.289-295, 2002.

S. Ramakrishnan, M. Serricchio, B. Striepen, and P. Bütikofer, Lipid synthesis in protozoan parasites: A comparison between kinetoplastids and apicomplexans, Progress in Lipid Research, vol.52, pp.488-512, 2013.

D. J. Recktenwald, Introduction to flow cytometry: principles, fluorochromes, instrument set-up, calibration, J Hematother, vol.2, pp.387-94, 1993.

C. Reis-e-sousa, Dendritic cells in a mature age, Nat Rev Immunol, vol.6, pp.476-83, 2006.

L. Rivière, P. Moreau, S. Allmann, M. Hahn, M. Biran et al., Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procylic cell trypanosomes, Proc. Natl. Acad. U.S.A, vol.106, pp.12694-12699, 2009.

C. W. Roberts, R. Mcleodm, D. W. Rice, M. Ginger, M. L. Chance et al., Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa, Mol Biochem Parasitol, vol.126, pp.129-142, 2003.

D. R. Robinson and K. Gull, Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle, Nature, vol.352, pp.731-734, 1991.

J. Rodrigues, M. Attias, C. Rodriguez, J. A. Urbina, and W. De-souza, Ultrastructural and biochemical alterations induced by 22,26-azasterol, a ?24(25)-sterol methyltransferase inhibitor, on promastigote and amastigote forms of Leishmania amazonensis, Antimicrobial Agents and Chemotherapy, vol.46, pp.487-499, 2002.

J. Rodrigues, J. L. Concepcion, C. Rodrigues, A. Caldera, J. A. Urbina et al., In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical, and ultrastructural effects, Antimicrobial Agents and Chemotherapy, vol.52, pp.4098-4114, 2008.

J. Rodrigues, J. A. Urbina, and W. De-souza, Antiproliferative and ultrastructural effects of BPQ-OH, a specific inhibitor of squalene synthase, on Leishmania amazonensis, Experimental Parasitology, vol.111, pp.230-238, 2005.

M. M. Rodrigues, A. C. Oliveira, and M. Bellio, The Immune Response to Trypanosoma cruzi: Role of Toll-Like Receptors and Perspectives for Vaccine Development, J Parasitol Res, p.507874, 2012.

M. Rohmer, P. Bouvier, and G. Ourisson, Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols, Proc Natl Acad Sci U S A, vol.76, pp.847-851, 1979.

G. Rudenko, African trypanosomes: the genome and adaptations for immune evasion, Essays Biochem, vol.51, pp.47-62, 2011.

D. L. Sacks and B. A. Askonas, Trypanosome induced suppression of anti-parasite responses during experimental African trypanosomiasis, Eur J Immunol, vol.10, pp.971-974, 1980.

F. Sallusto and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin-4 and down-regulated by tumor necrosis factor ?, J Exp Med, vol.179, pp.1109-1127, 1994.

D. Salmon, Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host, Science, vol.337, pp.463-466, 2012.

D. Sanglard, Resistance of human fungal pathogens to antifungal drugs, Curr Opin Microbiol, vol.5, pp.379-85, 2002.

A. T. Satpathy, X. Wu, J. C. Albring, and K. M. Murphy, Re(de)fining the dendritic cell lineage, nature immunology, vol.13, pp.1145-1154, 2012.

M. Sealey-cardona, S. Cammerer, and S. Jones, Kinetic characterization of squalene synthase from Trypanosoma cruzi: selective inhibition by quinuclidine derivatives, Antimicrobial Agents and Chemotherapy, vol.51, pp.2123-2129, 2007.

M. Serricchio, A. W. Schmid, M. E. Steinmann, E. Sigel, M. Rauch et al., Flagellar membranes are rich in raftforming phospholipids, Biology Open, vol.4, pp.1143-1153, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01301208

A. Sher, K. Tosh, and D. Jankovic, Innate recognition of Toxoplasma gondii in humans involves a mechanism distinct from that utilized by rodents, Semin Immunol, vol.27, pp.388-96, 2015.

P. P. Simarro, G. Cecchi, J. R. Franco, M. Paone, A. Diarra et al., Jannin JG Estimating and mapping the population at risk of sleeping sickness, PLoS Negl Trop Dis, vol.6, p.1859, 2012.

L. Simpson, The mitochondrial genome of kinetoplastid protozoa: genomic organization, transcription, replication, and evolution, Annu Rev Microbiol, vol.41, pp.363-82, 1987.

P. Sinha, V. K. Clements, S. Miller, and S. Ostrand-rosenberg, Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression, Cancer Immunol Immunother, vol.54, pp.1137-1179, 2005.
DOI : 10.1007/s00262-005-0703-4

T. K. Smith and P. Butikofer, Lipid metabolism in Trypanosoma brucei, Mol Biochem Parasitol, vol.172, pp.66-79, 2010.

M. Soeiro, E. M. Souza, C. F. Silva, B. Dda, G. Batista et al., In vitro and in vivo studies of the antiparasitic activity of sterol 14?-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi, Antimicrob Agents Chemother, vol.57, pp.4151-63, 2013.

A. L. Springer, D. F. Bruhn, K. W. Kinzel, N. F. Rosenthal, R. Zukas et al., Silencing of a putative inner arm dynein heavy chain results in flagellar immobility in Trypanosoma brucei, Mol Biochem Parasitol, vol.175, pp.68-75, 2011.

R. M. Steinman and Z. A. Cohn, Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution, J. Exp. Med, vol.137, pp.1142-1162, 1973.

B. Stijlemans, T. N. Baral, and M. Guilliams, A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology, J Immunol, vol.179, pp.4003-4014, 2007.
DOI : 10.4049/jimmunol.179.6.4003

URL : https://biblio.ugent.be/publication/8614907/file/8614908.pdf

N. Sukhbaatar, M. Hengstschläger, and T. Weichhart, mTOR-Mediated Regulation of Dendritic Cell Differentiation and Function, Trends Immunol, vol.7, 2016.

A. J. Szempruch, S. E. Sykes, R. Kieft, L. Dennison, A. C. Becker et al., Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia, Cell, vol.164, pp.246-57, 2016.
DOI : 10.1016/j.cell.2015.11.051

URL : https://doi.org/10.1016/j.cell.2015.11.051

E. Torreele, B. Bourdin-trunz, D. Tweats, M. Kaiser, and R. Brun, Fexinidazole-a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness, PLoS Negl Trop Dis, vol.4, p.923, 2010.

J. M. Trzaskos, W. D. Bowen, A. Shafiee, R. T. Fischer, and J. L. Gaylor, Cytochrome P-450dependent oxidation of lanosterol in cholesterol biosynthesis. Microsomal electron transport and C-32 demethylation, J. Biol. Chem, vol.259, pp.13402-13412, 1984.

K. M. Tyler, A. Fridberg, and K. M. Toriello, Flagellar membrane localization via association with lipid rafts, J Cell Sci, vol.122, pp.859-66, 2009.
DOI : 10.1242/jcs.037721

URL : http://jcs.biologists.org/content/122/6/859.full.pdf

J. A. Urbina, J. Vivas, and K. Lazardi, Antiproliferative effects of ?24(25) sterol methyl transferase inhibitors on Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies, Chemotherapy, vol.42, pp.294-307, 1996.

J. A. Urbina, G. Visbal, L. M. Contreras, G. Mclaughlin, and R. Docampo, Inhibitors of ?24(25) sterol methyltransferase block sterol synthesis and cell proliferation in Pneumocystis carinii, Antimicrobial Agents and Chemotherapy, vol.41, pp.1428-1432, 1997.

J. A. Urbina, J. L. Concepcion, S. Rangel, G. Visbal, and R. Lira, Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania Mexicana, Molecular and Biochemical Parasitology, vol.125, pp.35-45, 2002.

J. A. Urbina, J. L. Concepcion, and A. Caldera, In vitro and in vivo activities of E5700 and ER-119884, two novel orally active squalene synthase inhibitors, against Trypanosoma cruzi, Antimicrobial Agents and Chemotherapy, vol.48, pp.2379-2387, 2004.

P. Uzureau, Mechanism of Trypanosoma gambiense resistance to human serum, Nature, vol.501, pp.430-434, 2013.
DOI : 10.1038/nature12516

URL : https://hal.archives-ouvertes.fr/hal-02124025

L. Vanhamme, Apolipoprotein L-I is the trypanosome lytic factor of human serum, Nature, vol.422, pp.83-87, 2003.

B. Vanhollebeke, Distinct roles of haptoglobin-related protein and apolipoprotein L-I in trypanolysis by human serum, Proc. Natl Acad. Sci. USA, vol.104, pp.4118-4123, 2007.

B. Vanhollebeke, A haptoglobin-haemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans, Science, vol.320, pp.677-681, 2008.

M. A. Vannier-santos, J. A. Urbina, A. Martiny, A. Neves, and W. De-souza, Alterations induced by the antifungal compounds ketoconazole and terbinafine in Leishmania, The Journal of Eukaryotic Microbiology, vol.42, pp.337-346, 1995.

K. Vickerman, Developmental cycles and biology of pathogenic trypanosomes, Br. Med. Bull, vol.41, pp.105-114, 1985.

P. Vincendeau, A. P. Gobert, S. Daulouède, D. Moynet, and M. D. Mossalayi, Arginases in parasitic diseases, Trends Parasitol, vol.1, pp.9-12, 2003.
DOI : 10.1016/s1471-4922(02)00010-7

G. Visbal, A. Alvarez, and B. Moreno, Sadenosyl-L-methionine inhibitors ?24-sterol methyltransferase and ?24(28)-sterol methylreductase as possible agents against Paracoccidioides brasiliensis, Antimicrobial Agents and Chemotherapy, vol.47, pp.2966-2970, 2003.
DOI : 10.1128/aac.47.9.2966-2970.2003

URL : https://aac.asm.org/content/47/9/2966.full.pdf

J. Vivas, J. A. Urbina, and W. De-souza, Ultrastructural alterations in Trypanosoma (Schizotrypanum) cruzi induced by ?24(25) sterol methyl transferase inhibitors and their combinations with ketoconazole, International Journal of Antimicrobial Agents, vol.7, pp.235-240, 1996.
DOI : 10.1016/s0924-8579(96)00325-1

H. P. Voorheis, Fatty acid uptake by bloodstream forms of Trypanosoma brucei and other species of the kinetoplastida, Mol Biochem Parasitol, vol.1, pp.177-186, 1980.

J. K. Volkman, Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways, Org Geochem, vol.36, pp.139-159, 2005.
DOI : 10.1016/j.orggeochem.2004.06.013

I. Vouldoukis, J. C. Drapier, A. K. Nüssler, Y. Tselentis, D. Silva et al., Canine visceral leishmaniasis: successful chemotherapy induces macrophage antileishmanial activity via the L-arginine nitric oxide pathway, Antimicrob Agents Chemother, vol.40, pp.253-259, 1996.

D. A. Vuitton and B. Gottstein, Echinococcus multilocularis and its intermediate host: a model of parasite-host interplay, J. Biomed. Biotechnol, p.923193, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00493348

J. R. Waldbauer, D. K. Newman, and R. E. Summons, Microaerobic steroid biosynthesis and the molecular fossil record of Archean life, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.13409-13414, 2011.

Z. Wang, J. C. Morris, M. E. Drew, and P. T. Englund, Inhibition of Trypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters, J Biol Chem, vol.275, pp.40174-40183, 2000.

G. Wei and H. Tabel, Regulatory T cells prevent control of experimental African trypanosomiasis, J Immunol, vol.180, pp.2514-2521, 2008.

E. Wirtz, S. Leal, C. Ochatt, and G. A. Cross, A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei, Mol Biochem Parasitol, vol.99, pp.89-101, 1999.

R. Woodward and K. Gull, Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei, J Cell Sci, vol.95, pp.49-57, 1990.

L. Xiao, V. Madison, A. S. Chau, D. Loebenberg, R. E. Palermo et al., Threedimensional models of wild-type and mutated forms of cytochrome P450 14alphasterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding, Antimicrob Agents Chemother, vol.48, pp.568-74, 2004.

H. V. Xong, A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense, Cell, vol.95, pp.839-846, 1998.

W. Xu, F. F. Hsu, E. Baykal, J. Huang, and K. Zhang, Sterol biosynthesis is required for heat resistance but not extracellular survival in Leishmania, PLoS Pathog, vol.10, p.1004427, 2014.
DOI : 10.1371/journal.ppat.1004427

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1004427&type=printable

Y. Yoshida and Y. Aoyama, Yeast cytochrome P-450 catalyzing lanosterol 14 alphademethylation. I. Purification and spectral properties, J. Biol. Chem, vol.259, pp.1655-1660, 1984.

J. Zabaleta, D. J. Mcgee, A. H. Zea, C. P. Hernández, P. C. Rodriguez et al., Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta), J Immunol, vol.173, pp.586-93, 2004.

T. Zelante, D. Luca, A. , D. Angelo, C. Moretti et al., IL-17/Th17 in anti-fungal immunity: what's new?, Eur J Immunol, vol.39, pp.645-653, 2009.
DOI : 10.1002/eji.200839102

H. Zeng, S. Cohen, C. Guy, S. Shrestha, G. Neale et al., mTORC1 and mTORC2 Kinase Signaling and Glucose Metabolism Drive Follicular Helper T Cell Differentiation, Immunity, vol.45, pp.540-54, 2016.

W. Zhou, G. A. Cross, and W. D. Nes, Cholesterol import fails to prevent catalyst-based inhibition of ergosterol synthesis and cell proliferation of Trypanosoma brucei, J Lipid Res, vol.48, pp.665-673, 2007.

J. Zhu, H. Yamane, and W. E. Paul, Differentiation of effector CD4T cell populations, Annu. Rev. Immunol, vol.28, pp.445-489, 2010.