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This paper focuses on different methods for estimating soil moisture in a Sahelian environment by comparing ENVISAT/ASAR and ground data
at the same spatial scale. The analysis is restricted to Wide Swath data in order to take advantage of their high temporal repetitivity (about 3–4 days)
corresponding to a moderate spatial resolution (150 m). On the one hand, emphasis is put on the characterization of Surface Soil Moisture (SSM) at a
spatial scale compatible with the derivation of the backscattering coefficients, and a transfer function is developed for up-scaling local measurements
to the 1 km scale. On the other hand, three different approaches are used to normalize the angular variation of the observed backscattering coefficients.
The results show a strong linear relationship between the HH normalized backscattering coefficients and SSM. The best result is obtained when
restricting the ASAR data to low incidence angles and by taking into account vegetation effects using multi-angular radar data. For this case, the rms
error of the SSM retrieval is 2.8%. These results highlight the capabilities of the ASAR instrument to monitor SSM in a semiarid environment.
© 2007 Published by Elsevier Inc.
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RR1. Introduction

West Africa and more specifically the Sahelian zone has
been identified by Koster et al. (2004) to be one among several a
regions of the world with the most significant feedback between
soil moisture and precipitation. This hot spot “indicates where
the routine monitoring of soil moisture, with both ground-based
and space-based systems, will yield the greatest return in boreal
summer seasonal forecasting”. Monitoring the spatial and
temporal variability of soil moisture is also critical for
understanding soil–vegetation–atmosphere interactions and to
address the role of soil moisture on West African Monsoon
dynamics (Clark et al., 2004; Monteny et al., 1997; Taylor &
Ellis, 2006; Taylor et al., 2005). Accordingly, soil moisture
monitoring over the Sahel is a critical issue of the AMMA
project (African Monsoon Multidisciplinary Analysis) which
aims at providing a better understanding of the West African
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Monsoon and its physical, chemical and biological environ-
ments (GEWEX-news, 2006).

Microwave remote sensing technology has demonstrated a
quantitative ability to measure soil moisture under a variety
of topographic and vegetation cover conditions. It provides
spatially integrated information on soil moisture at a scale
relevant for atmospheric processes and it is suitable to be
extended to routine measurements from satellite systems
(Engman, 1990). Several large-scale field experiments, includ-
ing aircraft microwave radiometric observations, have been
conducted within the framework of HAPEX, FIFE and
Monsoon'90 (Schmugge et al., 1992). In semiarid regions, the
relevance of aircraft L-band measurements to characterize soil
moisture dynamics has been shown by Chanzy et al. (1997).
Spaceborne systems, such as the Advanced Microwave
Scanning Radiometer, AMSR-E, currently provide accurate
estimates of Surface Soil Moisture (SSM) content (Njoku et al.,
2003). However, only coarse spatial resolutions (N10 km) are
applicable using such methods.

Similarly, spaceborne C-band scatterometers with a high
temporal sampling (4–5 days in theory) corresponding to a
MMA Sahelian site in Mali using ENVISAT/ASAR data. Remote Sensing of
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spatial resolution of about 50 km have shown considerable
potential for monitoring soil moisture over semiarid areas
(Frison et al., 1998; Wagner & Scipal, 2000; Woodhouse &
Hoekman, 2000). In particular, observations made at low
incidence angles are found to be significantly related to SSM
(Frison et al., 1998; Jarlan et al., 2002, 2003; Magagi & Kerr,
1997; Stephen & Long, 2004). Compared to scatterometers,
Synthetic Aperture Radars (SAR) such as those onboard the
European Remote Sensing (ERS) and ENVISAT satellites offer
a better spatial resolution (30 m) but at the expense of a lower
frequency temporal sampling (only 35 days for ENVISAT). The
potential of both SAR and scatterometers for detecting changes
in SSM results from their high sensitivity to the variation of the
dielectric properties of the surface that are mainly linked to
changes in SSM (Satalino et al., 2002; Ulaby & Batlivala, 1976;
Ulaby et al., 1986; Zribi et al., 2003). Moreover, in semi-arid
regions and at low incidence angles, vegetation effects are
minimized or can be taken into account using relatively simple
methods (Moran et al., 2000; Tansey et al., 1999). In terms of
dominantly vertically-orientated herbaceous vegetation, the use
of the HH polarization is expected to improve the SSM esti-
mation from space due to the corresponding larger SSM
sensitivity, especially at low incidence angle (Ulaby, 1975).

The present study focuses on examining the relationships
between backscattering coefficient data acquired by the ASAR
instrument at HH polarization and soil moisture measurements
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Fig. 1. The Gourma window in Mal
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recorded in a Sahelian environment. Here, only the ASARWide
Swath data are used in order to take advantage of their high
temporal sampling of 3–4 days associated with a moderate
spatial resolution (150 m). The considered period is July–
December 2005, which includes the entire rainy season. The
paper is organized as follows: The study site, the associated data
and the methodology are presented in Section 2. Three simple
methods to normalize the radar data acquired at different
incidence angles are described, and the interest in using LAI
data for improving the angular normalization is explained.
Section 3 presents the results of a correlation analysis based on
the three different methods. Conclusions and Perspectives are
given in Section 4.

2. Data and methods

2.1. The study site

The Agoufou (15.3°N, 1.3°W) study site is located within
the AMMA meso-scale site (14.5–17.5°N, 1–2°W) in the
Gourma region in Mali (Fig. 1). The Gourma region is located
entirely within the Sahel bioclimatic zone and extends to the
South of the Niger River between Timbuctu and Gao down to
the border with Burkina-Faso. This is mainly a pastoral region
enclosed by the annual average 500 and 150 mm isohyets. The
rain distribution is strictly mono-modal with rainfall starting in
T

i showing the Agoufou site (•).

MMA Sahelian site in Mali using ENVISAT/ASAR data. Remote Sensing of
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June and ending in September with a maximum in August. The
rainy season is then followed by a long dry season characterized
by the absence of green vegetation apart from some scattered
trees and shrubs. Rangeland vegetation is composed of a
herbaceous layer and a sparse woody plant population. Herb
growth is strongly influenced by the pattern and magnitude of
rainfall events and by the soil moisture regime that results from
them and from run-off influenced by topography and soil
texture. Annual herbs germinate after the first rains, in June or
July, and unless the plants wilt before maturity owing to a lack
of rainfall, the senescence coincides approximately with the end
of the rainy season.

The Agoufou site (1×1 km2) is a typical Sahelian landscape
characterized by gently undulating sand dunes (Fig. 2). The
altitude ranges between 302 and 310 meters above sea level.
The total tree and shrub cover is about 4.5%, whereas the grass
cover may vary from 0 to about 60% depending on soil moisture
availability. The soil is coarse grained or sandy (N90%).

For the 2005 wet season, the annual rainfall total is 408 mm
which can be considered as a relatively wet year (the long-term
average is 370 mm). Ground measurements of the vegetation
consist in an estimate of the time variation of LAI from trees and
grasses using hemispherical photographs (Weiss et al., 2004).
For the grass layer, a 1 km transect has been defined in the E–W
direction where measurements are performed every 10 m,
resulting in 100 pictures. The large quantity of data is sufficient
to capture the spatial variability of the grass layer. The computed
mean LAI is assumed to be representative at the 1 km2 scale. The
estimated resulting accuracy is 0.23 m2 m−2 (at 1 S.D.).
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Fig. 2. View of the
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In 2005, the growth of the grass layer started early in June
and reached a maximum LAI of 1.8 by the end of August
(Fig. 3). In contrast, the LAI of trees estimated from pictures
taken of isolated individual stands remains at values lower than
0.2 throughout the year. Accordingly, trees are not considered in
this study.

2.2. Surface soil moisture measurements

2.2.1. Description of the SSM measurement approach
At the Agoufou site, soil moisture measurements have been

specifically designed for remote sensing applications and
retrieval method validation, therefore a local soil moisture
station has been installed. It covers a very fine vertical resolution
in the soil, including SSM measurements at a 5 cm depth. Up-
scaling features of the SSM, which are of critical importance for
remote sensing, are addressed through specific SSM measure-
ment campaigns at a 1 km spatial scale, as described herein.

The local station has been continuously measuring soil
moisture and temperature profiles at a 15-min time interval
since July, 2004. For soil moisture, a set of five water content
reflectometers Campbell Scientific CS616 (Campbell Scientif-
ic, 2002) have been installed at 5, 10, 40, 120, 220 cm depths in
the soil. Gravimetric measurements are performed for calibra-
tion of the soil moisture sensors at the local scale. The Surface
Soil Moisture (SSM) is expressed in m3/m3 (volumetric soil
water content).

In addition to the station measurements, field campaigns
were conducted in order to estimate SSM at a kilometric spatial
Agoufou site.

MMA Sahelian site in Mali using ENVISAT/ASAR data. Remote Sensing of
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Fig. 3. Temporal evolution of the Leaf Area Index (LAI) and rainfall distribution
during the 2005 wet season.

Fig. 4. Temporal Surface Soil Moisture measurements along the 1 km transect
(DoY: 223, 225 and 227 of 2005) following a rainfall event on DoY 223.
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scale. For this purpose, a 1 km transect was defined in the E–W
direction relative to the automatic soil moisture station.
Measurements are performed with a portable impedance sensor
every 10 m along this transect, resulting in 100 measurements
representative of the first 5 cm in the soil (Gaskin & Miller,
1996). The manufacturer calibration function for sandy soils is
used to derive volumetric soil moisture values, in agreement
with a gravimetric calibration performed at different locations
along the transect. The mean and standard deviation (S.D.) of
the 100 measurements are computed, and are assumed to be
representative at the 1 km2 scale. Field campaigns were con-
ducted during the 2005 rainy season, providing a total of 25
SSM measurements for various conditions of surface soil
moisture.

2.3. Up scaling local SSM to the kilometric scale

Kilometric SSMmeasurements are shown in Fig. 4 for Day of
Year (DoY) 223, 225 and 227 (August 2005), following a
7.5 mm precipitation event on DoY 223 (August 11). For each
day, the mean value and its standard deviation are represented by
horizontal and dashed lines, respectively. The SSMmeasured on
DoY 223 depicts wet conditions with values of 10.01% with a
1.28% S.D. The SSM dynamic is shown to be very pronounced
with a rapid decrease of themean SSM and standard deviation on
DoY 225 (mean 5.38%, S.D. 0.99%) and 227 (mean 1.9%, S.D.
0.79%). Overall, decreases of about 2.5% per day for the 2 first
days (DoY 223–225), and 1.5% per day for the 2 following days
are observed. Consequently, the top soil dries out (SSMb2%)
within the 5 days following a rainfall event. The relationship
between the standard deviation and mean SSM has been studied
for the Agoufou site. Results show that the standard deviation
increases with the mean of the SSM with a correlation of
r=0.85. For low values of SSM (1.5%), the standard deviation is
0.8% and 2% for the highest SSM (16%). This spatial variability
results from the redistribution of the water at the soil surface due
to vegetation cover and topography.

In this study, transect measurements are used to estimate the
relationship between SSM at the 1 km scale and the local station
measurements (Fig. 5). The surface soil moisture at the 1 km
Please cite this article as: Baup, F. et al. Surface soil moisture estimation over the A
Environment (2007), doi:10.1016/j.rse.2007.01.015
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scale is expressed as a function of the local station measure-
ments as:

h1 km ¼ 3:945� hLocal−65:51 ð1Þ

where (m3/m3) is the volumetric SSM at the 1 km scale and is
the local-scale measurement (expressed here in milliseconds).
Local scale measurements are kept in milliseconds in order to
avoid potential calibration sensor errors.

The high correlation obtained (r=0.97) clearly indicates that
the dynamic of the SSM at the 1 km scale is strongly correlated
with the local SSM for a large range of soil moisture conditions
ranging between 2% and 16%. Accordingly, this transfer
function is assumed to be suitable to estimate the SSM at a 1 km
scale from continuous station measurements. In the following,
this relation is used to compute kilometric SSM values that are
compared to ASAR data.

2.4. ENVISAT ASAR data description

The ENVISAT satellite was launched by ESA (European
Space Agency) on March 1, 2002. The ASAR (Advanced
Synthetic Aperture Radar) instrument is a multi-mode sensor
which operates at C-band (5.3 GHz) at several polarizations
(HH, VV, HV and VH), incidence angles, and spatial/
radiometric resolutions depending on the functioning mode
(Desnos et al., 1999). At this frequency, atmospheric perturba-
tions can be considered negligible (Ulaby et al., 1981). The
satellite passes the descending node at 10:00 a.m. local solar
time and the ascending node at 22:00 p.m. with a repeat cycle of
35 days (Louet, 2001). The ASAR instrument may operate as a
conventional stripmap SAR (Image and Wave modes) or as a
ScanSAR (Global Monitoring, Wide Swath and Alternating
Polarization modes) (Torres et al., 1999; Zink, 2002). A more
detailed description of the ASAR specifications can be found in
Baup et al. (2006).

In the present study, emphasis is placed on the Wide Swath
(WS) mode at HH polarization. For this mode, the spatial
resolution is 150 m and the incidence angles range between 16°
and 43° (ENVISAT handbook, 2004). For the considered period,
MMA Sahelian site in Mali using ENVISAT/ASAR data. Remote Sensing of
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Fig. 5. Comparison between Surface Soil Moisture measurements along the
1 km transect (in %) and data collected by the automatic soil moisture station in
milliseconds (July–August 2005). Table 1 t1:1

Date, incidence angle, backscattering coefficient and kilometric surface soil
moisture values before angular normalization of the Wide Swath ASAR data
(HH polarization) t1:2

t1:3Month Day Time Incidence
angle (°)

Backscattering
coefficient
(m2/m2)

Kilometric surface
soil moisture
(m3/m3*100)

t1:407 16 10:03:41 23.65 0.0607 5.72
t1:507 29 09:55:09 38.04 0.0238 1.83
t1:608 01 10:00:48 28.86 0.0618 8.56
t1:708 05 22:17:36 39.96 0.0396 3.09
t1:808 14 09:52:16 42.09 0.0356 3.70
t1:908 17 09:57:56 33.65 0.0569 8.88
t1:1008 20 10:03:36 23.70 0.966 11.92
t1:1109 2 09:55:05 38.02 0.0335 6.25
t1:1209 3 22:06:13 20.83 0.0496 2.56
t1:1309 5 10:00:45 28.84 0.0282 1.87
t1:1409 6 22:11:53 31.17 0.0282 1.47
t1:1509 8 10:06:25 18.13 0.0396 1.52
t1:1609 9 22:17:34 40.03 0.0215 1.29
t1:1709 18 09:52:15 42.04 0.0204 1.14
t1:1809 21 09:57:56 33.63 0.0178 1.03
t1:1909 22 22:09:04 26.21 0.0583 3.98
t1:2009 24 10:03:36 23.68 0.0403 1.56
t1:2109 25 22:14:45 35.79 0.0232 1.03
t1:2210 7 09:54:56 38.06 0.0255 6.77
t1:2310 8 22:06:25 20.82 0.0581 3.94
t1:2410 10 10:00:36 28.86 0.0268 2.89
t1:2510 13 10:06:16 18.17 0.0623 1.69
t1:2610 14 22:17:46 40.00 0.0215 1.38
t1:2710 23 09:52:06 42.05 0.0176 1.07
t1:2810 26 09:57:47 33.61 0.0212 0.85
t1:2910 27 22:09:17 26.22 0.0327 0.76
t1:3010 29 10:03:27 23.66 0.0435 0.81
t1:3111 11 09:54:56 38.02 0.0145 0.61
t1:3211 12 22:06:25 20.85 0.0487 0.58
t1:3311 15 22:12:05 31.17 0.0194 0.56
t1:3411 17 10:06:15 18.14 0.0541 0.65
t1:3511 18 22:17:45 39.98 0.0127 0.54
t1:3611 27 09:52:02 42.07 0.0124 0.67
t1:3711 30 09:57:42 33.68 0.0163 0.65
t1:3812 1 22:09:11 26.12 0.0261 0.60
t1:3912 4 22:14:51 35.72 0.0188 0.50
t1:4012 16 09:54:50 38.06 0.0138 0.52
t1:4112 17 22:06:19 20.79 0.0458 0.41
t1:4212 19 10:00:29 28.87 0.0218 0.54
t1:4312 20 22:11:58 31.13 0.0191 0.43
t1:4412 22 10:06:09 18.16 0.0560 0.52
t1:4512 23 22:17:38 39.96 0.0120 0.47
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from July to December, 2005, the number of available data over
the Agoufou site is about 2–3 images/decade (i.e. a 10-day
period), allowing the monitoring of short scale land processes
such as the soil moisture variation. However, these images are
acquired at different incidence angles compared to those
recorded at a 35-day interval. No azimuthal difference linked
to the acquisitions made during ascending or descending passes
has been observed for the Agoufou site. Accordingly, in the
following, data from the two different orbits are mixed together.

The calibration process is performed using the B.E.S.T (Basic
ENVISAT SAR Toolbox) software provided by ESA. Details on
the calibration algorithm can be found in Laur et al. (1998). The
geocoding is performed using the IDL/ENVI software and the
results are assessed by superimposing an ASAR image onto a
Landsat TM (30 m resolution). For a 1×1 km2 window, the
estimated confidence interval for the backscattering coefficient σ0

after angular normalization is ±0.65 dB (at 1σ) (Baup et al., 2006).

2.5. Methodology

Three different approaches for SSM retrieval from ASAR
data are investigated in this study. The proposed approaches
differ from the normalization procedure that is used to correct
the angular variations of the radar signal. For the 3 considered
methods, soil roughness in terms of height root mean square
(hrms) and correlation length is assumed to be constant over the
studied period (Jarlan et al., 2002; Wagner & Scipal, 2000). The
particularity of the studied area is the low observed SSM values
which range between 0.5% and 12% for the whole period under
consideration. All ASAR and SSM data used are summarized in
Table 1.

In the first approach, hereafter referred to as [N23], the whole
ASAR data set is considered for the comparison with the SSM
values. The number of available data is about 2–3 samples per
decade. The approach consists of using all data acquired at
various incidence angles during the dry period to establish the
angular regression function which is approximated by a second
order polynomial fit. Then, this function is used to normalize the
entire data set at an incidence angle of 23° assuming that there is
Please cite this article as: Baup, F. et al. Surface soil moisture estimation over the A
Environment (2007), doi:10.1016/j.rse.2007.01.015
OF

no variation of the fit during the year. This is a reasonable
assumption since the chosen incidence angle (23°) is located
where the effects of vegetation are minimised. In addition, the
normalization errors that result from the effects of vegetation at
high incidence angles (N30°) are expected to be small due to the
low vegetation density and are thus neglected (Ulaby et al.,
1982). Moreover, at a 23° incidence angle the influence of the
soil roughness is also minimized (Ulaby & Batlivala, 1976;
Ulaby et al., 1978; Sano et al., 1997).

The second method, [N23_season], takes into account the
seasonal vegetation effect on the angular variation of the
backscattered coefficient. In this case, two normalization
functions depending on the season are used. For the dry season
(from January to May and from October to December), which is
MMA Sahelian site in Mali using ENVISAT/ASAR data. Remote Sensing of
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Fig. 6. Angular variations of the HH backscattering coefficient during the dry
and wet seasons for the sand dune landscape estimated for the 2005 dry period
and on DoY 248.

Fig. 7. a) Normalized HH backscattering coefficient versus Surface Soil Moisture
for WS mode at HH Polarization (2005 rainy season). b) Normalized HH
backscattering coefficient using two different functions (dry and wet season)
versus the Surface Soil Moisture content for WS mode at HH Polarization.
c) Normalized HH backscattering coefficient, estimated at low incidence angle
(b30°), versus the Surface Soil Moisture content forWSmode at HH Polarization.
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when the green vegetation cover is small or absent, the
normalization function reverts to the previously established
relationship [N23]. For the wet season, a simple normalization
function is built by considering all of the ASAR data recorded at
the date of maximum green vegetation cover. Fig. 6 illustrates
the angular dependency of the radar signal during the dry (no
vegetation) and the wet seasons (maximum of vegetation). The
wet regression is estimated from a radar image acquired in
September (DoY 248), when soil surface is getting drier and
green vegetation is closed to its maximum (DoY 232). The
resulting angular functions show that the effect of the vegetation
layer has to be taken into account in the normalization
procedure. Here, this is simply done by considering a sole
‘average’ normalization function for the whole rainy period,
whatever the vegetation cover is. In contrast to previous studies
(Le Hegarat-Mascle et al., 2002; Wang et al., 2004), this method
does not require the use of ancillary data. The seasonal
vegetation effect is simply taken into account from the seasonal
analysis of the ASAR data. As for method [N23], the number of
available data is about 2–3 samples per decade.

The third method [N23_season_lowangle], also considers
two different regression functions depending on the season, but
the data under consideration are restricted to those acquired at
an incidence angle lower than 30° in order to minimize soil
roughness and vegetation effects. In this case, the number of
available data is about 1.2 samples per decade. At a 23°
incidence angle, model simulations (Baup et al., 2006) based on
the approach proposed by Karam et al. (1992), Frison et al.
(1998) and Jarlan et al. (2002), indicate that the measured
backscatter originates from two main contributions, namely the
soil surface and the interaction between the soil and the
vegetation. These contributions are mainly driven by SSM
which controls the dielectric properties of the upper soil profile.

3. Surface soil moisture estimation

Relationships between SSM kilometric measurements and
normalizedσ0 estimatedwithin a 1×1 km2 window are examined
in this section. The study is mainly performed for the Agoufou
Please cite this article as: Baup, F. et al. Surface soil moisture estimation over the A
Environment (2007), doi:10.1016/j.rse.2007.01.015
site. The robustness of the observed relationships is measured
using a correlation and root mean square error (rmse) analysis.
Finally, the best inversion method is used to derive time series of
SSM that are compared to the automatic kilometric-scale SSM.

3.1. Relationships between SSM and normalized σ0

Fig. 7(a–c) illustrate the comparison between kilometric
SSM and the normalized backscattering coefficients derived
MMA Sahelian site in Mali using ENVISAT/ASAR data. Remote Sensing of
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site (July–December 2005).
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from the [N23], [N23_season] and [N23_season-lowangle]
methods, respectively. For the 3 methods under consideration,
results show a significant linear correlation between SSM and
the normalized σ0, the best performance being obtained with
the [N23_season-lowangle] method. Calculated correlation
coefficients, r (and associated rmse in dB) are 0.77 (1.0), 0.85
(0.7), 0.90 (0.6) for the [N23], [N23_season] and [N23_season-
lowangle] methods, respectively (Table 2). Whatever the
method used, a large scatter in σ0 appears especially at low
SSM. Although it is related to the large amount of radar data
recorded during the dry season, this large scatter is not in
agreement with the observed features of SSM spatial variability
(Fig. 4). Since the scatter is mainly observed during the dry
season, it is assumed to be mostly related to satellite
measurement noise and possible small surface roughness
variations. Moreover, it is of importance to notice that the
scatter of σ0 data ranges within its normal error range (at 1σ).

3.2. Effect of seasonal vegetation dynamics on SSM estimation

For both [N23_season] and [N23_season_lowangle] meth-
ods, effects of vegetation on surface backscattering coefficient
are taken into account by simply using a wet and a dry season
normalization function, as depicted in Fig. 6. This method does
not require any ancillary information on the vegetation status.
To further investigate the effect of vegetation on soil moisture
retrieval performance, seasonal features of the angular varia-
tions of the backscattering coefficient are addressed in this
subsection through the use of ancillary LAI information. For
each day, a sigma normalization function is interpolated
between the dry and wet curves, based on a linear weighting
function of the observed LAI. The corresponding date
normalization function is then applied for the N23_season
method, for which the whole ASAR data set is used whatever
the incidence angle is. Results using this method (r=0.83,
rmse=1.5%) are similar to those obtained without LAI
information (r=0.85, rmse=1.4%).

The absence of improvement is mainly related to the low
vegetation density. Accordingly, no ancillary information on
LAI is used in the following.

3.3. Inverted time series of SSM

Results obtained with the [N23_season-lowangle] are
presented for the July–December period, using the statistical
relationship linking σ0 and SSM, and by assuming that the
minimum SSM value is 0.5%. These estimates are compared to
402

403

404
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406

407

408

409

410

411

Table 2
Comparison of the three methods in terms of correlation coefficient, rms errors
(in % and in dB) and final SSM estimations errors

r σ0

rmse
SSM
rmse

Final SSM error (with radar
errors (2.4%) and up-scaling
SSM function (0.8%))

N23 0.77 1.0 dB 1.7% 3.0%
N23_season 0.85 0.7 dB 1.4% 2.9%
N23_season_lowangle 0.90 0.6 dB 1.3% 2.8%
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automatic local-scale measurements recorded at the satellite-
overpass time. Results show a very good agreement between
ASAR-derived SSM and SSM measurements (Fig. 8). The
associated correlation coefficient is r=0.90 with a rmse=1.3%
(n=19). Compared to the two other methods, the improvement
is 30% and 40% in terms of rms errors of the backscattering
coefficient with values of 1.0 dB, 0.7 dB and 0.6 dB for the
N23, N23_season and N23_season_lowangle methods, respec-
tively (Table 2). Similar improvement is observed when
considering the rms error on the SSM from the model inversion.
However, the main drawback of this method is the reduction by
a factor of two of the temporal sampling.

A suitable estimate of measure errors must also take into
account two other error sources:

– the confidence interval of the backscattering coefficient
(±0.6 dB) and the angular normalization error (mean equal to
0.25 dB), implying a mean radar processing error of 0.65 dB
and a SSM error of 2.4%;

– the rms error due to the kilometric transfer function (0.8%).

Consequently, the resulting accuracy of the inverted SSM is
3.0%, 2.9% and 2.8% for the 3 methods, respectively, with the
most significant error contribution being due to the radar
accuracy (2.4%).

4. Concluding remarks

Relationships between Surface Soil Moisture, SSM, of
Sahelian sandy soil and the ASAR backscattering coefficient at
HH polarization are examined in this study. First, a transfer
function is established for up-scaling local SSM measurements
to the 1 km scale which is compatible with the ASAR estimated
backscattering coefficients. Second, three radar signal angular
normalization methods are tested. The proposed approaches
differ in terms of the inclusion of vegetation effects in the
correction. In addition, the third method is restricted to radar
data which are acquired at low incidence angles in order to
minimize the influence of vegetation and soil roughness.
MMA Sahelian site in Mali using ENVISAT/ASAR data. Remote Sensing of
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Results show a strong linear relationship between SSM and
HH normalized backscattering coefficients indicating the high
capabilities of the ASAR instrument to estimate SSM in a
semiarid environment even at very low SSM (ranged between
0.5% and 12%). Whereas studies based on SSM estimation using
SAR data in semiarid rangelands generally deal with an increased
range of SSM values (up to 30% larger) and do not indicate a
significant relationship for low SSM (b15°) (Mattia et al., 2006;
Moran et al., 2000). Results also clearly demonstrate that the
vegetation effects have to be taken into account in order to
improve the angular normalization procedure. These effects can
be corrected using only multi-angular ASAR data, and the use of
LAI data is not necessary for low LAIb2.0. Although the
vegetation effects are not perfectly known, especially at high
incidence angles, the N23_method presented in this paper gives
preliminary quantitative results, and the rms error of the Surface
Soil Moisture retrieval is 2.9%. By considering only the data
acquired at an incidence angle lower than 30°, the rms error is
slightly reduced to 2.8%. This small improvement is obtained
because the main error source comes from the σ0 confidence
interval (2.4%). Moreover, the last method reduces temporal
repetitivity (1.2 data samples per decade compared to 2.8) and it
would be of interest to retain the highest temporal sampling of
SSMwhile keeping a good accuracy of the SSM retrieval. This is
especially important for the Sahel, where the top surface of sandy
soils dries quickly after rainfall events.
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