P. C. Vesborg and T. F. Jaramillo, Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy, RSC Adv, vol.2, p.7933, 2012.

,

I. Dincer, Environmental and sustainability aspects of hydrogen and fuel cell systems, Int. J. Energy Res, pp.29-55, 2007.

S. Ehsan and M. A. Wahid, Hydrogen production from renewable and sustainable energy resources : Promising green energy carrier for clean development, Renew. Sustain. Energy Rev, vol.57, pp.850-866, 2016.

K. Zeng and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci, vol.36, pp.307-326, 2010.

,

U. Bossel, Does a Hydrogen Economy Make Sense ?, IEEE, vol.94, p.1826, 2006.

J. Chi and H. Yu, Water electrolysis based on renewable energy for hydrogen production, Chinese J. Catal, vol.39, issue.17, pp.62949-62957, 2018.

L. F. Oliveira, S. Laref, E. Mayousse, and A. A. Franco, A multiscale physical model for the transient analysis of PEM water electrolyzer anodes, Phys. Chem. Chem. Phys, vol.14, pp.10215-10224, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02098439

S. Cherevko, T. Reier, A. R. Zeradjanin, Z. Pawolek, P. Strasser et al., Electrochemistry Communications Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment, Electrochem. Commun, vol.48, pp.81-85, 2014.

S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J. P. Grote et al., Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability, Catal. Today, vol.262, pp.170-180, 2016.

S. Geiger, O. Kasian, A. M. Mingers, K. J. Mayrhofer, and S. Cherevko, Stability limits of tin-based electrocatalyst supports, Sci. Rep, pp.3-9, 2017.

O. Kasian, S. Geiger, M. Schalenbach, A. M. Mingers, A. Savan et al., Using Instability of a Non-stoichiometric Mixed Oxide Oxygen Evolution Catalyst As a Tool to Improve Its Electrocatalytic Performance, Electrocatalysis, vol.9, pp.139-145, 2018.

F. Claudel, Degradation Mechanisms of Oxygen Evolution Reaction Electrocatalysts: A Combined Identical-Location Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy Study, ACS Catal, vol.9, pp.4688-4698, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02138787

,

L. Sola-hernandez, F. Claudel, F. Maillard, and C. Beauger, Doped tin oxide aerogels as oxygen evolution reaction catalyst supports, Int. J. Hydrog. Energy, vol.4, pp.24331-24341, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02334292

A. Damien, Hydrogène par électrolyse de l'eau, 1992.

C. Niether, S. Faure, A. Bordet, J. Deseure, M. Chatenet et al., Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles, Nat. Energy, vol.3, pp.476-483, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887241

A. Bordet, L. Lacroix, P. Fazzini, J. Carrey, K. Soulantica et al., Heterogeneous Catalysis Hot Paper Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power, Communications, pp.1-6, 2016.

J. Carrey, B. Mehdaoui, and M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization, J. Appl. Phys, vol.109, p.83921, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01952248

,

M. Schalenbach, O. Kasian, and K. J. Mayrhofer, An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation, Int. J. Hydrog. Energy, pp.1-7, 2018.

M. Görlin, P. Chernev, J. Ferreira, D. Arau, T. Reier et al., Oxygen Evolution Reaction Dynamics , Faradaic Charge Efficiency , and the Active Metal Redox States of Ni?Fe Oxide Water Splitting Electrocatalysts, J. Am

, Chem. Soc, vol.138, pp.5603-5614, 2016.

M. Görlin, J. Ferreira, D. Arau, H. Schmies, D. Bernsmeier et al.,

P. Jusys, R. Chernev, H. Kraehnert, P. Dau, and . Strasser, Tracking Catalyst Redox States and Reaction Dynamics in Ni?Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH, J. Am. Chem. Soc, vol.139, pp.2070-2082, 2017.

M. Görlin, P. Chernev, P. Paciok, C. Tai, F. Jorge et al., Formation of unexpectedly active Ni-Fe oxygen evolution electrocatalysts by physically mixing Ni and Fe oxyhydroxydes, Chem. Commun, vol.55, pp.818-821, 2019.

F. Moureaux, P. Stevens, G. Toussaint, and M. Chatenet, Development of an oxygenevolution electrode from 316L stainless steel: Application to the oxygen evolution reaction in aqueous lithium e air batteries, J. Power Sources, vol.229, pp.123-132, 2013.

,

F. Moureaux, P. Stevens, G. Toussaint, and M. Chatenet, Environmental Timely-activated 316L stainless steel: A low cost , durable and active electrode for oxygen evolution reaction in concentrated alkaline environments, Appl. Catal. B Environ, vol.258, p.117963, 2019.

D. De-masi, P. Fazzini, B. Chaudret, and N. Title, , 2019.

R. Chattot, O. L. Bacq, V. Beermann, S. Kühl, J. Herranz et al.,

P. Schmidt, L. Strasser, F. Dubau, and . Maillard, Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis, Nat. Mater, vol.17, pp.827-833, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01856128

G. Cognard, G. Ozouf, C. Beauger, G. Berthomé, D. Riassetto et al., Benefits and limitations of Pt nanoparticles supported on highly porous antimony-doped tin dioxide aerogel as alternative cathode material for protonexchange membrane fuel cells, Appl. Catal. B Environ, vol.201, pp.381-390, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01368861

,

Y. Garsany, J. Ge, J. St-pierre, R. Rocheleau, and K. E. Swider-lyons, Standardizing Thin-Film Rotating Disk Electrode Measurements of the Oxygen Reduction Activity of Pt/C, ECS Trans. 58, pp.3-14, 2013.

Y. Garsany, J. Ge, J. St-pierre, and R. Rocheleau, Analytical Procedure for Accurate Comparison of Rotating Disk Electrode Results for the Oxygen Reduction Activity of

/. Pt and J. , Electrochem. Soc, vol.161, pp.628-640, 2014.

Y. Garsany, I. L. Singer, and K. E. , Swider-lyons, Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts, J. Electroanal. Chem, vol.662, pp.396-406, 2011.

B. G. Pollet and J. T. Goh, The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks, Electrochim. Acta, vol.128, pp.292-303, 2014.

,

B. G. Pollet, Let ' s Not Ignore the Ultrasonic Effects on the Preparation of, Fuel Cell Materials, Electrocatalysis, vol.5, pp.330-343, 2014.

H. A. El-sayed, A. Weiß, L. F. Olbrich, G. P. Putro, and H. A. Gasteiger, OER Catalyst Stability Investigation Using RDE Technique: A Stability Measure or an Artifact ?, J. Electrochem. Soc, vol.166, pp.458-464, 2019.

A. Zadick, L. Dubau, N. Sergent, G. Berthomé, and M. Chatenet, Huge instability of Pt/C catalysts in alkaline medium, ACS Catal, pp.1-9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218294

F. Arteaga-cardona, K. Rojas-rojas, R. Costo, and M. A. Mendez-rojas, Improving the magnetic heating by disaggregating nanoparticles, J. Alloys Compd, vol.663, pp.636-644, 2016.

M. Schalenbach, O. Kasian, M. Ledenecker, F. D. Speck, A. M. Mingers et al.,

S. Mayrhofer and . Cherevko, The Electrochemical Dissolution of Noble Metals in Alkaline Media, Electrocatalysis, vol.9, pp.153-161, 2018.

E. S. Davydova, S. Mukerjee, and D. R. Dekel, Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Electrolytes, ACS Catal, vol.8, pp.6665-6690, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807205

,

Y. Qiu, L. Xin, and W. Li, Electrocatalytic Oxygen Evolution over Supported Small Amorphous Ni?Fe Nanoparticles in Alkaline Electrolyte, vol.30, p.7893, 2014.

N. Danilovic, R. Subbaraman, D. Strmcnik, K. Chang, A. P. Paulikas et al., Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH)2/Metal Catalysts **, Angew. Chem. Int. Ed, vol.51, pp.12495-12498, 2012.