C. Drosten, S. Günther, and W. Preiser, Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome, New England Journal of Medicine, vol.348, pp.1967-1976, 2003.
URL : https://hal.archives-ouvertes.fr/pasteur-00167033

A. M. Zaki, . Boheemen-s-van, and T. M. Bestebroer, Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia, New England Journal of Medicine, vol.367, pp.1814-1820, 2012.

R. Lu, X. Zhao, and J. Li, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet, vol.395, pp.565-574, 2020.

V. D. Menachery, B. L. Yount, and K. Debbink, A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence, Nat. Med, vol.21, pp.1508-1513, 2015.

B. Hu, L. Zeng, Y. , and X. , Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus, PLoS Pathog, vol.13, p.1006698, 2017.

H. Luk, X. Li, and J. Fung, Molecular epidemiology, evolution and phylogeny of SARS coronavirus, Infect. Genet. Evol, vol.71, pp.21-30, 2019.

J. Cui, F. Li, and Z. Shi, Origin and evolution of pathogenic coronaviruses, Nature Reviews Microbiology, vol.17, pp.181-192, 2019.

H. Song, C. Tu, and G. Zhang, Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.2430-2435, 2005.

J. Sabir, T. Lam, and M. Ahmed, Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia, Science, vol.351, pp.81-84, 2016.

A. D. Luis, D. Hayman, O. Shea, and T. J. , A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?, Proc. Biol. Sci, vol.280, 2013.

P. Zhou, X. Yang, and X. Wang, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, vol.579, pp.270-273, 2020.

X. Ge, N. Wang, and W. Zhang, Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft, Virol. Sin, vol.31, pp.31-40, 2016.

H. Zhou, X. Chen, and T. Hu, A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein, Current Biology, vol.30, pp.2196-2203, 2020.

F. Ferron, L. Subissi, and A. T. Silveira-de-morais, Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.162-171, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094607

D. Casane, M. Policarpo, and P. Laurenti, Pourquoi le taux de mutation n'est-il jamais égal à zéro ?, Med Sci, vol.35, pp.245-251, 2019.

R. L. Graham and R. S. Baric, Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission, J. Virol, vol.84, pp.3134-3146, 2010.

T. Lam, M. Shum, and H. Zhu, Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins, Nature, 2020.

K. Xiao, J. Zhai, and Y. Feng, Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins, Nature, pp.1-7, 2020.

P. Liu, J. Jiang, and X. Wan, Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)?, PLoS Pathog, vol.16, p.1008421, 2020.

T. Zhang, Q. Wu, and Z. Zhang, Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak, Current Biology, vol.30, pp.1346-1351, 2020.

C. Huang, Y. Wang, and X. Li, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, vol.395, pp.497-506, 2020.

K. G. Andersen, A. Rambaut, and W. I. Lipkin, The proximal origin of SARS-CoV-2, Nature Medicine, vol.26, pp.450-452, 2020.

V. Cheng, S. Lau, and P. Woo, Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection, Clinical Microbiology Reviews, vol.20, pp.660-694, 2007.

C. Ziegler, S. J. Allon, and S. K. Nyquist, SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues, Cell, vol.181, pp.1016-1035, 2020.

M. Hoffmann, H. Kleine-weber, and S. Schroeder, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, vol.181, pp.271-280, 2020.

D. Wrapp, N. Wang, and K. S. Corbett, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, vol.367, pp.1260-1263, 2020.

A. C. Walls, Y. Park, and M. A. Tortorici, Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell, vol.181, pp.281-292, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02546518

Q. Wang, Y. Zhang, and L. Wu, Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2, Cell, vol.181, pp.894-904, 2020.

L. Ni, F. Ye, and M. Cheng, Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals, vol.2020

M. Letko, A. Marzi, and V. Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nature Microbiology, vol.5, pp.562-569, 2020.

R. Yan, Y. Zhang, and Y. Li, Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science, vol.367, pp.1444-1448, 2020.

C. A. Russell, J. M. Fonville, and A. Brown, The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host, Science, vol.336, pp.1541-1547, 2012.

M. Imai, T. Watanabe, and M. Hatta, Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets, Nature, vol.486, pp.420-428, 2012.

T. Committee-on-science, A. P. , G. Sciences-b-on, and L. , , 2013.

T. P. Van-boeckel, M. J. Tildesley, and C. Linard, The Nosoi commute: a spatial perspective on the rise of BSL-4 laboratories in cities, 2013.

M. Enserink, Singapore Lab Faulted in SARS Case, Science, vol.301, pp.1824-1824, 2003.

D. Normile, Lab Accidents Prompt Calls for New Containment Program, Science, vol.304, pp.1223-1225, 2004.

R. D. Henkel, T. Miller, and R. S. Weyant, Monitoring Select Agent Theft, Loss and Release Reports in the United States, Applied Biosafety, 2004.

W. Ren, X. Qu, and W. Li, Difference in Receptor Usage between Severe Acute Respiratory Syndrome (SARS) Coronavirus and SARS-Like Coronavirus of Bat Origin, JVI, vol.82, pp.1899-1907, 2008.

V. D. Menachery, K. H. Dinnon, and B. L. Yount, Trypsin Treatment Unlocks Barrier for Zoonotic Bat Coronavirus Infection, J. Virol, vol.94, 2020.

L. Zeng, Y. Gao, and X. Ge, Bat Severe Acute Respiratory Syndrome-Like Coronavirus WIV1 Encodes an Extra Accessory Protein, ORFX, Involved in Modulation of the Host Immune Response, Journal of Virology, vol.90, pp.6573-6582, 2016.

K. E. Follis, J. York, and J. H. Nunberg, Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry, Virology, vol.350, 2006.

S. Belouzard, V. C. Chu, and G. R. Whittaker, Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.5871-5876, 2009.

T. Thao, F. Labroussaa, and N. Ebert, Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform, Nature, pp.1-8, 2020.

B. Coutard, C. Valle, and . Lamballerie-x-de, The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antiviral Res, vol.176, p.104742, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02890592

M. Moulard and E. Decroly, Maturation of HIV envelope glycoprotein precursors by cellular endoproteases, Biochimica et Biophysica Acta (BBA) -Reviews on Biomembranes, vol.1469, pp.121-132, 2000.

X. Sun, L. V. Tse, and A. D. Ferguson, Modifications to the Hemagglutinin Cleavage Site Control the Virulence of a Neurotropic H1N1 Influenza Virus, Journal of Virology, vol.84, pp.8683-8690, 2010.

S. Lau, P. Wang, and B. Mok, Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction, Emerging Microbes & Infections, vol.9, pp.837-842, 2020.

S. Matsuyama, K. Shirato, and M. Kawase, Middle East Respiratory Syndrome Coronavirus Spike Protein Is Not Activated Directly by Cellular Furin during Viral Entry into Target Cells, J. Virol, p.92, 2018.

P. Pradhan, A. K. Pandey, and A. Mishra, Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag

J. Shang, Y. Wan, and C. Luo, Cell entry mechanisms of SARS-CoV-2, PNAS, vol.117, pp.11727-11734, 2020.

A. Hassanin, The SARS-CoV-2-like virus found in captive pangolins from Guangdong should be better sequenced

H. Gu, D. Chu, and M. Peiris, Multivariate Analyses of Codon Usage of SARS-CoV-2 and other betacoronaviruses

L. Hua, S. Gong, and F. Wang, Captive breeding of pangolins: current status, problems and future prospects, Zookeys, pp.99-114, 2015.

A. J. Gibbs, J. S. Armstrong, and J. C. Downie, From where did the 2009 "swine-origin" influenza A virus (H1N1) emerge?, Virology Journal, vol.6, p.207, 2009.

F. S. Collins, Statement on Funding Pause on Certain Types of Gain-of-Function Research National Institutes of Health (NIH), NIH Web site, 2014.
URL : https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-funding-pause-certain-types-gain-function-research

T. Burki, Ban on gain-of-function studies ends, The Lancet Infectious Diseases, vol.18, pp.148-149, 2018.

F. Iseni and J. N. Tournier, Une course contre la montre : Création du SARS-CoV-2 en laboratoire, un mois après son émergence, ! Med/Sci (Paris), vol.36, 2020.