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We consider the problem of efficiently solving ensembles of variational data assimi-
lations in the context of numerical weather prediction. Running several assimilations
notably allows us to initialize ensemble prediction systems and to more accurately
represent background-error statistics, but is computationally expensive, limiting
ensemble size. We propose a new class of algorithms for speeding up the minimiza-
tion of the ensemble of data assimilations. It consists of using block Krylov methods
to simultaneously perform theminimization for all members of the ensemble, instead
of performing each minimization separately.
We develop preconditioned block Krylov versions of the Full Orthogonal Method
and of the Lanczos algorithm in both primal and dual space. The latter works in
observation space that is usually of smaller dimension than the state space, thus
giving an advantage in terms of memory requirements and computational cost.
We describe and compare several parallelization strategies for speeding up the
minimization and limiting the communications.
These methods have been tested on a quasi-geostrophic system, consisting of a sim-
plified atmospheric circulationmodel equippedwith an ensemble of 3D-Var schemes
tuned to mimic some features of a limited-area numerical weather prediction system.
Experimentation shows that the number of iterations needed to converge is dras-
tically reduced by the block Krylov approaches. We indicate that, while working
in primal space does not save significant computational time, working in the dual
space may reduce the computational time by a factor of 2 to 5 (depending on ensem-
ble size) compared to standard Krylov methods, making our approach attractive for
operational use.
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1 INTRODUCTION

In numerical weather prediction (NWP), the initialization of
the state requires determination of the best initial state of
the atmosphere from all available information, in particular
from a background state (a previous short-range forecast) and
a set of observations. Most meteorological centres rely on
variational data assimilation schemes that are efficient in the
context of very large state space (106 to 109) and numerous
observations (103 to 107). This is because variational schemes
(just like ensemble methods) do not explicitly store the full

covariance matrices (Dee, 1995). A minimization algorithm
finds the solution iteratively; it only requires matrix–vector
products. Variational data assimilation has allowed for the
direct assimilation of radiances from numerous satellites and
this has been a source of huge improvement in the quality of
operational forecasts (Rabier, 2005).

Originally, variational assimilation schemes used clima-
tological estimates of the background-error covariances
(Bannister, 2008). However, those estimates lacked the
flow-dependency and the cycling of the statistics as in the
Kalman filter. More recently, the covariances have been



estimated from a current ensemble of forecasts, or by mak-
ing a weighted (hybrid) combination of such ensemble-based
covariances together with (modelled) climatological ones
(Hamill and Snyder, 2000). This is fully compatible with
the variational framework (Lorenc, 2003; Buehner, 2005). In
some implementations, this ensemble comes from a separate
ensemble data assimilation scheme that is not variational, but
rather based on some form of the Ensemble Kalman Filter
(EnKF; Evensen, 1994; Houtekamer and Mitchell, 2001) or
on the Local Ensemble Transform Kalman Filter (Hunt et al.,
2007).

In the stochastic EnKF, every ensemble member includes
observation perturbations which are drawn from the
observation-error covariance matrix, and model perturba-
tions which are constructed to be representative of model
errors. This scheme can be mimicked by running an ensem-
ble of variational data assimilations (EDAs) which includes
similar observation and model perturbations (Fisher, 2003;
Žagar et al., 2005; Kucukkaraca and Fisher, 2006). This
EDA can be used to initialize ensemble prediction systems
as the EnKF, and is believed to more accurately represent the
background-error statistics (Berre et al., 2006; Bowler et al.,
2017). For limited-area modelling (LAM) at Météo-France,
a regional EDA based on the AROME model (Seity et al.,
2011) is being developed.

Performing EDA with many members in the ensemble is
costly, as many variational assimilation systems have to be
run. So EDAs are generally performed at a coarser resolution
than the deterministic system and with a limited ensemble
size. This implies spurious sampling noise in the estimation
of the covariances, which can be mitigated with spatial fil-
tering techniques (Buehner and Charron, 2007; Berre and
Desroziers, 2010; Ménétrier et al., 2015). However, larger
ensemble sizes or more computationally efficient EDAs are
clearly desirable. This is particularly true for the operational
AROME-France which is run at high resolution (currently
1.3 km in its deterministic version and 3.8 km in its EDA
version) over western Europe, implying large state space (of
dimension 108 for the EDA). Reducing the cost of the mini-
mization of the EDAs would certainly be very beneficial for
operations.

Different methods have been proposed in order to speed up
the minimizations in the EDA. Desroziers and Berre (2012)
use the similarity of the minimization problems that have to
be solved. They suggest building a better starting point for a
new perturbed minimization using Lanczos vectors estimated
through one or several previous perturbed minimizations.
Lorenc et al. (2017) propose the Mean-Pert method: the min-
imizations of the EDA are replaced by a minimization for the
ensemble mean followed by minimizations for the perturba-
tions from it that are accelerated by preconditioning and early
stopping. Those two schemes do obtain gains in efficiency,
but at the detriment of more sequential computations; a min-
imization with unperturbed data or for the ensemble mean

has to be performed first, possibly degrading the total time to
solution.

In this study we propose another complementary approach
based on the use of block Krylovmethods. Under an appropri-
ate linearization hypothesis, the EDA results in an ensemble
of linear systems sharing the same Hessian but with dif-
ferent (perturbed) right-hand sides. The standard implemen-
tation of EDA consists of applying a Krylov method such
as the conjugate gradient algorithm (Hestenes and Stiefel,
1952) to independently solve these systems. However, block
Krylov methods (O’Leary, 1980) are especially designed to
solve this problem jointly, in one pass. They broaden the
subspace in which an approximate solution is iteratively
searched, and so can be able to speed up the convergence
rate.

The purpose of this paper is to discuss, implement and
test block Krylov approaches in the context of EDAs with
large systems as encountered in NWP.More precisely, we will
use in this paper a simplified but realistic numerical model,
the quasi-geostrophic (QG) model of Fandry and Leslie
(1984), associated with an ensemble of 3D-Var that mimics
some properties of the AROME EDA run at Météo-France.
The QG EDA system used here will be run at a resolu-
tion implying a control vector of dimension 4 × 105. The
implementation will be made in the context of the Ori-
ented Object Prediction System (OOPS; Fisher et al., 2011;
Bonavita et al., 2017), a common C++ framework devel-
oped by ECMWF, Météo-France and their partners. This
software allows an easy use of new assimilation schemes
with different numerical models, including the QGmodel and
AROME.

Gratton and Tshimanga (2009) have introduced
range-space variants of Krylov methods that work in obser-
vation space. This allows us to speed up the minimization
when the number of observations is small compared to the
dimension of the problem. Indeed, the inner products are less
expensive to compute, and the algorithm also uses less mem-
ory to store the vectors. We propose in this paper to adapt this
dual formulation to block Krylov methods. A particular focus
will be given to the development of efficient parallelization
strategies in the framework of OOPS.

Section 2 briefly introduces the classical variational for-
mulation and the algorithms commonly used to minimize
the cost function, as well as the EDA problem. Section 3
presents the block Krylov methods used to solve the EDA
problem, both in primal and dual spaces, and details the algo-
rithms implemented in this work. Then section 4 focuses
on the implementation of these algorithms in the OOPS
framework and on the associated parallelization strate-
gies. Section 5 presents the results obtained with the QG
model, both in terms of convergence and in terms of time
consumption. Finally section 6 recalls the main conclu-
sions of this paper and introduces future ongoing develop-
ments.



2 VARIATIONAL ASSIMILATION AND

THE EDA: FORMULATION

2.1 Deterministic variational assimilation

The following derivation directly applies to 3D state estima-
tion by 3D-Var, 3DEnVar or hybrid schemes, which differ
only with respect to the way the background-error covari-
ance matrix is formed and which we do not detail. The 4D
extension of those formulations, e.g. 4D-Var (Le Dimet and
Talagrand, 1986; Courtier et al., 1994) and 4DEnVar (Liu
et al., 2008; Buehner et al., 2013; Desroziers et al., 2014)
are also of great interest. Following Lorenc et al. (2015),
the same derivation can be applied with states that become
four-dimensional. However, in the 4D-Var case the propaga-
tion by the nonlinear model has to be accounted for within the
four-dimensional observation operator. We will return to this
specific case in section 2.4. The derivations of sections 2.1,
2.2, and 2.3 are valid only for 3D-Var, 3DEnVar and 4DEnVar
(including hybrid versions).

Following the notations of Ide et al. (1997), x denotes a
model state, xb the background state, and xa the best estimate
of the model state – the analysis. yo refers to the observation
vector. In this paper, we denote by N the dimension of the
problem, i.e. x ∈ RN , and Nobs the number of observations,
i.e. yo ∈ RNobs . B ∈ RN×N is the error covariancematrix of the
background and R ∈ RNobs×Nobs is the error covariance matrix
of the observations.  is the observation operator, allowing
us to estimate an observation vector from amodel state. Under
these notations, the analysis xa is defined as the model state
minimizing the cost function:

J(x) =
1
2

(
x − xb)TB−1(x − xb)

+
1
2
{yo − (x)}TR−1{yo − (x)}. (1)

This cost function is in general non-quadratic, due to
the presence of the nonlinear observation operator . All
schemes use an incremental approach, where the minimiza-
tion is performed with respect to the deviations from the
background state. Two different approaches can be taken to
perform the (approximate) minimization of Equation (1). The
first one is a quasi-Newton method (Nocedal and Wright,
2006), as in the operational version of AROME or in the
Met Office 4D-Var (Lorenc et al., 2000)which both use
the M1QN3 minimizer (Gilbert and Lemaréchal, 2006).
Another option, used for instance in the global 4D-Var of
Météo-France and ECMWF, consists of applying an approx-
imate Gauss–Newton method (Nocedal and Wright, 2006;
Gratton et al., 2007). This amounts to solving a sequence
of quadratic problems (referred as the outer loop) where the
operators are relinearized against the current estimate (the
guess). Each quadratic problem is then solved with a Con-
jugate Gradient (CG) or Lanczos method (referred to as the
inner loop).

For the sake of simplicity, and because we are only dis-
cussing the inner loop problem, we write the incremental
linearized cost function as:

J(�x) =
1
2
�xTB−1�x +

1
2
(d − H�x)T R−1 (d − H�x) , (2)

in which �x ∈ RN is an increment related to x and xb by
x = xb + �x, and H is a linearized version of the observation
operator. The innovation vector d measures the gap between
the observations and the corresponding values predicted by
the model:

d = yo −(xb).

In the simpler case described by Equation 2, the analyzed
increment �xa is determined by solving the linear system
which allows the gradient to vanish:

(
B−1 + HTR−1H

)
�x = HTR−1d. (3)

Krylov subspace methods can be used for numerically
solving this linear system. They include the Full Orthogonal-
izationMethod (FOM), the Lanczosmethod, or the Conjugate
Gradient (CG) method. All these algorithms produce mathe-
matically equivalent iterates in exact arithmetic if the linear
system matrix in Equation 3 is symmetric and positive defi-
nite (cf. Chapter 6 of Saad, 2003).

In order to improve the convergence of Krylov subspace
methods, a preconditioner is desirable. An efficient precon-
ditioner accelerates the convergence sufficiently such that
the gain in convergence speed overcomes the extra cost of
constructing and applying the preconditioner (Chapter 10 of
Saad, 2003). For variational data assimilation, a common
choice to precondition Equation 3 is the background-error
covariance matrix (Bannister, 2008). In order to apply B as a
preconditioner, there are two equivalent variants of the algo-
rithms. The first one applies a split preconditioner through the
square root of B and its adjoint to a Krylov method using the
canonical inner product. The second performs a right B pre-
conditioning to a Krylov method using the B inner product1

(Derber and Rosati, 1989; Gürol et al., 2014) and does not
require the factorization of B.

Alternatively, an approximate solution of Equation 3 can be
found by solving the dual problem (Courtier, 1997; Gratton
et al., 2013) which performs the minimization in the observa-
tion space. The dual formulation may be preferable when the
number of observations is smaller than the dimension of the
control variable �x since it reduces the computational cost and
requires less memory. In the dual space, the Krylov subspace
method is applied to the following linear system:

(
R + HBHT)� = d, (4)

with � ∈ RNobs a control variable in the observation space
related to �x by

�x = BHT�.

1∀(u, v) ∈ RN × RN , (u, v)B = vTBu



The Physical Space Assimilation System (PSAS; Courtier,
1997; Cohn et al., 1998) solves this linear system using split
R−1 preconditioning and CG with canonical inner product.
Unfortunately, PSAS has a non-monotonic behaviour in the
reduction of the primal quadratic cost function Equation 2
(El Akkraoui et al., 2008). Therefore, a better alternative is
to use the Restricted Preconditioned CG (RPCG) algorithm
from Gratton and Tshimanga (2009). Following Gürol et al.
(2014), RPCG is solving the left R−1 preconditioned dual
system: (

IdNobs
+ R−1HBHT)� = R−1d, (5)

using CG equipped with the (semi-definite) HBHT inner
product, and where IdNobs

is the identity matrix of RNobs×Nobs .
RPCG generates the same iterates as those generated when
solving the primal linear system Equation 3. Equivalent
restricted Lanczos or FOM algorithms can be used as well
(Gratton et al., 2011; 2012; Gürol et al., 2014).

2.2 Ensemble of variational data assimilations (EDA)

Unlike the EnKF or LETKF, variational schemes do not
provide an estimate of the background- and analysis-error
covariances (Fisher and Courtier, 1995). A consistent way of
estimating the errors in the system is to perform an EDA with
perturbed statistics, following a Monte Carlo approach. We
will denote the ensemble size by m and use the subscript k
to design the kth member. In the EDA, observation errors are
simulated by adding random perturbations �yo

k
drawn from

R, and some model error effects are simulated by inflation
of forecast perturbations (Raynaud et al., 2012) or by per-
turbing physical tendencies of the model. These perturbations
are propagated through the data assimilation cycling, which
leads to analysis and background perturbations (denoted by
�xb

k
) whose covariances are consistent with those of associ-

ated errors (Belo-Pereira and Berre, 2006). The EDA, in most
implementations, is thus the (parallel) minimization of m

perturbed cost functions based on the deterministic cost func-
tion Equation 1 (Desroziers and Berre, 2012; Lorenc et al.,
2017):

Jk(xk) =
1
2

(
xk − xb − �xb

k

)T
B−1

k

(
xk − xb − �xb

k

)

+
1
2

{
yo
k
+ �yo

k
−k (xk)

}T

× R−1
k

{
yo
k
+ �yo

k
−k (xk)

}
. (6)

Note that in Equation 6, we have so far retained nonlinear
effects of variational data assimilation through the depen-
dence of B,R and  on the ensemble member k. The quality
control applied to the perturbed observations can potentially
lead to their rejection for some members. Then the obser-
vation vector (and thus the observation operator and the
observation-error covariancematrix) can be different between
the members. Variational quality control also changes the
weights in R, possibly in a different way between the mem-
bers. Finally, the dependence of B with k may arise from

the use of nonlinear balance equations or nonlinear humidity
change of variable.

2.3 Linearized EDA

The EDA as formulated by Equation 6 includes nonlin-
ear effects. As discussed by Lorenc et al. (2017), the
EDA describes the background-error statistics under a linear
approximation that is common to the EnKF. There are several
ways to formulate a linearized EDA that differ on the lin-
earization state (or trajectory). Lorenc et al. (2017) propose to
first solve for the ensemble mean analysis, retaining all non-
linear effects, then solve for the ensemble perturbations in a
linear context. We will see that the block Krylov approach is
directly applicable in such a linearized EDA context. Another
approach would be to linearize against the ensemble mean
for the background, which is simpler and more efficient
but possibly detrimental as the EDA is not recentred. We
first plan to implement this method with the AROME EDA,
which is linearized except for the quality control (through the
first-guess check) and the nonlinearity of some observation
operators (in particular due to the dependence on the vertical
coordinate).

We suppose that in the linearized EDA we have a com-
mon observation vector yo and statistics. To this end we
suppose that there is no quality control applied to the observa-
tions after their perturbation (although one can remain before
the perturbation). The observation operator H is linearized
against a common state, the (background or analysis) ensem-
ble mean. This linearization around a common state, as well
as the absence of quality control on perturbed observations,
are obviously simplifications as H is supposed to depend on
the member index k. However in the 3D-Var application con-
sidered in this paper (QG model, section 5) there is no quality
control in any case and  is independant of k, so that we
will not further explore the implications of these assump-
tions. Nevertheless for real 3D-Var systems, we would verify
the consistency of our solution by re-evaluating the nonlinear
cost function value (using k) at the end of the minimiza-
tion process. Then, for each member k, the cost functions
have the same expression as in Equation 2. The corresponding
linearized subproblems in incremental assimilation are then

Jk(�xk) =
1
2
�xT

k
B−1�xk +

1
2
(dk − H�xk)

TR−1(dk − H�xk),

(7)
where �xk = xk − xb − �xb

k
are the deviations from the per-

turbed backgrounds for each member and dk = yo + �yo
k
−

k(x
b+�xb

k
) are the innovations with perturbed observations,

using k(x
b + �xb

k
+ �xk) ≈ k(x

b + �xb
k
) + H�xk). So, in

the primal space, the minimization of these m linearized sub-
problems results in m linear systems with the same Hessian
B−1 + HTR−1H (cf. Equation 3):

(
B−1 + HTR−1H

)
�xk = bk, (8)

with right-hand sides bk = HTR−1dk for k ∈ ⟦1;m⟧.



Similarly, in the dual space, we have m linear systems with
the same Hessian R+HBHT (cf. Equation 4) for k ∈ ⟦1;m⟧:

(
R + HBHT)�k = dk. (9)

The standard EDA implementation, in primal or dual space,
consists of running m independent minimizations in paral-
lel. This does not take full advantage of the fact that, in the
linearized context defined above, all the linear systems have
the same Hessian (with perturbed right-hand sides). The pur-
pose of this paper is to introduce block Krylov methods which
exploit the mentioned structure of the problem to speed up the
numerical minimization process.

2.4 Comments for 4D-Var application

The propagation of the state by a nonlinear model in the
4D-Var formulation makes the previous derivation more com-
plex. First, we note that in this case, the nonlinear operator
of Equation 1 incorporates the propagation by the nonlinear
model.

Then, when using the Gauss–Newton approach to solve
the incremental approach, the problem is relinearized around
the guess through the outer loop process, which is not taken
into account in Equation 2. There are additional nonlinear
refinements to some 4D-Var schemes which we do not dis-
cuss here. They include the quality control of observations
with non-Gaussian errors (Andersson and Jarvinen, 1999;
Tavolato and Isaksen, 2015), the variational bias correction
(Derber and Wu, 1998; Auligné et al., 2007), the dependence
of background-error statistics on the first guess through non-
linear balance equations (Fisher, 2003; Barker et al., 2004) or
the nonlinear humidity change of variable (Andersson et al.,
2005; Ingleby et al., 2013).

Moreover, for performing an EDA written in its linearized
incremental form as in Equation 7, we would have to linearize
the nonlinear operators k of Equation 6 (which include the
nonlinear model trajectories) against a reference trajectory
given by the ensemble mean background or analysis, and to
perform a single outer loop. However, the influence of non-
linear effects in the EDA is outside the scope of this paper and
deserves further research.

3 BLOCK KRYLOV METHODS FOR

LINEARIZED EDA

3.1 Block Krylov methods in primal space

In this section, we introduce block Krylov methods for
solving simultaneously the linearized EDA in primal space
as described in section 2.2. General introductions to block
Krylov techniques can be found in O’Leary (1980) and
Gutknecht (2006).

3.1.1 Notation / right-B preconditioning

The numerical experiments carried out in this paper apply a
block Krylov subspacemethod equipped with B inner product

to the right-B preconditioned linear system. For an arbitrary
member k in the ensemble, it consists of rewriting Equation 8
in the form (

IdN + HTR−1HB
)

uk = bk,

with IdN the identity matrix ofRN×N , still bk = HTR−1dk, and
with the new transformed control variable uk ∈ RN linked to
�x through

�xk = Buk.

Then, we introduce the notation A = IdN + HTR−1HB for
the Hessian of this problem, so that it can be written

∀k ∈ ⟦1;m⟧, Auk = bk. (10)

The block Krylov methods we describe here are itera-
tive processes. So in this section, subscript p stands for the
final iteration, while subscript i denotes the quantities corre-
sponding to an arbitrary iteration. Moreover, as previously,
subscript m is the total number of members while subscript k
denotes an arbitrary member.

At final iteration p, an iterative process produces an approx-
imate solution for uk which will be written uk,p. We note that
we suppose here that the starting point of the minimization
is uk,0 = 0. Then, the initial residuals for member k, denoted
rk,0, is rk,0 = bk − Auk,0 = bk.

Under these assumptions, Equation 10 can be written in a
block form:

Au = b, (11)

with the block control variable u ∈ RN×m:

u =
[
u1 · · · um

]
,

and the block right-hand side b ∈ RN×m:

b =
[
b1 · · · bm

]
.

The block initial residuals are r0 =
[
r1,0 · · · rm,0

]
= b.

At the end of an iterative process with p iterations, the
approximate solution is up ∈ RN×m, while kth member
approximate solution is still uk,p.

3.1.2 Presentation

A block Krylov method is an iterative projection method
which consists, at iteration p, in looking for an approximate
up of u with

up ∈ p (A, r0) ,

in which p (A, r0) is the block Krylov subspace defined by

p (A, r0) = Blockspan
(
r0,Ar0,… ,Ap−1r0

)
.

Here, “Blockspan” (Gutknecht, 2006, p. 9) is defined by

p(A, r0) =
{

r0
1+Ar0
2+· · · + Ap−1r0
p,

with 
1,… , 
p ∈ R
m×m

}
. (12)

We can write this as well for any single member uk,p:

uk,p ∈ Span
{

Airj,0 || (i, j) ∈ ⟦0; p − 1⟧ × ⟦1;m⟧}. (13)



This highlights the fact that all members use the same
research space, which is spanned from the entire ensemble.

up ∈ p (A, r0) means up = Vps , (14)

where Vp is an orthonormal basis of p (A, r0), i.e. m⋅p vec-
tors and Vp ∈ RN×m⋅p if all the vectors implied in Equation 13
are independent, and s ∈ Rm⋅p×m the coefficients of a linear
combination. We call the process allowing us to estimate Vp

the Arnoldi process, and Vp is called the Arnoldi basis.
To define uniquely the approximate up, we impose a

Galerkin condition. Namely, we impose that rp, the block
of residuals at iteration p, is orthogonal to the pth block
Krylov subspace. This can be used to define the block FOM.
If A is symmetric, it leads to the block Lanczos method
which is mathematically equivalent to the block CG and the
block FOM. The condition of orthogonality of the residuals
rp ⟂ p (A, r0) can be written

VT
prp = 0.

Using the definition of the block of residuals rp = b−Aup

and the fact that b = r0,

VT
pr0 = VT

pAup. (15)

Combining Equations 14 and 15 leads to an expression
for up:

up = VpT−1VT
pr0, (16)

with T = VT
pAVp ∈ Rm⋅p×m⋅p. T is constructed in the itera-

tive process during the orthonormalization of the basis of the
block Krylov subspace (section 3.1.3). Generally, in the NWP
context, we have small p andm compared to the dimensions of
the problem (m ⋅p < 2×103 versus N = 108 and Nobs = 105),
so that the inversion of T is not challenging.

We can note that the search subspace at iteration 1 for any
member is the space spanned by r0, so that we can write

r0 = v1�0 ,

where v1 ∈ RN×m are the m first base vectors and �0 ∈ Rm×m

is a projection matrix resulting from a QR decomposition
of r0.

Then, Equation 16 can be written

up = VpT−1
⎡⎢⎢⎣

vT
1
⋮

vT
p

⎤⎥⎥⎦
v1�0.

Using the orthogonality of the base vectors,

up = VpT−1e1�0, (17)

with e1 =
[
Idm 0m · · · 0m

]
, where Idm is the identity matrix

of Rm×m and 0m the null matrix of the same dimension.
We remark that the search subspace of the block Krylov

methods is the same for all the members. It combines infor-
mation coming from the Hessian and from all the right-hand
sides of the problem. Then its dimension is lower than or equal
to p ⋅m, with equality if all the vectors implied in Equation 13
are independent. At each iteration, the dimension of the block

Krylov subspace increases by (at most) m, the number of
members.

If at some point of the iterative process we generate vectors
which appear to be linked, the dimension of the search sub-
spaces decreases; we call this an inexact breakdown. Such a
breakdown may appear for example when an exact solution is
found for one of the right-hand sides in the block (also known
as happy breakdown in the context of non-block Krylov
methods), or when there is a loss of orthogonality between
residuals. Dealing with this phenomenon involves making
an explicit reduction of the number of right-hand sides, for
instance using deflation (Gutknecht, 2006). Deflation may be
used not only in the case of exact linear dependence of the
generated vectors; techniques have been developed to force
deflation by defining a tolerance threshold below which vec-
tors are considered as linked, so that we can reduce the size
of the Arnoldi basis.

However, in this paper, we deal with vectors of large dimen-
sions (> 105) which are randomly perturbed (both back-
grounds and observations); right-hand sides are unlikely to be
dependent. Also, we perform a limited number of iterations
(typically less than 50), such that the minimization is stopped
quite early, i.e. before full convergence to machine preci-
sion. This may limit the occurrence of finding dependencies
between the vectors through the algorithm. In all experiments
presented in this paper, we have not encountered such cases of
inexact breakdowns. Therefore, deflation has not been found
to be necessary and we will not look into this issue in this
paper. This point may be considered again with a more real-
istic system, although preliminary experiments confirm that
we do not need deflation.

3.1.3 Block B-FOM

In our numerical experiments we use a block Krylov subspace
method with the right-B preconditioner based on the Arnoldi
process, the block B-FOM.

First, we notice that the right-B preconditioned Hessian, i.e.
A = IdN + HTR−1HB, is not symmetric with respect to the
canonical inner product. Although block B-FOM can be used
for unsymmetric systems, it is known that the iterative solu-
tion of a symmetric system is more stable. For this reason, we
use the B-inner product with respect to which the precondi-
tioned matrix is symmetric. The corresponding block B-FOM
is given in Algorithm 1.

In Algorithm 1, Vp and Zp, both in RN×m⋅p at iteration p,
contain the orthonormal basis of the block Krylov subspace
respectively in the physical space and in the B-preconditioned
space, i.e. Zp = BVp. During an iteration (lines 5–17), we
firstly define the newm search directions (wi ∈ RN×m, line 6).
Then, lines 7–11 orthogonalize these wi against all the base
vectors computed at previous iterations. The projection matri-
ces �j are stored as block components of matrix T (line 10).
In line 14, matrix � i represents the lower-diagonal block
component of matrix T. Lines 18–19 allow us to calculate



Algorithm 1 Block B-FOM

1: z0 = Br0

2:
[
v1, z1, �0

]
= qr (r0, z0)

3: V1 = [v1]

4: Z1 = [z1]

5: for i = 1 ∶ p − 1 do

6: wi = HTR−1Hzi + vi

7: for j = 1 ∶ i do

8: �j = zT
j
wi

9: wi ∶= wi − vj�j

10: T
jm∶(j+1)m,im∶(i+1)m = �j

11: end for

12: zi = Bwi

13:
[
vi+1, zi+1, � i

]
= qr (wi, zi)

14: T
(i+1)m∶(i+2)m,im∶(i+1)m = � i

15: Vi+1 ∶= [Vi; vi+1]

16: Zi+1 ∶= [Zi; zi+1]

17: end for

18: solve T1∶p⋅m,1∶p⋅msp = e1�0

19: �xp = Zpsp

the approximate solution at iteration p, corresponding to
Equation 17, using matrix T1∶m⋅p,1∶m⋅p ∈ Rm⋅p×m⋅p. (We notice
that �xp = Bup = BVpsp = Zpsp.)

We note that the quantities in the B-preconditioned space
(zi and Zi) are used as intermediates of calculations to facili-
tate the application of the B inner product and of the Hessian,
so that any operator (B, H, HT, R−1) is applied only once per
iteration.

We note as well that there is no criterion allowing us to
stop the minimization in the case of satisfying convergence
in Algorithm 1. (We suppose that we perform a predefined
number of iterations.) Obviously we could add a criterion
calculated at the end of each iteration to monitor the conver-
gence, for instance on the residuals or on the background part
of the cost function. However because many criteria exist, we
leave this discussion for section 5.3.1 on our results.

The QR decomposition (lines 2 and 13) has to be made with
respect to the B inner product as well (oblique QR decompo-
sition). It consists of writing wi in the form wi = vi+1� i, with
vi+1 ∈ RN×m, � i ∈ Rm×m, vT

i+1Bvi+1 = Idm, and � i upper tri-
angular. Several techniques exist to do so. The first method
considered in this work is the Modified Gram–Schmidt QR
algorithm (MGSQR). It is based on the fact that the columns
of vi+1 form an orthonormal base with respect to the B inner
product of the space spanned by the columns of wi. The mod-
ified orthogonalization process of the Gram–Schmidt method
allows to estimate these base vectors, and the coefficients of
the matrix � i are estimated as the projection coefficients of
the process; the Appendix gives details. Another algorithm
is the Cholesky QR method (CholQR; Stathopoulos and Wu,
2002). It is based on the fact that if wi = vi+1� i, we can
write wT

i
Bwi = �T

i vT
i+1Bvi+1� i = �T

i � i, thanks to the orthog-
onality of vi+1. Thus, � i appears to be the Cholesky factor

of wT
i
Bwi. Finally, solving the triangular system vi+1� i = wi

gives vi+1.
The last method, Pre-Cholesky QR (PRE-CHOLQR),

algorithm 2 in Lowery and Langou (2014), is a variant of the
previous one in which we perform in a first step a standard
QR decomposition with respect to the canonical inner prod-
uct of wi. Then, CholQR is used to perform an oblique QR
decomposition of the Q factor resulting from the first step.
All these algorithms are described and evaluated in terms of
stability in Lowery and Langou (2014): overall, these exper-
iments on small systems and various conditioning both for B

and wi show that PRE-CHOLQR is more stable than the other
two, notably in terms of loss of orthogonality, but it is more
costly as well. We have never found any serious orthogonality
issue in our numerical experiments, nor have we found signif-
icant numerical differences between the three algorithms. So
we finally decided not to use the more costly PRE-CHOLQR
algorithm, and to work with MGSQR instead, detailed in the
Appendix.

3.1.4 Block B-Lanczos algorithm

In the case in which the Hessian A is symmetric, the matrix
T of the block B-FOM is symmetric (Saad, 2003, p. 185).

Using the notations of Algorithm 1, this leads to �j = 0 for
j ∉ {i − 1, i} and �i−1 = �T

i . Finally, this leads to a block
tridiagonal matrix T with blocks of size m ⋅ m.

This results in a considerable simplification of the block
B-FOM (the for loop at line 7 is replaced by the two cases
j = i − 1; j = i), and defines the block B-Lanczos algorithm.

However, it appears that, in finite precision because of the
round-off errors, the orthogonality may not be ensured (Gürol
et al., 2014). It is therefore often necessary to add reorthogo-
nalization in the block B-Lanczos procedure to ensure conver-
gence (lines 8–9 of Algorithm 1 ∀j). Nevertheless, for systems
in which p and m are small compared to the dimension N of
the problem, the inversion of T in Algorithm 1 is not costly
compared to the inner products. In this case, it is better to use
the block B-FOM algorithm which does not restrict T to a
block tridiagonal matrix.

3.2 Case m = 1

The purpose of this paper is to evaluate the efficiency of
block Krylov methods for minimizing the cost function of
an EDA. To do so, we will compare the results of such a
m-member block minimization with results given by m inde-
pendent non-block minimizations (m minimizations with a
single member). As briefly described in section 2.1, Krylov
methods, such as the FOM, can be used to perform a sin-
gle member minimization. Actually, the block B-FOM in
Algorithm 1 applied with m = 1 results in the B-FOM. In the
numerical sections of this paper, we will compare the results
given by a m-member block B-FOM with results given by m

independent applications of the B-FOM.



Algorithm 2 B-FOM

1: z0 = Br0

2: �0 =
√
(r0, z0)

3: v1 = r0∕�0
4: z1 = z0∕�0
5: V1 = [v1]

6: Z1 = [z1]

7: for i = 1 ∶ p − 1 do

8: wi = HTR−1Hzi + vi

9: for j = 1 ∶ i do

10: Tj,i =
(
wi, zj

)
11: wi ∶= wi − Tj,ivj

12: end for

13: zi = Bwi

14: Ti+1,i =
√
(vi, zi)

15: vi+1 = wi∕Ti+1,i

16: zi+1 = zi∕Ti+1,i

17: Vi+1 ∶= [Vi; vi+1]

18: Zi+1 ∶= [Zi; zi+1]

19: end for

20: solve T1∶p,1∶psp = �0e1

21: �xp = Vpsp

For readability purposes, we rewrite in Algorithm 2 the
B-FOM and recall that it can be compared to Algorithm 1
when it is applied m times, potentially concurrently, with a
single member.

In Algorithm 2, we now have wi, vi, and zi in RN and the
bases Vp and Zp in RN⋅p at iteration p. Matrices �j and � i

of Algorithm 1 become scalars, directly stored in T. The QR
decompositions result in simple normalizations.

3.3 First remarks on efficiency

It is known that the rate of convergence of Krylov and block
Krylov methods is linked to the condition number of the Hes-
sian and to the clustering of its eigenvalues. The condition
number of a symmetric matrix is the ratio of the largest and
the smallest eigenvalues. The greater the condition number,
the slower the convergence. In NWP models, the unprecon-
ditioned Hessian B−1 + HTR−1H is generally very poorly
conditioned (cf. table 1 in Desroziers and Berre, 2012). Using
B as a preconditioner reduces the condition number, with the
lowest eigenvalue equal to 1, though the condition number
will be equal to the largest eigenvalue. This could allow the
minimization to be speeded up. Additionally, it is shown on
a simplified model in Haben et al. (2011) that the condition
number of A is linearly linked to the number of observa-
tions available and to �2

b∕�
2
o , with �2

b the variance of the
background errors and �2

o the variance of the observations
errors.

Concerning the differences between block B-FOM
(Algorithm 1) and m times B-FOM (Algorithm 2), it can
be observed that block B-FOM looks, for any member, for

approximates of �x in a search subspace of size m ⋅p (number
of members × number of iterations) whereas B-FOM looks
for approximate solutions in search subspaces of size p. So
by using a larger search subspace, we expect a faster conver-
gence with block methods. Moreover, both algorithms imply
one application of each operator (B, H, HT, and R−1) for each
member and for each iteration (m applications by iteration).
However, there are manymore inner products and vector sum-
mations in block B-FOM than in m B-FOM. For instance, in
block B-FOM, in the j loop at line 8 of Algorithm 1, we need
m2 inner products to calculate �j, compared to m inner prod-
ucts for m B-FOM (line 10 of Algorithm 2 applied m times).
Because we expect fewer iterations to converge with block
B-FOM, we can already guess that the block approach will
be much more efficient if the main part of the computational
cost lies in the application of the operators (typically B or H)
and less efficient if inner products and vector summations
are very costly. Although this question will be addressed in
detail in section 5, we can already note that this is a very good
reason for using dual space algorithms. In the dual space,
vectors of lower dimensions (Nobs ≪ N) are used so that
the inner products and vector summations will be less costly
while the number of operators to be used will be the same.
In the next section, block Krylov methods in dual space are
introduced.

3.4 Block Krylov methods in dual space

Similarly to Equation 11 in primal space, we can write the
ensemble problem in dual space defined by Equation 9 under
the block form:

Â� = b̂,

with Â the Hessian in dual space with left R−1

preconditioning Â = IdNobs
+ R−1HBHT, � = �1 · · ·�m, and

b̂ = b̂1 · · · b̂m, b̂k = R−1dk, k ∈ ⟦1;m⟧.
Then, if we use a Krylov method equipped with the

HBHT-inner product to solve this linear system, it will yield
the same iterations as in the primal space.

The Full Orthogonalization Method applied under
these conditions gives the RB-FOM algorithm detailed in
Algorithm 3. R stands for “Restricted” (Gratton et al., 2011;
Gürol et al., 2014.

4 IMPLEMENTATION

4.1 Oriented object prediction system

OOPS is a generic driving layer for NWP systems ini-
tiated by ECMWF and developed both at ECMWF and
Météo-France(Fisher et al., 2011; Arbogast et al., 2017;
Bonavita et al., 2017). The purpose of OOPS is to develop a
flexible code, written in the object-oriented language C++,
to deal with the complex codes of NWP and oceanography.
It was notably developed to make easier the development



Algorithm 3 Block RB-FOM

1: ẑ0 = HBHTr̂0

2:
[
v̂1, ẑ1, �0

]
= qr

(
r̂0, ẑ0

)
3: V̂1 = [v̂1]

4: Ẑ1 = [̂z1]

5: for i = 1 ∶ p − 1 do

6: ŵi = R−1ẑi + v̂i

7: for j = 1 ∶ i do

8: �j = ẑT
j
ŵi

9: ŵi ∶= ŵi − v̂j�j

10: T
jm∶(j+1)m,im∶(i+1)m = �j

11: end for

12: ẑi = HBHTŵi

13:
[
v̂i+1, ẑi+1, � i

]
= qr

(
ŵi, ẑi

)
14: T

(i+1)m∶(i+2)m,im∶(i+1)m = � i

15: V̂i+1 ∶= [V̂i; v̂i+1]

16: Ẑi+1 ∶= [Ẑi; ẑi+1]

17: end for

18: solve T1∶p⋅m,1∶p⋅mŝp = e1�0

19: �p = V̂ŝp

and assessment of new data assimilation systems. OOPS uses
generic abstract objects to represent the limited number of
quantities used in data assimilation, such as operators (B, H,
HT, and R−1), model states (x), increments in primal or dual
spaces (�x, u, and �), observation vectors (yo) or cost func-
tions (J). This part of OOPS is independent of the underlying
model generally written in FORTRAN. This model and the
interface layer of OOPS are modified in order to be coupled.
Even if it is not yet used operationally, several models have
been adapted to OOPS, including theEuropean ocean model
NEMO and the ECMWF NWP model IFS (Bonavita et al.,
2017), and both NWP models of Météo France, ARPEGE
(Arbogast et al., 2017) and AROME, in their deterministic
and EDA versions.

In this work, we have developed our block Krylov algo-
rithms in the abstract layer of OOPS and have interfaced these
algorithms with a FORTRAN model: the quasi-geostrophic
(QG) numerical model (Fisher et al., 2011), cf. section 5, a
simplified model of atmospheric circulation in midlatitudes.
Distributed memory parallelism through theMessage Passing
Interface (MPI) is possible in the OOPS C++ layer. How-
ever, there can also be another MPI parallelization layer in the
underlying FORTRAN code of the models (e.g. in AROME),
even if it will not be the case for the QG model.

In this section, we introduce the three versions (mathemati-
cally equivalent) of the block Krylov algorithms that we have
implemented in OOPS. The first one in section 4.2 does not
include any parallelism in OOPS, while the two others in
sections 4.3 and 4.4 do. For introducing these codes, we use as
an illustration the block B-FOM described in Algorithm 1 (in
primal space). However, the conclusions which will be drawn
are also applicable for dual space block RB-FOM.

4.2 Sequential version

The first version of block B-FOM implemented in OOPS will
be referred to as the “SEQ” version. This is a sequential imple-
mentation in the sense that there is no parallelization included
in the OOPS layer. It can nevertheless include a MPI paral-
lelization but only over the geographical domain (if such a
parallelization is available). Figure 1a illustrates this situation
for m = 2 and for four MPI processes on the Western Europe
domain of AROME-France. Each process deals with small
geographical areas but for all members in the ensemble. This
implies for each process to performmore applications of oper-
ators and inner products/vector summations but with smaller
vectors.

Then in the SEQ version, all the computations implied by
Algorithm 1 are defined as loops on members. For instance,
we detail the algorithm used to calculate line 6 of block
B-FOM: application of the Hessian at iteration i to compute
the new search directions.

for k = 1 ∶ m do

(wi)k = HTR−1H (zi)k + (vi)k
end for

And for line 8 of Algorithm 1, at iteration i:

for k = 1 ∶ m do

for l = 1 ∶ m do(
�j

)
l,k

=
(
(wi)k ,

(
zj
)
l

)
end for

end for

The next paragraph explains to what extent this SEQ
approach could be competitive with a NWP model including
an underlying geographical parallelization.

Suppose that we run EDA experiments with m mem-
bers using NMPI MPI processes. Our interest is to compare
the speed of convergence between concurrent independent
B-FOM and block B-FOM. First, in the non-block case,
each minimization for each member will be run on NMPI∕m

processes. So the geographical domain of the NWP model
will be divided into NMPI∕m parts. Figure 1b illustrates this
situation with m = 2 and NMPI = 4. Processes 1 and 2 per-
form the minimization for the first member, while processes
3 and 4 perform the minimization for the second member.
On the other hand, the SEQ block B-FOM algorithm has
no OOPS parallelization, so that when it will be run on
NMPI processes, the geographical domain will be divided into
NMPI parts, giving a finer decomposition as is illustrated on
Figure 1a with m = 2, NMPI = 4: the geographical domain
is divided into four parts, and each process deals with both
members.

Table 1 summarizes this analysis and compares the number
of operator applications, inner products, and vector sum-
mations for non-block and SEQ block versions (columns 2
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FIGURE 1 Illustration of the two workload distributions implemented in this work on the AROME-France domain for four MPI processes and two members
in the ensemble. (a) Workload geographical distribution (no distribution by member), as used in the SEQ version of block B-FOM. (b) Workload distribution
by member, combined with an underlying geographical distribution, as used in the MPI and MPIstored versions of block B-FOM, and in B-FOM

and 3) for one iteration of the minimizer with NMPI = m.
The SEQ method leads to m times more operator applica-
tions, and to roughly m2 more inner products and vector
summations. But the geographical decomposition is m times
finer than in the non-block version, so that we can expect
the same computational time for the operator applications
and m more computational time for the inner products and
vector summations. This is true if we neglect the commu-
nication time between geographical domains, which is not
obvious. Knowing that we expect fewer iterations to converge
with the block version, this approach could be competitive,

especially if the operators are costly compared to the inner
products.

If there is no parallelization in the underlying FORTRAN
model, this SEQ version has no interest. All the MPI pro-
cesses would run the same entire problem, and it should be
faster to perform m non-block B-FOM concurrently. This is
the case for the QGmodel described in section 5, so no results
using the SEQ version will be studied in this paper. It has nev-
ertheless been described here both as a simpler framework
before further MPI developments and for future use in NWP
models including geographical parallelization.



TABLE 1 Characteristics of the different algorithms compared in this paper

Non-block SEQ MPI MPIstored

Number of MPI processes m m m m

Proportion of the geographical domain for each process 1 1∕m 1 1

B, H applications (/iteration/process) 1 m 1 1

Inner products, vector summations (/iteration/process) j + 1 jm2 + m(m + 1)∕2 jm + k jm + k

Increments exchanged in OOPS 0 0 (4 + 2j)(m − 1)2 3(m − 1)2

j =current iteration of the minimization process, m =number of members in the EDA, and k =current member

4.3 MPI version

Another version of block B-FOM, referred to as the “MPI”
version, implies a workload distribution by member. This
distribution can be combined with an underlying geograph-
ical decomposition. Figure 1b illustrates this situation, still
with m = 2 and four MPI processes. Now each process deals
only with one member, but on larger geographical areas. This
reduces the number of operator applications and inner prod-
ucts/vector summations but they have to be performed with
larger vectors.

Under these conditions, line 6 of block B-FOM becomes
very simple, without any loop. For example, for the process
tied to member k:

(wi)k = HTR−1H (zi)k + (vi)k

This implies of course communication between processes
at the OOPS level, for instance to compute the projections.
Line 8 of Algorithm 1 becomes:

for l = 1 ∶ m do

l′ = (m − k + l)mod m

if (l′ ≠ k) then

send
(
zj
)
k
to proc l′

get
(
zj
)
l′
from proc l′(

�j

)
l′,k

=
(
(zj)l′ , (wi)k

)
else(

�j

)
k,k

=
(
(zj)k, (wi)k

)
end if

end for

Here, for member k at iteration i, we want to compute the
kth column of �j, namely the projection of (wi)k on all the(
zj
)
l
. The permutation implied by the definition of l′ is the

one used by Arbogast et al. (2017) to speed up the exchanges
in a similar context. So this version implies many communi-
cations and the OOPS decomposition by member implies a
rougher geographical decomposition. While the geographical
domain was divided into NMPI parts with the SEQ version,
it is divided in NMPI∕m parts in this MPI version, as in the
non-block version (Figure 1b). Table 1 presents the number
of operator applications, inner products, and vector summa-
tions implied by this method, as well as the total number

of communications per iteration. Compared to the non-block
version, even if there are more inner products and vector sum-
mations, the number of operator applications is the same, so
that we can expect benefits if fewer iterations are needed to
reach convergence and if it is costlier to apply the operators
than computing inner products, which is expected at least in
dual space. Compared to the SEQ version, this MPI version
could be competitive only when dealing with extremely fine
geographical decompositions.

For the number of increments exchanged in OOPS, we note
that it is proportional to m2 and j, the index of the current
iteration. Indeed, we need to exchange all the previous base
vectors to all processes at each iteration for the reorthogonal-
ization part of block B-FOM (lines 7–11 of Algorithm 1). An
idea for avoiding these communications would be to store the
full Krylov bases corresponding to all members on each MPI
process. This is the purpose of the next section.

4.4 MPI stored version

The third version of block B-FOM, referred to as the “MPI
stored” version, is a variant of the MPI version which reduces
the number of communications at the expense of increased
memory. In this version, the full block Krylov base is stored
redundantly on all processes. Computationally, it is neverthe-
less very similar but, at the end of each iteration, all processes
send their new base vectors to all the others.

Consequently, we do not need any communication in the
reorthogonalization part of Algorithm 1 (lines 7–11), given
that the full wi and zj are stored on each process. Line 8 of
Algorithm 1 becomes:

for l = 1 ∶ m do(
�j

)
l,k

=
(
(zj)l, (wi)k

)
end for

We can see in Table 1 that we avoid the dependence in j of
the number of increments exchanged in OOPS by iteration.

The disadvantage of this approach is that we store all the
Krylov bases m times. This implies storing m times objects
of dimension 2 ⋅ j ⋅ m ⋅ N (two base vectors of dimension
N per member and per iteration, though divided in reality in
NMPI∕m pools by the geographical decomposition). This can
be intractable if m, j, and/or the dimension of the problem are



large. So we can guess that this method will be mainly usable
in the dual space approach in which smaller dimensions are
in play. In the case that is considered in this paper, working
in dual space with Nobs = 2 × 104, 40 iterations and 25 mem-
bers, allows us to handle vectors of dimension (2 ⋅ j ⋅ m ⋅ N)
upper bounded by 4 × 107. Given that these experiments will
be run on m supercomputer nodes, each with 64GB of mem-
ory, memory will not be an issue. For future applications with
the AROME France NWP system, we expect to run ensem-
bles of 75members with around 105 assimilated observations.
With 20 iterations, this implies storing vectors of dimension
around 3 × 108, which is still a tractable value given that
2–5 nodes by member are generally available to perform such
experiments.

5 RESULTS ON THE QG MODEL

5.1 The two-layers QG model

The QG model (Fandry and Leslie, 1984) allows to mimic
QG flow in a cyclic channel with two layers. It is widely
used as a simple way to realistically represent a large part
of large-scale dynamics in the atmosphere in midlatitudes,
notably to understand and to model cyclogenesis and storms
(e.g. Plu and Arbogast, 2005). A version of the QGmodel has
been implemented in OOPS at ECMWF in order to test dif-
ferent assimilation strategies in a simple framework (Fisher
et al., 2011).We choose as well to test these new block Krylov
developments on this model because it is available in OOPS
and the developments made for the QG model should be eas-
ily portable to the OOPS version of AROME. Moreover, it is
easy to tune for having realistic characteristics (see below).
It also allows us to test our code in a fully controlled and
“perfect” framework: we have a well-posed problem with, for
instance, the same operator H for all members. In this section,
we briefly give the equations of the QG model. Readers can
refer to Snyder et al. (2003) or Fisher et al. (2011) for more
details about this framework and its use in data assimilation.
The values of the parameters used in this study as well as the
discretization strategy are detailed later in section 5.2.

The QGmodel is based on the conservation of the potential
vorticity. In the equations below, subscripts 1 and 2 denote
respectively the top and bottom layers of the model. q is the
potential vorticity, defined as:

{
q1 = ΔΨ1 − F1 (Ψ1 − Ψ2) + �y,

q2 = ΔΨ2 − F2 (Ψ2 − Ψ1) + �y + Rs,
(18)

withΔ the Laplacian,Ψ the two-dimensional stream function,
� the northward derivative of the Coriolis parameter, Rrms a
coefficient representing the ground effects in the bottom layer
(orography, heating), and F1 and F2 constant coefficients
allowing the non-dimensionalization (Fisher et al., 2011 gives
their detailed expressions), depending notably on the depths
of the two layers, D1 and D2.

The Lagrangian conservation of q can be written:

⎧⎪⎨⎪⎩

Dq1

Dt
=

�q1

�t
+ u1

�q1

�x
+ v1

�q1

�y
= 0,

Dq2

Dt
=

�q2

�t
+ u2

�q2

�x
+ v2

�q2

�y
= 0,

(19)

with u and v the zonal and meridional 2D wind fields, which
can be derived from the stream function:

ui =
�Ψi

�x
, vi =

�Ψi

�y
. (20)

The numerical resolution of this model is done with
a pseudo-spectral method which involves the following
sequence at each time step:

• Propagate q1 and q2 to the next time step using their con-
servation Equation 19, using a semi-Lagrangian scheme;

• Invert Equation 18 to derive the stream function;
• Apply Equation 20 to get the horizontal wind fields in both

layers.

This model is relevant for the large-scale dynamics of
the atmosphere in terms of error growth, as it represents
baroclinic instability (Fisher et al., 2011).

5.2 Experimental framework

5.2.1 Parametrization of the QG model

The domain onwhich these experiments are performed covers
an horizontal area of 12,000 × 6,300 km2, discretized on a
grid with 640 × 320 points. The spatial resolution is around
20 km in both horizontal directions. Then, the dimension of
the problem will be N = 2 × 640 × 320 ≈ 4 × 105.

The true state and the true observations are generated using
this model with depths of D1 = 6 and D2 = 4 km for the ver-
tical layers. There are Nobs = 1.2 × 104 observations of the
stream function randomly distributed over the domain. Both
the background and the observations are perturbed offline by
appropriate codes in order to generate an ensemble. These
perturbations are made according to the chosen statistics of
errors. For the observation, R is supposed diagonal, with a
constant standard deviation of �o = 0.4. Concerning the
background, the horizontal correlations are supposed to be
Gaussian, isotropic, and homogeneous, with a length-scale of
1000 km, as in Fisher et al. (2011). The standard deviation is
set to 1.6. The vertical correlation coefficient between the two
layers is set to 0.2. We also add a model error by using in the
assimilation stepD1 = 5.5 km andD2 = 4.5 km for the depths
of the layers.

The dimensions of this system have been chosen in order to
be tractable but realistic to allowing us to be confident in the
portability of the results to the AROMEmodel. First, we note
that, as has been mentioned in section 4, there is no underly-
ing geographical workload distribution in theQGOOPS code.
Consequently it is not possible to extent the QGmodel dimen-
sions to values comparable to the AROME ones. That is why
we limit ourselves toN = 4×105, yielding a large but tractable



system. Then, we remark that in dual space, the performance
of the system will be driven both by N via the operators act-
ing in primal space, e.g. B, and Nobs. So we choose a value
for Nobs close to the one acting in the operational EDA of
AROME (1.2×104 versus 104–105, depending on the weather
conditions). It will nevertheless be inferior by an order of
magnitude to the Nobs used in the operational deterministic
system or expected in a few years even for the EDA.

We have seen in section 3.1 that the speed of convergence
of the block Krylovmethods is mainly driven by the condition
number of the problem and by the spectrum of the Hessian in
general. The condition number is closely related to the covari-
ances of the background and observation errors, as well as to
the number of observations available. So it is quite important
to use realistic values for all these parameters. In AROME,
the number of assimilated observationsdepends highly on the
weather situation. Notably, radars provide usable information
when it is raining over France, so that heavy rain tends to
significantly increase the condition number.

In AROME experiments carried on both for rainy and dry
days, we have found that the condition number ranged from
2× 102 up to 6× 103, corresponding to 1.4× 104 to 4.9× 104

assimilated observations. In the QG experiment described
here, we have a condition number around 9 × 103. We can
reasonably believe that this matches the worst possible case
of AROME. However, the relative dimensions of both prob-
lems produce eigenvalues decreasing much faster in our QG
experiment than in any case of AROME. Eventually, what we
can expect in the block Krylov methods applied to this QG
problem is a convergence similar to the one expected with
AROME in the first iterations of the minimization processes,
but ultimately a faster convergence after a few iterations.
So we have created a reasonably realistic model given the
dimension constraints, but we still need to be careful before
extrapolating the results to real systems.

5.2.2 Data assimilation experiments carried out

We finally describe the EDA experiments carried out with this
QG model.

First, it has to be noted that, in the QG experiments, we have
found no numerical differences between all the algorithms
described previously, namely the SEQ, MPI and MPIstored
versions, in primal and dual space. Second, we recall that
the QG model has no underlying geographical workload dis-
tribution, so the SEQ version has no computational interest.
Thus we will compare the time performances of four algo-
rithms: the MPI version of the block B-FOM (B-MPI) and
of the dual block RB-FOM (RB-MPI), and the corresponding
primal (B-MPIstored) and dual (RB-MPIstored) versions of
the MPIstored algorithm. Regarding the number of members
m considered, this will be set to 1, 5, 10, 20, or 40. All the
experiments will usemMPI processes. This strategy allows to
estimate the time needed to perform EDA minimization: for
example, a one-member experiment run on one MPI process

would need the same time to complete as 40 independent
one-member experiments launched concurrently on 40 MPI
processes.

5.3 Numerical results

In this section, the results for the QG EDA experiments are
presented, first in terms of number of iterations, and then with
respect to wall-clock time.

5.3.1 Convergence

We firstly study the number of iterations needed to reach
convergence depending on the number of members in the
ensemble. Figure 2 shows the convergence in terms of itera-
tions according to three different criteria. We note again that
the numerical results are the same for the four algorithms used
here, so that there is no distinction between them. Figure 2a
shows the B-norm of the residuals for the first member, i.e.
at iteration p, rp1 =

‖‖‖A
(
�xp

)
1 − b1

‖‖‖B
. We can see that the

convergence speed, which is quite slow for the one-member
case, increases on a regular basis when the number of mem-
bers increases. Figure 2b shows the background part of the
cost function Jb which converges to a value of approximately
2.1 × 102 at the end of the minimization process. This final
value is reached sooner and sooner when the number of mem-
bers increases. We note that Jb = ‖�x‖2

B
∕2. It shows that this

criterion can be estimated through the minimization process,
with the notations of Algorithm 1, as:

(
Vsp

)T
Zsp∕2. Figure

2c shows the distance to its final value of the linearized cost
function along the minimization processes: Jlin−J∗lin, with J∗lin
being the value of Jlin at the end of the minimization. The
same conclusion can be drawn: convergence is reached faster
as the number of members increases.

Now we choose a criterion for stopping the minimization.
Several criteria can be used. The ECMWF system uses a cri-
terion based on the relative variation of Jb from an iteration to
the next one: the minimization is stopped when it drops below
5%, but with three outer loops to ensure convergence to the
nonlinear problem (Trémolet, 2007). In this paper, we choose
a criterion based on the one currently acting operationally in
deterministic AROME. In this system, the minimization is
stopped after 40 iterations. So we set the stopping criterion
at 40 iterations for the non-block one-member minimization,
and we note the corresponding value of the B-norm of resid-
uals (dotted horizontal grey line in Figure 2a). Then, block
methods with various number of members are considered as
converged when they reach the same value for the B-norm of
residuals. This is obviously an a posteriori criterion, but it
allows us to easily compare the non-block and block methods.
Column 2 of Table 2 gives the corresponding number of iter-
ations needed to converge for different numbers of members.
We notice that the number of iterations is divided by more
than four compared to the non-blockmethodwhen usingmore
than 20 members. We also note in Figure 2b that applying a
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FIGURE 2 For different numbers of members in the ensemble (m from 1
to 40), convergence of the minimization for the first member in terms of
iterations for different criteria: (a) B-norm of the residuals, (b) background
part of the cost function, Jb, and (c) distance to the final value of the
linearized cost function, Jlin

comparable criterion but based on Jb instead of
(
rp
)
1 would

have led to similar results.

5.3.2 Wall-clock time

Increasing the number of members thus allows us to decrease
the number of iterations needed to reach convergence, at the
cost of more expensive iterations. In this section, the final
cost of the minimization is studied in order to quantify the
potential efficiency of blockmethods for speeding up themin-
imization process overall. We firstly explore the time needed
to perform two individual iterations of the minimization,
according to the algorithm used and the number of members
in the ensemble. This is the purpose of Figure 3.

For the B-MPI algorithm in primal space, Figure 3a, we see
that the computational time dramatically increases when the

TABLE 2 For different number of members, m, the number of iterations
needed to reach convergence (details in the text) and corresponding
computation times (s) needed to perform the minimization process
(columns 3–6) for the four algorithms tested here. For each algorithm, the
best time performance is in bold

No. of Primal Dual

m iterations B-MPI B-MPIst RB-MPI RB-MPIst

1 40 18.3 18.1 16.60 16.90

5 22 22.8 13.6 9.89 9.60

10 14 21.6 11.0 6.45 6.32

20 9 20.7 10.4 4.36 4.27

40 6 25.6 12.5 3.23 3.10

number of members increases. It takes less than 0.5 s to per-
form iteration 2 with one member, but around 3 s with forty
members. With forty members, iteration 15 takes 12.5 s. The
B-MPI algorithm is not scalable and cannot compete against
non-block methods. On the one hand, the time spent in the
operators is quite constant with respect to the number ofmem-
bers and to the iteration index. This was expected since we
perform in any case one application of each operator by mem-
ber and by iteration. On the other hand, the time spent in inner
products, vector summations, and communications soar with
the number of members and the iteration index. The block
minimization is thus intractable.

The goal of the B-MPIstored algorithm (B-MPIst in
Figure 3a) is to decrease the number of communications.
While the time spent in the operators remains obviously the
same, the time spent in other tasks significantly decreases.
For instance, it goes from 12.5 s to 3 s for the 15th iteration of
the minimization with 40 members. This proves that the com-
munications are quite costly and that it is important to reduce
their number. Nevertheless, the time needed to perform the
15th iteration is still eight times greater than the one needed
to perform the same iteration with the non-block one-member
version. Even if we perform far fewer iterations with forty
members, it is not sure that this B-MPIstored algorithm will
be able to improve the overall results. In order to decrease the
cost of the inner products and vector summations, and to fur-
ther decrease the cost of the communications, we have to work
in the dual space.

The results for the dual space algorithm without base stor-
age (RB-MPI) are presented in Figure 3b. Now, no matter
the number of members, most of time is spent in the opera-
tors. Then, the time needed to perform iteration 15 with 40
members is no more than twice the time needed to perform
the same iteration with one member. This is due to the fact
that dual vectors have smaller dimension than primal ones:
Nobs = 1.2 × 104 versus N = 4 × 105. This decreases dra-
matically the cost of the inner products, vector summations,
and communications, since vectors of smaller dimensions are
used. The cost of the operators remains the same.

The RB-MPIstored algorithm (RB-MPIst in Figure 3b) fur-
ther reduces the number of communications compared to
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FIGURE 3 Computational time for the second iteration (six left bars of each plot) and the 15th iteration (six right bars) of the minimization, according to the
number of members (m) in the ensemble, for four different algorithms: (a) primal versions B-MPI and B-MPIstored, and (b) dual versions RB-MPI and
RB-MPIstored. Dark shading denotes time spent in the operators, and light shading in other tasks (axpys, inner products, communications) [AUTHOR: The
abbreviation ‘axpys’ has not been used elsewhere.]

RB-MPI. With this approach, the time needed to compute an
iteration is almost independent of the number of members
and of the iteration index. For instance, 0.4 s are needed to
compute iteration 15 with one member, and less than 0.6 s
with 40 members. Since increasing the number of members
allows us to decrease the number of iterations, we guess that
this method will allow us to decrease the computational time
needed to perform the full minimization.

The time spent in tasks other than operator applications
for the best described algorithm, namely the RB-MPIstored,
cf. grey part of Figure 3b, is decomposed in Figure 4 for
iteration 15. These other tasks are divided in three groups:
orthogonalization (Algorithm 3, lines 7–11 with j = i −

1, i) and reorthogonalization (Algorithm 3, lines 7–11 with
j < i − 1) phases of RB-FOM (inner products and vec-
tor summations), and QR decomposition, which includes
all the MPI communications in the MPIstored version of
RB-FOM. We can see in Figure 4 that the reorthogonaliza-
tion and the QR decomposition roughly account for the same
part of the total extra-operator time consumption, whatever
the number of members. This time consumption is propor-
tional to the number of members for the reorthogonalization,
which was expected (inner products and vector summations;
Table 1).

Now, we can look at the total time needed to perform the
minimization process, given that this process ends when we
reach the criterion defined in section 5.3.1, which corresponds
to the number of iterations listed in Table 2.
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FIGURE 4 For the RB-MPIstored algorithm at iteration 15, time spent in
tasks which are not operator applications for different numbers of members
(corresponding to the light shading part of the three right bars on
Figure 3d). These tasks are orthogonalization and reorthogonalization parts
of RB-FOM (lines 7–11 of Algorithm 3) and QR decomposition and MPI
communications (lines 13–16 of Algorithm 3)

These results for the four algorithms are plotted in Figure 5,
and summarized in columns 3–6 of Table 2. In Figure 5a
corresponds to the primal algorithms while Figure 5b shows
the dual ones. On each plot, bars show the total time needed
to perform the minimization for different number of mem-
bers. We still distinguish the time spent in the operators (dark)
and in the other tasks (grey). This figure confirms the pre-
vious results. With the B-MPI algorithm, the best results are
obtained with the non-block version (m = 1). The inner
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FIGURE 5 As Figure 3, but showing total computational time for
performing the minimization process, according to the number of members
in the ensemble.

products and vector summations are too costly to have any
advantage in using block methods, even if they require far
fewer iterations. In block methods, the number of inner prod-
ucts and vector summations scales as m, and the number of
communications as (m − 1)2. This explains the increase with
m in the time spent in other tasks in Figure 5a despite the
decrease of the number of iterations that is performed. The
reduction of the control vector dimension and of the commu-
nication number is thus crucial. Then if we store the bases
with B-MPIstored (B-MPIst in Figure 5a) we obtain inter-
mediate results. The performance of the algorithm is best
with twenty members, but the gains are not really convinc-
ing. All methods imply a total computational time ranging
from 10 to 20 s. The use of block methods starts to be attrac-
tive when using the dual space, as in algorithm RB-MPI
(Figure 5b). We clearly see that increasing the number of
members speeds up the minimization. We have even better
results with RB-MPIstored (RB-MPIst in Figure 5b). Because
most time is spent in operators, the time needed by the itera-
tion is almost independent of the number of members. Then,
the total computational time is around 3 s for 40 members
compared to the 17 s of the non-block one-member version
(Table 2). We also note in this table that the non-block ver-
sion has performance almost independent of the algorithm
used: 17 to 18 s in any case, almost completely spent in the
operators.

6 CONCLUSION

In this paper, block Krylov methods have been considered
for solving ensembles of variational data assimilations. In
a linearized context, the EDA consists of an ensemble of
linear systems sharing the same Hessian but with different
right-hand sides. In this study, this implies linearization of the
observation operator around the background ensemble mean
and performing no quality control after the observation per-
turbation. Then Block Krylov methods are a natural solution
to this problem. We propose to use the block Full Orthogonal
Method, and derive variants both in primal space and in dual
space with suitable preconditioning and convergence proper-
ties. We note that we limit ourselves to an assimilation system
without outer loops.

The implementation of these algorithms has been made
under OOPS, in order to be easily applicable to differ-
ent numerical weather and ocean prediction systems in the
future. Several parallelization strategies have been developed
to make the minimization tractable in terms of memory and
efficient in terms of time consumption, relying on the infras-
tructure developed by Arbogast et al. (2017). Finally, all these
implementations have been tested on a QG numerical system
with an ensemble of 3D-Var, a simplified but nevertheless
realistic model. The dimension of its domain (4 × 105) was
much smaller than is commonly used in NWP systems, but it
has been run with a number of observations (1.2 × 104), con-
sistent with the configuration of the EDA of the limited-area
model of Météo-France, AROME.

On the one hand, these experiments on the QG system have
shown that the block Krylov methods allow us to notably
reduce the number of iterations needed to reach convergence
(from 40 with one member to 14 with 10 members and 6 with
40 members). But on the other hand, block Krylov methods
applied in primal space do not appear really convincing in
terms of time consumption: the wall-clock times are greater
or similar (depending on the parallelization strategy applied)
to the ones obtained with independent non-block classical
Krylov approaches. Nevertheless, performing block Krylov
methods in dual space gives much more interesting results
and considerably speeds up the minimization, so that the time
needed to perform a single iteration is almost independent of
the number of members in the ensemble. This is because we
gain in the inner products and in the cost of communications.
This approach allows us to gain in wall-clock time almost
what is gained in iterations, reducing the time consumption
from 17 s with one member down to 6.3 s with 10 members
and 3.1 s with 40 members.

Moreover, because the dimension of the observation vec-
tors is similar to the one in AROME, we can expect close
results in dual space with the real system, even if these results
need to be confirmed because of the existing differences
in the Hessian eigenvalue spectra. We may need to further
investigate the consequences of using a linear approxima-
tion in the EDA, notably the implication of the observation



operator linearization around the background ensemblemean.
Also, we note that the FOM algorithm may handle inexact
matrix–vector products (Gratton et al., 2011). Therefore, we
expect our block FOM algorithm also to perform with limited
(single) precision, which may further reduce the computa-
tional cost. So exploring these block Krylov methods in a real
NWP context is now the purpose of our ongoing work and
already gives encouraging results which will be reported in
the future.
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APPENDIX

MODIFIED GRAM–SCHMIDT QR

ALGORITHM

This appendix provides the details of the Modified
Gram–Schmidt QR algorithm (MGSQR) with respect to the
B inner product used for performing the QR decomposition
implied by block B-FOM Algorithm 1 and block RB-FOM
Algorithm 3. MGSQR is given in Algorithm 4. Its inputs
are two matrices w and z, both in RN×m, with z = Bw. The
outputs are matrices v and z, again in RN×m, and � in Rm×m,
which have to verify z = Bv, w = v� (QR factorization), �
upper triangular and vTz = Idm (orthonormality with respect
to the B inner product). In Algorithm 4, wp denotes the
pth column of matrix w (same for all matrices of the same
size).

Algorithm 4 MGSQR

1: �0,0 =
√
(w0, z0)

2: v0 = w0∕�0,0
3: z0 ∶= z0∕�0,0
4: for k = 1 ∶ m − 1 do

5: vk = wk

6: for p = 0 ∶ k − 1 do

7: �p,k =
√(

vk, zp
)

8: zk ∶= zk − �p,kzp
9: vk ∶= vk − �p,kvp

10: end for

11: �k,k =
√
(vk, zk)

12: vk ∶= vk∕�k,k
13: zk ∶= zk∕�k,k
14: end for


