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Abstract

The increasing number of sensor types for terrestrial remote sensing has necessitated supplementary efforts to evaluate and standardize data
from the different available sensors. In this study, we assess the potential use of IKONOS, ETM+, and SPOT HRVIR sensors for leaf area index
(LAI) estimation in forest stands. In situ measurements of LAI in 28 coniferous and deciduous stands are compared to reflectance in the visible,
near-infrared, and shortwave bands, and also to five spectral vegetation indices (SVIs): Normalised Difference Vegetation Index (NDVI), Simple
Ratio (SR), Soil Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), and Atmospherically Resistant Vegetation Index (ARVI).
The three sensor types show the same predictive ability for stand LAI, with an uncertainty of about 1.0m2/m2 for LAI between 0.5 and 6.9m2/m2.
For each sensor type, the strength of the empirical relationship between LAI and NDVI remains the same, regardless of the image processing level
considered [digital counts, radiances using calibration coefficients for each sensor, top of atmosphere (TOA), and top of canopy (TOC)
reflectances]. On the other hand, NDVIs based on radiance, TOA reflectance, and TOC reflectance, determined from IKONOS radiometric data,
are systematically lower than from SPOT and ETM+ data. The offset is approximately 0.11 NDVI units for radiance and TOA reflectance-based
NDVI, and approximately 0.20 NDVI units after atmospheric corrections. The same conclusions were observed using the other indices. SVIs
using IKONOS data are always lower than those computed using ETM+ and SPOT data. Factors that may explain this behavior were investigated.
Based on simulations using the SAIL bidirectional canopy reflectance model coupled with the PROSPECT leaf optical properties model (i.e.,
PROSAIL), we show that the spectral response in radiance of IKONOS sensor in the red band is the main factor explaining the differences in SVIs
between IKONOS and the other two sensors. Finally, we conclude that, for bare soils or very sparse vegetation, radiometric data acquired by
IKONOS, SPOT, and ETM+ are similar and may be used without any correction. For surfaces covered with dense vegetation, a negative offset of
10% of IKONOS NDVI should be considered.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

As a result of the great interest in ecological modeling at
stand, regional, and global scales, much attention is given to leaf
area index (LAI), which is considered to be a key parameter of
ecosystem processes (Asner et al., 2003). Various ecophysio-
logical processes of a forest ecosystem are strongly controlled
by LAI: interception of light (Machado & Reich, 1999; Vargas
et al., 2002) and precipitation (van Dijk & Bruijnzeel, 2001),
⁎ Corresponding author.
E-mail address: kamel.soudani@ese.u-psud.fr (K. Soudani).
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gross productivity (Coyea & Margolis, 1994; Jarvis &
Leverenz, 1983; Linder, 1985; Maguire et al., 1998; Vose &
Allen, 1988), transpiration (Granier et al., 2000), and soil
respiration by means of litter return (Davidson et al., 2002;
Reichstein et al., 2003).

Since the 1972 launch of the first satellite dedicated to
gathering information on earth resources (i.e., Landsat-1),
followed by additional satellites from the U.S., Japan, France,
and the European Space Agency (ESA) among others, a
considerable number of remote sensing images have accumu-
lated. Satellite-derived information is extensively used, and
remote sensing has become the primary data source and an
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essential tool for land cover mapping, environmental monitor-
ing, and ecological process scaling from stand to regional and
global levels (Plummer, 2000). Available data sets and images
archives offer wide possibilities for describing spatial and
temporal dynamics of vegetation characteristics over the last 30
years.

The necessity of using data from different satellites in order
to obtain a cloud-free image series over an extended period of
time raises the issue of the feasibility of using data from
different sources. Each remotely sensed satellite image source
has its own specifications (orbital altitude, spatial and spectral
resolutions, wavelength band limits, relative spectral responses
of the sensors, etc.). Radiometric data acquired from different
sensors, whether converted or not into spectral vegetation
indices (SVIs), are sensor-dependent. They may not be
comparable because of differences in the spectral and spatial
characteristics of the sensors (Hill & Aifadopoulou, 1990;
Steven et al., 2003; Teillet et al., 1997).

Numerous studies have shown differences between sensors
that at first were considered to be similar. Using airborne
AVIRIS data (Airborne Visible Infrared Imaging Spectrometer)
acquired at 20-m resolution over forest covers, Teillet et al.
(1997) tested the sensitivity of the Normalized Difference
Vegetation Index (NDVI) to spectral and spatial characteristics
of SPOT HRV, Landsat TM, NOAA AVHRR, EOS MODIS,
and Envisat MERIS sensors. They showed that the NDVI is
significantly affected by differences in spectral bandwidths,
especially in the red band. Changes in NDVI due to differences
in spatial resolution between sensors depend on the spatial and
spectral heterogeneity of the vegetation. In another study,
Steven et al. (2003) used simulations to study the effects of
sensor spectral characteristics on NDVI. Significant differences
were found and the authors established conversion factors for
AVHRR, ATSR-2, Landsat MSS, TM, and ETM+, SPOT-2 and
SPOT-4 HRV, IRS, IKONOS, SEAWIFS, MISR, MODIS,
POLDER, Quickbird, and MERIS sensors.

The increasing number of sensor types has lead to
supplementary efforts to evaluate and standardize sensor data
(Bricaud et al., 2002; Liang, 2001). SPOT-4 HRVIR (high
resolution visible and infrared), Landsat ETM+ (enhanced
thematic mapper plus), and IKONOS are among the main
commercially available sensors that routinely observe Earth
surfaces at high spatial resolution. They constitute the principal
data sources for land cover mapping, land use change detection,
and forestry assessment and monitoring at regional scales. The
sensors also become important sampling devices used for
validation of products derived from coarse spatial resolution
remote sensing image products, such as MODIS albedo and
APAR (Liang et al., 2002), MODIS LAI (Cohen et al., 2003;
Wang et al., 2004), tree cover (Hansen et al., 2002), and MODIS
GPP/NPP (Turner et al., 2003). Thenkabail (2004) and Goward
et al. (2003), particularly, performed inter-sensor comparison
studies using IKONOS data. Thenkabail (2004) established
among-sensor NDVI relationships for IKONOS and ETM+ data
on rainforests and savannas, and observed that IKONOS NDVI
was significantly higher than ETM+ NDVI using digital counts
and lower using TOA reflectances. Goward et al. (2003) found
that IKONOS red and near-infrared reflectances differ between
the two sensors, with IKONOS generally producing higher
reflectance in the red band, lower reflectance in the near-
infrared band, and lower SR, NDVI, and ARVI than ETM+ for
the same vegetation cover characteristics.

There are few studies dealing with the feasibility of using
IKONOS, Landsat ETM+, and SPOT-4 HRVIR for the
determination of LAI in forest stands, and, as far as we know,
there are no studies that have addressed the inter-sensor
relationship variations with LAI. For forest applications, studies
using data acquired by these three sensors have focused:

(i) On the classification of rain forest vegetation using
IKONOS and ETM+ data (Thenkabail et al., 2004).
Results showed that IKONOS leads to better classifica-
tion accuracy than ETM+ data.

(ii) On the estimation of forest stand attributes, such as stand
biomass and stem density in central African rainforests
using IKONOS and ETM+ data (Thenkabail et al., 2003,
2004), and age class in Douglas-fir stands using texture
descriptors derived from IKONOS images (Franklin et
al., 2001). Differences between IKONOS and ETM+
were detected, in terms of the predictability of stand
biomass and stem density, because of substantial
additional information in the SWIR bands of ETM+
(bands 5 and 7) (Thenkabail et al., 2004).

(iii) On LAI estimation using ETM+, IKONOS, and Lidar
data (Chen et al., 2004), using only ETM+ data (Eklundh
et al., 2001; Cohen et al., 2003; Kalácska et al., 2004) and
using only IKONOS data (Colombo et al., 2003).

Our study aims to address these knowledge gaps by
investigating the feasibility of using IKONOS, SPOT-4
HRVIR, and Landsat ETM+ images for the determination of
LAI in temperate coniferous and deciduous forest stands; by
analyzing the effects of the spectral characteristics of these three
sensors on the characterization of canopy reflectance behavior
in visible and infrared bands, and by establishing inter-sensor
relationships over a large range of LAI.

2. Materials and methods

2.1. Study sites

The test sites are situated in the Fontainebleau Forest, located
southeast of Paris, France (48°25′N, 2°40′E; altitude 120m).
The 17,000-ha mixed deciduous forest is managed by the Office
National des Forêts (French national forest service). The climate
is temperate, with an average annual temperature of 10.2°C and
an average annual precipitation of 720mm. The dominant
overstory species are oaks [Quercus petraea and Quercus robur
(Matus) Liebl.], beech (Fagus sylvatica L.), and Scots pine
(Pinus sylvestris L.). The understory tree species are mainly
hornbeam (Carpinus betulus L.) and beech, and the herbaceous
species are mainly bramble (Rubus fruticosus L.), brackenfern
[Pteridium aquilinum (L.) Kuhn], and purple moor grass
[Molinia caerulea (L.)]. Fifty percent of the Fontainebleau
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Fig. 1. Locations of the 28 stands sampled within Fontainebleau Forest (O: oak stands, B: beech stands, S: Scots pine stands). The background is a B&W IKONOS near-infrared band.
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Forest is dominated by oaks, 10% by beech, and 40% by Scots
pine. In 2000, the growing season began at Julian day 116 (26
April) for both oak and beech. The leaf senescence and fall
period ranges from end October to mid-November. The
topography is gentle to flat, and soils are on sandy and/or
calcareous bedrock. The most frequent types are brunisol,
luvisol, and podzol. Humus types vary from mor to mull. The
Fontainebleau Forest is described in more detail in le Maire et
al. (2005). Twenty-eight forest stands were sampled: 14
occupied by oaks, 6 by Scots pine, and 8 by beech. The area
of each stand is between 2 and 13.5ha (5.5ha, on average).
Their locations on the forest are given on the IKONOS image
(Fig. 1). Main attributes of these stands are given in Table 1.
These stands are even-aged and are representative of the
different stages of development and stand structure found on the
Fontainebleau Forest.

2.2. Measurements

Two types of measurements were carried on the 28 stands:
ground-based LAI measurements and multi-source satellite
data.

2.2.1. Ground-based LAI measurements
LAI measurements were made using a ground-based optical

instrument, the Plant Canopy Analyser (PCA) LAI-2000 (LI-
Table 1
Structural characteristics of the 28 stands sampled

Stand Stand
structure

Main overstory
species

Main understory
species

Stand area
(ha)

Age
(yea

O1 MF Oak Beech 6.1 167
O2 MF Oak Beech 6.6 153
O3 MF Oak Hornbeam 13.4 156
O4 MF Oak – 7.4 93
O5 SS Oak – 9.1 30
O6 SS Oak – 8.0 20
O7 SS Oak – 4.3 20
O8 SS Oak – 3.6 24
O9 ST Oak Beech 4.6 187
O10 ST Oak – 10.4 180
O11 ST Oak – 11.6 180
O12 MF Oak–beech Beech 9.2 168
O13 MF Oak Beech–hornbeam 8.4 139
O14 MF Oak–beech Hornbeam 5.4 212
B15 MF Beech Beech–hornbeam 4.3 85
B16 PS Beech – 2.3 50
B17 PS Beech – 4.3 50
B18 PS Oak–beech Hornbeam 3.8 33
B19 MF Beech Beech–hornbeam 5.0 136
B20 PS Beech – 5.4 38
B21 MF Beech – 5.6 100
B22 PS Beech – 7.0 34
S23 MF Scots pine Beech 3.2 67
S24 MF Scots pine Beech 2.5 57
S25 MF Scots pine Beech 2.1 90
S26 ST Scots pine – 2.6 120
S27 ST Scots pine – 3.2 120
S28 MF Scots pine Beech 4.2 108

O: oak stands, B: beech stands, S: Scots pine stands. MF: mature forest, ST: seed tree
understory, (⁎) age estimated visually (otherwise, aged by tree cores).
COR Inc., Lincoln, NE, USA). A detailed description of this
instrument is given in Cutini et al. (1998). LAI was predicted by
the standard Poisson model of angular distribution of gap
frequency, assuming a random dispersion of leaves in the
canopy volume (Nilson, 1971). Gap frequency is given by the
ratio of below-canopy to above-canopy radiation, measured for
the five zenith angles of the LAI-2000 (0–13°, 16–28°, 32–43°,
47–58°, and 61–74°). Measurements were taken in summer
2000, from the end of June to the middle of July, under uniform
clear diffuse skies at low solar elevation (i.e., for less than 2 h
after sunrise and before sunset). To prevent direct sunlight on
the sensor, samples of below- and above-canopy radiation were
made in the opposite direction of the sun (i.e., with the sun
behind the operator) using a view restrictor of 180° in the
azimuthal plane. Experience shows that measurements under a
diffuse overcast sky are questionable because of rapid changes
in incident diffuse radiation, especially when only one
instrument is used for above- and below-canopy samples, or
when two instruments used simultaneously are far from each
other. In this study, only one instrument was available and it was
used in turn to measure above- and below-canopy radiation. For
each stand, reference samples of above-canopy radiation were
determined by measuring incoming radiation in an open area
(clearings or roads), close to the stand (300m or less), and
sufficiently large to avoid obstructing the field of view of the
LAI-2000 for the three upper rings (0–43° from zenith). For
rs)
Dominant
height (m)

D
(trees/ha)

BA
(m2/ha)

Number of LAI
measurements

Stand LAI
(m2/m2)

30 810 40.2 81 3.9
27 1090 34.2 86 5.4
32 755 35.2 69 4.4
24 433 25.6 144 2.5

⁎ 8.7 1988 10.5 64 3.9
8.7 4103 8.4 96 4.7

⁎ 5 5984 3 79 4.9
13 4872 14.4 54 6.7
34 518 40.8 67 2.8

⁎ 33 71 19 79 0.9
⁎ 31 112 15 116 1.3

34 641 17.2 72 5.8
32.1 1025 31.3 87 4.4
29.4 297 31.3 78 6.4
30 639 24.1 97 4.6

⁎ 18.6 2217 24.1 55 5.9
19.9 2192 21 77 5.0
14.1 5053 18.1 54 5.9
33.3 622 32.8 46 4.3
16 3563 20.1 87 6.9

⁎ 31 621 21 96 1.6
14.7 4954 14.7 106 5.3
21 1193 38.5 66 3.6
20 557 25.9 68 2.4
24.3 530 33.9 80 2.0

⁎ 22 227 17 65 0.7
⁎ 26 86 13 74 0.7

24 1041 34 86 2.4

stand, PS: pole stand, SS: sapling stand, D: tree density, BA: basal area, (–) no



Table 2
Acquisition dates, and view and sun geometries (θ: zenithal angle and ϕ:
azimuthal angle)

Date Time
UTM

θsun
(°)

θsun
(°)

θview
(°)

θview
(°)

SPOT4-HRVIR 21 July 2000 11h09 29.4 157.1 12.0 104.8
Landsat ETM+ 24 August 2000 10h31 41.4 148.91 0 90
IKONOS 16 August 2000 10h52 36.85 154.88 23.62 253.3
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each stand, several reference samples were taken before, during,
and after below-canopy samples. The time between two
reference samples was less than 30min. Depending on stand
size, 46 to 144 below-canopy samples were taken at intervals
ranging from 5 to 10m, on at least two transects along the two
main diagonals, to obtain a representative measurement of the
stand. All below-canopy samples were collected keeping a
minimum distance from edges of about two times the maximum
tree height to avoid border effects.

Computation of LAI was done using the LI-COR C2000
program (LI-COR, 1992). For each sample of below-canopy
radiation, above-canopy radiation was determined by time-
based linear interpolation between reference samples. The
assumption of linear variation of above-canopy radiation with
time at low solar angle elevation was verified for a short time
delay (less than 30min) between two samples (Leblanc & Chen,
2001; Le Dantec et al., 2000). We computed effective LAI
according to the methods used in Dufrêne & Breda (1995) that
was carried out on direct measurements and in the same Forest.
For broadleaved species, they obtained a better agreement
between direct LAI measurements and indirect measurements
with LAI-2000 when the two lowest rings (47–58° and 61–74°)
were discarded from the LAI calculation. For broadleaved
species, this method of improving LAI estimation using the
three upper rings of LAI-2000 has been confirmed by other
studies (Olthof & King, 2000; Soudani et al., 2001; Welles &
Norman, 1991). For coniferous species, the three upper rings
were also used to compute LAI because it is easier to find open
areas close to the stand to make reference samples.

Stand LAI is calculated as the arithmetic average of all local
LAI samples taken within the stand. LAI measured using LAI-
2000 (or other optical methods) corresponds to plant area index
(PAI) including photosynthetic and non-photosynthetic compo-
Table 3
Spectral bandwidths and calibration parameters of the three sensors

Spectral bands (nm) Gains

ETM+ SPOT IKONOS ETM+ (W m−2 sr−1 μm−1

LMIN LMAX

1. Blue 450–520 – 445–516 −6.2 191.6
2. Green 520–600 500–590 506–595 −6.4 196.5
3. Red 630–690 610–680 632–698 −5 152.9
4. Nir 760–900 780–890 757–853 −5.1 241.1
5. SWIR 1550–1750 1580–1750 – −1 31.06
6. SWIR 2080–2350 – – −0.35 10.8

For each band, the IKONOS calibration factors are divided by the bandwidth to exp
nents (Chen et al., 1997). Note that the underlying assumption
of the Poisson model (random dispersion of leaves within the
canopy volume) is rarely true in forest canopies. This is
particularly the case in coniferous stands where clumping
occurs at different spatial scales: within shoots, within crowns,
and between trees (Chen et al., 1997; Fournier et al., 1997,
2003; Nilson, 1999; Soudani et al., 2003). Therefore, LAI used
here corresponds to effective PAI, neither corrected for
clumping nor for the contribution of woody materials (Black
et al., 1991; Chen et al., 1997). Nevertheless, for remote sensing
applications, LAI as measured by LAI-2000 or other optical
methods better describes the leaf surface apparent to a remote
sensor (White et al., 1997; Stenberg et al., 2004). Correction for
clumping is not absolutely necessary and may be done after
regressions with SVIs, as outlined in Stenberg et al. (2004).

2.2.2. Remote sensing data pre-processing and reflectance
estimation

The remote sensing data have been acquired during the same
period of LAI measurements. The acquisition dates and the
spatial and spectral characteristics of the images are given in
Tables 2 and 3. The spatial resolutions in multispectral mode
were 30m, 20m, and 4m for ETM+, SPOT, and IKONOS,
respectively.

In order to compute surface reflectance, IKONOS, ETM+,
and SPOT images were geometrically and atmospherically
corrected. First, the geometric correction was applied to the
IKONOS image. Homologous ground control points (GCPs)
were selected on the image and on a French National
Geographic Institute digital map. Road intersections and
bridges over the Seine River served as GCPs. The image
rectification was based on a first-order polynomial transforma-
tion and the geolocation error was about one pixel (∼4m). After
rectification, the image was radiometrically resampled at its
initial spatial resolution using nearest neighbor procedure, and
set to the Lambert conformal conic projection and Lambert I
coordinate system. Then, this geometrically corrected IKONOS
image served as a reference to correct SPOT and ETM+ images,
according to the same procedure. The geolocation error of the
SPOT and ETM+ was less than one pixel.

In the first step of the atmospheric correction procedure,
digital counts (DC) (grey tone) were converted to at-sensor
Exoatmospheric radiation
(W m−2 μm−1)

) SPOT
(W−1 m2 sr μm)

IKONOS
(W−1 m2 sr μm)

ETM+ SPOT IKONOS

– 63.3 1969 – 1939
1.54678 64.9 1840 1843 1847
1.89702 84 1551 1568 1536
1.27415 74.6 1044 1052 1148
9.018 – 225.7 233 –
– – 82.07 – –

ress IKONOS spectral radiance in W m−2 sr−1 μm−1 units.



Table 4
Spectral vegetation indices NDVI, SR, SAVI, EVI, and ARVI

Vegetation index Formulae

Normalised Difference
Vegetation Index

NDVI ¼ qnir−qred
qnir þ qred

Rouse and
Haas, 1973

Simple Ratio
SR ¼ qnir

qred

Jordan, 1969

Soil Adjusted
Vegetation Index SAVI ¼ 1þ Lð Þ ðqnir−qredÞ

ðqnir þ qred þ LÞ
Huete, 1988

Enhanced Vegetation
Index EVI ¼ G

ðqnir−qredÞ
ðqnir þ C1qred−C2qblue þ LÞ

Huete et al.,
1994

Atmospherically
Resistant ARVI ¼ ðqnir−qredÞ

ðqnir þ qrbÞ
Kaufman &
Tanré, 1992

Vegetation Index qrb ¼ qred−gðqblue−qredÞ

ρred, ρnir, and ρblue are red, near-infrared, and blue reflectance, respectively. For
the SAVI, L is a canopy background adjustment factor set at 0.5. For the EVI, G,
C1, C2, and L are coefficients to correct for aerosol scattering, absorption, and
background brightness (set at 2.5, 6, 7.5, and 1, respectively). γ is a calibration
factor set at 1.0.
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radiance, Lsat (W m−2 sr−1 μm−1), using the gains and offsets
given in Goward et al. (2003) for IKONOS sensors and given in
image headers for SPOT and ETM+. For SPOT HRVIR and
IKONOS sensors, Lsat was calculated using the following
relationship:

Lisat ¼
DCi

Gi
ð1Þ

where Gi is the calibration factor (W−1 m2 sr μm) for the band i.
For Landsat ETM+ sensors, Lsat was calculated as follows:

Lisat ¼
LMAXi−LMINi

DCMINi−DCMAXi

� �
� DCi−DCMINi
� �þ LMINi

ð2Þ
LMAXi and LMINi are the calibration factors (W m−2 sr−1

μm−1), and DCMINi and DCMAXi are the minimum and
maximum pixel values, respectively. DCMINi = 0 and
DCMAXi=255 (Landsat-7 Science Data User's Handbook,
2004). Gi, LMINi, and LMAXi are given in Table 3 for each
band i for SPOT, IKONOS, and ETM+.

Then, Lsat was calibrated to scaled surface reflectance after
atmospheric corrections using a dark object subtraction (DOS)
approach (Song et al., 2001). The DOS approach is a simple and
efficient method for atmospheric corrections as shown in
previous studies (Brivio et al., 2001; Teillet & Fedosejevs,
1995; Wang et al., 2004). We preferred to use this approach
rather than using radiative transfer models because in the
absence of aerosol and water vapour content measurements
describing the atmospheric conditions simultaneously to the
image acquisitions, performance of radiative transfer models is
not guaranteed.

The surface reflectance, ρi, is calculated using the following
relationship:

qi ¼ d2pðLisat−LipÞ
Ti
vðTi

zE
i
0coshs þ Ei

downÞ
ð3Þ

Tv and Tz are the transmittance of the atmosphere in the view
and illumination directions, respectively; Edown

i is the down-
welling diffuse radiation; E0

i is the exoatmospheric radiation
entering the atmosphere; θs is the sun zenith angle; d is the
normalized sun–earth distance when the images were acquired;
and Lp

i is the path radiance due to atmospheric effects. Lp
i is

obtained by converting the minimum digital count in each band
i into radiance.

Lip ¼ Lisat min−
0:01½Ei

0coshsT
i
z þ Ei

down�Ti
v

d2p
ð4Þ

Lsat_min
i is the radiance computed using minimum digital count

(DCmin) in band i. (DCmin) is the minimum value of a dark
object found in the scene. It is chosen from the histogram of the
entire image and corresponds to the DC minimum value from
which there is a sharp increase in the number of pixels (Chavez,
1988). Tz and Tv are approximated by the cosine of the solar and
view zenith angles, respectively, and this method assumes that
there is no diffuse downwelling radiation (Chavez, 1996). The
surface reflectance of dark objects is assumed to be equal to 1%
in the red and near-infrared to take into account the radiation
scattered by the atmosphere and reflected by the surface
(Chavez, 1988, 1996).

Stand reflectance in each band of the three sensors was
calculated with ENVI software (Research System Inc.,
Boulder, CO, USA). First, a vector-based map of sampled
stands was created using the map of forest stand polygons
available in the Fontainebleau Forest Geographical Information
System, and the IKONOS image chosen for its high spatial
resolution and accuracy. The limits of each of the 28 stands
were vectorised, avoiding ≈20m from the stand borders to
minimize effects of edge and geolocation errors. Then, stand
reflectance in each band was calculated as the arithmetic
average of reflected radiation of all pixels within the
corresponding polygon.

2.3. SVIs computation and LAI–SVIs regressions analysis

Average reflectances were used to compute five vegetation
indices. These indices are given in Table 4. SR, NDVI, and
SAVI are computed using red and near-infrared bands, and are
available from the three sensors. EVI and ARVI use the blue
band, in addition to red and near-infrared bands, and are
computed for IKONOS and ETM+ sensors only because there is
no blue band from the SPOT HRVIR sensor.

NDVI is the most used vegetation index for a variety of
remote sensing applications and it can be computed for all three
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Fig. 2. Spectral responses of IKONOS, SPOT, and ETM+ sensors (a) in the red
band and (b) in the near-infrared band.
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sensors; therefore, it was used as the principal basis of
comparison between the sensors. Also, because NDVI value
depends on the image processing level, it was calculated: (i)
using digital counts (grey level), (ii) using at-sensor radiances
calibrated according to spectral response of the sensors (Eqs. (1)
and (2)), (iii) using TOA reflectances, taking into account
variations in the amount of incident radiation due to sun
position, or (iv) using above-canopy reflectances, after
atmospheric corrections to account for radiation–atmosphere
interactions in view and illumination directions.

Empirical relationships between LAI and single bands and
SVIs were investigated. Models were fitted and their robustness
was evaluated using Pearson's correlation coefficient and root
mean square error (RMSE), which corresponds to the square
root of the average of the squares of deviations between the
measures and the predictions. The statistical analyses were done
using Statistica software (Statsoft, Inc., Tulsa, OK, USA).

2.4. Simulations with PROSAIL

The radiative transfer model PROSAIL is used to assess if
the differences in measured reflectance among the three sensors
can be explained by their radiance spectral responses (RSR).
Our aim here is not to assess the performance of the PROSAIL
model to simulate reflectances. This is why the PROSAIL
model is first calibrated on one sensor and then applied to the
other sensors: the objective is to see if the RSR alone allows
PROSAIL to reproduce the between sensors observed
differences.

PROSAIL is a combination of the canopy level bidirectional
model SAIL (Scattering by Arbitrarily Inclined Leaves;
Verhoef, 1984) without the hotspot effect and the leaf level
spectral model PROSPECT (Jacquemoud & Baret, 1990). The
PROSAIL model simulates canopy reflectance in any wave-
length in the global radiation spectrum (0–2500nm) as a
function of (1) canopy and leaf structural parameters—LAI, leaf
angle distribution, and leaf mesophyll structure parameter (N);
(2) leaf biochemical parameters—chlorophyll a+b concentra-
tion (Cab), water content (Cw), and dry matter content (Cm); (3)
view and sun geometry parameters—view zenith angle, solar
zenith angle, and relative azimuth angle; and (4) soil
reflectance.

The RSR of the three sensors in the red and the near-infrared
bands are given in Fig. 2a and b. Based on these functions, we
calculated the expected reflectance in the red and near-infrared
bands using the radiative transfer model PROSAIL.

To take into account the spectral responses of each sensor,
the reflectance is calculated as follows:

R ¼
R k2
k1

RSRkRPROSAILdkR k2
k1

RSRkdk
ð5Þ

λ1 and λ2 are the band wavelength limits. R is the reflectance
simulated by the PROSAIL model (RPROSAIL) corrected for the
spectral response of the sensor at wavelength λ (RSRλ).

Simulations with the PROSAIL model were done without
distinguishing between coniferous and deciduous forest types,
in accordance with Moorthy et al. (2003) and Zarco-Tejada et al.
(2004), who demonstrated the ability of the PROSPECT model
to simulate spectral properties of needles.

3. Results

3.1. LAI vs. spectral bands

The relationships between LAI and reflectance in the red,
near-infrared, and SWIR bands are given in Fig. 3a–c. In these
figures, the sampled stands were separated in three groups
according to the dominant overstory species (Scots pine, beech,
and oak) in order to show if they behave in the same manner.

In the red band (Fig. 3a), reflectance of SPOT and ETM+
decrease exponentially with LAI. The Pearson's correlation
coefficient is highly significant (r=−0.75, P<0.001 for the two
sensors), but the predictive ability of this relation is limited to
LAI lower than 4 because of the signal saturation for higher
LAI. The IKONOS red band shows scattering and there is no
significant relationship between this band and LAI (r=0.02).

In the near-infrared band (Fig. 3b), the three sensors show
similar behaviors. Reflectance is very scattered but there is a
significant correlation between LAI and reflectance for the three
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Fig. 3. Reflectance in the red band (a), in the near-infrared band (b), and in the
shortwave infrared band (c), vs. leaf area index. Black fill=SPOT, grey
fill = IKONOS, no fill =ETM+, circle =Scots pine, square =beech, and
triangle=oak.

Table 5
Average Normalised Difference Vegetation Index (NDVI) using (i) digital
counts (without calibration of the sensors), (ii) radiance (after calibration), (iii)
top of atmosphere (TOA) reflectance, and (iv) top of canopy (TOC) reflectance

NDVI calculated at different processing levels

Digital count Radiance TOA reflectance TOC reflectance

IKONOS 0.58 (0.01) 0.50 (0.01) 0.60 (0.02) 0.61 (0.01)
SPOT 0.46 (0.02) 0.60 (0.02) 0.71 (0.01) 0.81 (0.01)
ETM+ 0.37 (0.02) 0.61 (0.02) 0.72 (0.01) 0.82 (0.01)

The standard error of the mean is given between brackets.

Table 6
Average SVIs using TOC reflectance for the three sensors

IKONOS SPOT ETM+

ρred (%) 8.05 (0.27) 3.45 (0.13) 3.27 (0.12)
ρnir (%) 34.0 (1.32) 34.05 (1.34) 35.11 (1.28)
SR 4.23 (0.15) 10.30 (0.59) 11.19 (0.61)
SAVI 0.40 (0.01) 0.52 (0.02) 0.53 (0.02)
ARVI 0.46 (0.02) – 0.78 (0.02)
EVI 0.40 (0.01) – 0.58 (0.02)

The standard error of the mean is given between brackets.
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sensors. The Pearson's correlation coefficients are 0.76
(P<0.001), 0.77 (P<0.001), and 0.75 (P<0.001) for ETM+,
IKONOS, and SPOT, respectively.

In the SWIR band (Fig. 3c), ETM+ and SPOT show similar
behavior. The relationship between LAI and SWIR band
reflectance is not statistically significant. If we only take into
account the deciduous stands, the relationship between LAI and
SWIR reflectance is strongly improved. In this case, the
Pearson's coefficients are −0.31 (P<0.13) for ETM+ and
−0.39 (P<0.07) for SPOT.

3.2. LAI vs. SVIs

Table 5 summarizes the descriptive statistics of canopy
NDVI measured by the three sensors for the four image
processing levels. Based on digital counts, NDVI values for the
three sensors significantly differ. The highest NDVI values are
produced by IKONOS. The differences in NDVI values are 0.12
between IKONOS and SPOT, and 0.21 between IKONOS and
ETM+. Based on radiances, TOA, and ground reflectances,
NDVIs from ETM+ and SPOT are very close. However, the
IKONOS NDVI is significantly lower than the other two. The
difference in NDVI values between IKONOS and the two other
sensors is ≈0.11, using at-sensor radiances. Using atmospher-
ically corrected reflectances, differences between IKONOS and
ETM+, and between IKONOS and SPOT are 0.20 and 0.21,
respectively. ETM+ and SPOT give very similar average
atmospherically corrected NDVI values (0.82 and 0.81,
respectively).

Table 6 gives average values of atmospherically corrected
red reflectance, near-infrared reflectance, SR, SAVI, ARVI, and
EVI for the three sensors. Regardless of the SVI, IKONOS
sensors always give the lowest values. Differences between
ETM+ and SPOT are not statistically significant (P<0.29 and
P<0.66 for SR and SAVI, respectively).

Fig. 4 shows the relationships between NDVI and LAI for
the three sensors. All SVI–LAI relationships are positive and
they behave similarly. These relationships were fitted to
exponential models and, as shown in Table 7, four cases were
considered. In the first case, in situ measures of LAI as
dependent variables were fitted against corresponding SVI
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values, taking into account the entire range of in situ LAI from
0.7 to 6.9m2/m2. In the second case, only LAI values lower than
4 were considered because we suspected a saturation effect on
the quality of the model fit. In the third and the fourth cases,
fitted relationships between LAI and NDVI were established
separately for deciduous and Scots pine stands, but no
significant difference appeared between the correlation coeffi-
cients (see Section 4).

The Pearson's correlation coefficients and the RMSEs of the
LAI–SVI relationships are given in Table 7. Among the four
cases considered, using the same pool of stands, no between-
sensor differences were significant at the 5% probability level.
RMSE values varied between 0.28 and 1.22m2/m2. On average,
using the RMSE criterion, ARVI, NDVI, and SR show the same
Table 7
Nonlinear regressions between LAI and SVI (LAI=αeβSVI)

NDVI SR SAV

r RMSE r RMSE r

All stands (n=28)
ETM+ 0.88 0.86 0.88 0.95 0.82
IKONOS 0.76 1.19 0.76 1.22 0.82
SPOT 0.87 0.91 0.87 0.99 0.81

Stands with LAI≤4 (n=13)
ETM+ 0.84 0.61 0.83 0.64 0.58
IKONOS 0.85 0.63 0.85 0.68 0.91
SPOT 0.82 0.66 0.78 0.72 0.55

Deciduous stands (n=22)
ETM+ 0.82 0.92 0.83 1.00 0.78
IKONOS 0.69 1.20 0.68 1.18 0.77
SPOT 0.81 0.97 0.81 1.03 0.77

Scots pine stands (n=6)
ETM+ 0.91 0.43 0.91 0.47 0.44
IKONOS 0.91 0.28 0.93 0.29 0.56
SPOT 0.90 0.46 0.90 0.49 0.24

n is the sample size, r is Pearson's correlation coefficient, and RMSE is the root me
⁎ Not significant at 5% probability level.
predictive ability for LAI and may be considered to perform
better than SAVI and EVI.

To verify whether the deviation between IKONOS and the
other two sensors is LAI-dependent, Pearson's correlation
coefficient was computed for stand LAI and the difference in
stand SVIs between IKONOS and ETM + (or SPOT). In the
case of IKONOS and ETM+, the SVI deviation is computed as
follows for each stand:

dSVIETM=IKONOS ¼ SVIETM−SVIIKONOS ð6Þ

Results showed that the discrepancy between IKONOS and
ETM+ (or SPOT) depends on LAI. The highest correlations are
between LAI and dSRETM/IKONOS (r=0.87, P<0.0001), and
LAI and dSRSPOT/IKONOS (r=0.86, P<0.0001). Pearson's
correlation coefficient was also significant between LAI and
dEVIETM/IKONOS (r=0.72, P<0.0001), and between LAI and
dSAVI SPOT/IKONOS (r=0.4, P<0.03). These results mean that
the deviation between IKONOS and the other sensors increases
when LAI increases.
3.3. PROSAIL simulation results

PROSAIL model calibration was done by visual checking,
and by minimizing the square of deviations between ETM+ data
and a set of PROSAIL simulations in the red and the near-
infrared. The best correspondence between experimental data
and model simulations is shown in Fig. 5. Simulations were
done with the following input parameters: N (internal structure
parameter)=1.5, Cab (chlorophyll a+b content=0.5g m−2, Cw
(water content)=89g m−2, Cm (dry matter content)=92g m−2,
LAI ranging from 0 to 8m2/m2, spherical leaf angle distribution,
mean leaf angle=30° from the zenith, view zenith angle=6°,
I EVI ARVI

RMSE r RMSE r RMSE

1.08 0.82 1.09 0.87 0.84
1.08 0.82 1.09 0.86 1.01
1.09 – – – –

0.86 0.60 0.85 0.87 0.54
0.81 0.89 0.87 0.90 0.68
0.89 – – – –

1.12 0.77 1.13 0.81 0.92
1.03 0.78 1.01 0.79 1.10
1.12 – – – –

⁎ 0.85 0.49 ⁎ 0.81 0.92 0.40
⁎ 0.77 0.37 ⁎ 0.90 0.90 0.40
⁎ 0.97 – – – –

an square error.
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and sun zenith angle=35°. The soil was a wet, dark, grayish-
brown, as given in Broge and Leblanc (2001), which
corresponds to brunisol soil, the most frequent soil type found
in the Fontainebleau Forest.

For LAI ranging from 0 to 8, reflectances simulated by
PROSAIL in the red, near-infrared, and NDVI are given in Fig.
6a, b, and c for the three sensors. For measured LAI ranging
between 0.7 and 6.9m2/m2, IKONOS red reflectance (Fig. 6a)
is higher than ETM+ red (4% vs. 2.6%) and higher than SPOT
red (4% vs. 3.2%). In the near-infrared band (Fig. 6b), simulated
reflectance is lower for the IKONOS than for SPOT or ETM+
(36.6% vs. 38.6%). The differences are statistically significant.
NDVI is, on average, 0.79, 0.87, and 0.85 for IKONOS, ETM+,
and SPOT, respectively (Fig. 6c). For measured LAI between
0.7 and 6.9m2/m2, the average offset between IKONOS and
ETM+ is ≈0.08 (10% of IKONOS NDVI), and ≈0.06 between
IKONOS and SPOT (8% of IKONOS NDVI).

As shown in Fig. 6a, b, and c, absolute deviations between
IKONOS and the two other sensors increase with LAI in the red
and the near-infrared bands. To estimate the sensitivity of
NDVI, SR, and SAVI to these deviations, Pearson's correlation
coefficient between LAI and dSVI (Eq. (6)) was calculated
using the simulations of reflectance. Between IKONOS and the
two other sensors, results showed significant positive correla-
tions between LAI and dSVI for the three indices, but the
highest correlation coefficient was found between LAI and dSR
(r≈0.9), followed by dSAVI (r≈0.80) and dNDVI (r≈0.5).
These results from simulations agree with those obtained from
the field data (see Section 3.2) and show that SR is more
sensitive to differences in spectral properties between the
IKONOS sensor and the other two sensors.

The low NDVI values using IKONOS data resulted from
higher reflectance in the red band which may be caused by
spreading of the tails of the spectral response curve of this
sensor, particularly on the right side in the red edge region (Fig.
2a). To confirm this, the spectral response curve of IKONOS
sensor was cut off in the red band at 700nm, precisely at the
limit of the ETM+ sensor's spectral response in the red band
(the left tail of the spectral response curve from the IKONOS
was not modified). The truncated response curve was then used
as input to PROSAIL model. As a result, red reflectance for
IKONOS decreased from 4.0% (with the unmodified spectral
response) to an average value of 2.7% for an LAI range of 0.7 to
6.9m2/m2. This is practically identical to red reflectance using



Table 8
Between-sensor calibration factors for the red and near-infrared, and for NDVI

Red Near-infrared NDVI

Slope Intercept Slope Intercept Slope Intercept

IKONOS vs. ETM+ 0.941 −0.025 0.8671 0.0204 0.941 −0.025
ETM+ vs. IKONOS 1.0623 0.0268 1.1532 −0.0235 1.0623 0.0268
IKONOS vs. SPOT 0.9854 −0.0373 0.8687 0.0199 0.9854 −0.0373
SPOT vs. IKONOS 1.0147 0.0379 1.1512 −0.0235 1.0147 0.0379
ETM+ vs. SPOT 1.047 −0.0129 1.0018 −0.0005 1.047 −0.0129
SPOT vs. ETM+ 0.955 0.0124 0.0005 0.9983 0.955 0.0124

For all regressions, y (dependent variable) versus x (independent variable),
R2>0.98.

171K. Soudani et al. / Remote Sensing of Environment 102 (2006) 161–175
ETM+ (2.6%). For the same LAI range, the IKONOS NDVI
increased from 0.79 (unmodified spectral response) to 0.86,
which is also quite similar to ETM+ NDVI (0.87).

In Table 8, based on PROSAIL simulations for LAI between
0 and 8, between-sensor calibration factors for the red, the near-
infrared, and the NDVI are given. In all cases, the three sensors
show a high degree of correlation (R2 >0.98). The values given
in Table 8 are close to the calibration factors calculated for
NDVI only in Steven et al. (2003). Maximum differences in
slopes and intercepts between our regressions and theirs are
0.0383 and 0.0183, respectively.

4. Discussion

4.1. Semi-empirical models between LAI and remote sensing
data

The relationships between LAI and the red and the near-
infrared bands shown in Fig. 3a and b are similar to those
observed in previous studies. These relationships have been
verified many times and discussed thoroughly in other studies,
based either on radiative transfer models (Baret & Guyot,
1991; Myneni et al., 1995) or experimental data (Gamon et al.,
1995).

The relationship between LAI and the SWIR band was
negative for deciduous stands, particularly when SPOT sensors
is used (P<0.07) (Fig. 3c). This result agrees with results
obtained in other experimental studies (Spanner et al., 1990;
Brown et al., 2000) and may be explained by the increase in
SWIR absorption by the whole canopy leaf water content when
LAI increases. Fig. 3c also shows that, for the same LAI, Scots
pine stands (circle symbol) have a lower SWIR reflectance than
deciduous stands. Several assumptions may be suggested to
explain this behavior. At the leaf scale, the spectral signature of
coniferous species shows lower SWIR reflectance than broad-
leaved species (Williams, 1991; Roberts et al., 2004). At the
canopy scale, LAI, as measured in this study, concerns the
overstory layer (above 1 m height) and does not take into
account the contribution of herb and shrub layers. These
understory layers may be dense in Scots pine stands, which are
more open because of foliage clumping, and thus they may
contribute significantly to the integrated canopy reflectance
(Soudani et al., 2003). The explanations given here are only
assumptions and more investigations about the LAI of
understory, canopy openness, and clumping are necessary to
explain our results.

As shown in Tables 5 and 6, IKONOS SVI values are always
lower than those calculated from SPOTand ETM+ data whether
at-sensor radiances, TOA reflectances or TOC reflectances are
used. Average IKONOS reflectance in the red band is more than
double that of SPOT or ETM+ (P<0.0001). In the near-infrared
band, average reflectance from IKONOS is not statistically
different from either ETM+ (P<0.48) or SPOT (P<0.98).
Comparing SPOT and ETM+, average red and near-infrared
reflectances, as well as the NDVI, are statistically identical
(P<0.3, P<0.57, and P<0.37 in the red, near-infrared, and
NDVI, respectively). The higher average in the red band of
IKONOS implies a lower average SVI. For example, NDVI
calculated using ETM+ is about 0.20 higher than NDVI
calculated using IKONOS (P<0.0001).

Relationships between LAI and SVIs (Table 7) show that the
three sensors have the same predictive ability when we consider
each pool of stands separately. On average, the RMSE values
from the different SVIs are very close (≈1.0m2/m2) for the “all
stands” and “deciduous stands” cases. For stands with LAIs less
than 4, RMSE value is reduced. RMSE values are also reduced
when Scots pine and deciduous stands are taken separately.
Lowest RMSE are obtained for Scots pine stands but the
difference between the two coefficients of correlation of model
fits for “Scots pine” and “deciduous stands” is not statistically
significant.

Among the five SVIs, lowest RMSE values are obtained
using NDVI, SR, and ARVI (≈0.65m2/m2). ARVI may be
considered the best. For Scots pine stands, results suggested the
ARVI, NDVI, and SR also would give the lowest RMSE values;
however, the number of stands is too small so the results of
model-fitting are inconclusive.

As previously discussed, the higher reflectance in the red
band of IKONOS led to negative offsets between IKONOS
and both SPOT and ETM+. Application of the ETM+ based
LAI–NDVI empirical model, using the TOC average NDVI
values from IKONOS, SPOT, and ETM+ sensors (Table 7),
gives LAI values of 0.5, 3, and 3.3m2/m2, respectively. These
results show that the effect of the negative offset of IKONOS
NDVI on LAI prediction is very large because of the high
sensitivity of the LAI–NDVI models to NDVI variations.

As stated in the introduction, similar findings were
observed in other studies. Thenkabail (2004) observed that
IKONOS NDVI was higher than ETM+ NDVI when digital
counts were used and lower when TOA reflectances were
used. Goward et al. (2003) observed an offset of 0.1 for NDVI
between ETM+ and IKONOS sensors over different land
cover types.

4.2. Discrepancies among the three sensors

Numerous factors may explain the discrepancies among the
three sensors. In the following sections, we evaluate these
factors. Apart from the radiance spectral responses of the
sensors, already identified as a main cause of the observed
discrepancies, other possible contributing factors are: view, and
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illumination conditions, temporal variations of canopy proper-
ties (overstory and understory LAI and chlorophyll content),
and atmospheric effects. Effects of differences in spatial
resolution among the three sensors are negligible because this
study is based on the average reflectance values of stands
having an average area of 5.5ha each.

4.2.1. Effects of sun-view geometry
The effects of view and illumination conditions on NDVI

were quantitatively evaluated using the PROSAIL model.
Reflectance in the red and near-infrared bands and NDVI were
computed for the IKONOS sensor for the three geometrical
configurations given in Table 2. Results showed that the effects
of differences of sun and view angles are negligible. The NDVI
values are 0.797, 0.795, and 0.796 for the configurations of
IKONOS, SPOT, and ETM+, respectively. These values are
very close to the value of 0.79 obtained from the configuration
used for the comparison of the three sensors (see Section 3.3).

4.2.2. Effects of temporal variations of LAI and atmospheric
conditions

In absence of in situ measurements of temporal variations of
these factors, we refer in this section to phenological
observations in Fontainebleau Forest and findings obtained in
other studies.

As reported in Table 2, the three images were acquired in
the following order: SPOT (21 July 2000), IKONOS (16
August 2000), and ETM+ (24 August 2000). The time lag
between SPOT and ETM+ is about 1 month and about 1 week
between IKONOS and ETM+. ETM+ and SPOT give similar
SVIs values and the negative offset is only observed between
IKONOS and the two other sensors. During the short period
of time of about 1 week between IKONOS and ETM+, and
even for the longer period of 1 month between IKONOS and
SPOT, one can assume that temporal variations of LAI signal
are small and cannot explain the differences of SVIs between
IKONOS and ETM+ or SPOT. Several studies conducted in
different deciduous and coniferous temperate forest stands
support the assumption that LAI varies slightly during the
vegetation season: from the end of July to the end of August,
LAI may be considered as constant in deciduous forest
stands (Breda, 2003; Gond et al., 1999; Holst et al., 2004).
For Scots pine stands, during the period from the end of June
to the end of August, temporal variations of LAI are also
small: less than 5% of maximum LAI in Vose et al. (1994)
and practically constant in Gond et al. (1999). This
assumption that the LAI does not vary during the peak of
the vegetation season is also supported by our phenological
observations during several years in the Fontainebleau Forest
(unpublished data).

On the given dates (Table 2), the herbaceous understory
species, mainly composed of bramble, brackenfern, and purple
moor grass, have reached their maximum leaf development,
except for bramble which continues to develop secondary
branches and stolons until the end of September (Tcherkez,
personal communication). Note also that these species are
particularly present in open stands whereas the offset between
IKONOS and the three sensors is observed over all LAI range.
Concerning the effects of temporal variations of chlorophyll
content on remote sensing signal, the works of Blackburn and
Milton (1995) and Kodani et al. (2002) in broadleaved forest
stands show that NDVI remained relatively stable until late in
August.

Considering the short period of 1 week between the dates of
acquisition IKONOS and ETM+ images, we can also assume
that the temporal variations of LAI understory and the
chlorophyll content of the canopy are small and cannot be a
major source explaining the differences of SVIs between
IKONOS and ETM+.

Concerning the effects of temporal variations of atmospheric
conditions between the three image acquisitions, differences
among the three sensors were observed at all levels of image
processing (Table 5) and through the five spectral indices (Table
6), although ARVI and EVI are designed to be more resistant to
atmospheric conditions than SAVI and NDVI (Miura et al.,
2001). The ratio TOA NDVI/TOC NDVI is 0.98, 0.88, and 0.87
for IKONOS, SPOT, and ETM+, respectively. This ratio, named
NDVI transmissivity in Myneni and Williams (1994), decreases
with increasing atmospheric turbidity and solar zenith angle,
according to the authors. Based on simulations using different
atmospheric optical depths, they also observed that NDVI
transmissivity at near-nadir sun position and over dense
canopies ranges from 0.8 to 0.9 for turbid to clear atmospheres.
Kaufman (1989) reported differences between NDVI at TOC
and NDVI at TOA over vegetation covers from 0.2 to 0.37,
which corresponds to ratios between 0.56 and 0.75 over dense
canopy with TOC NDVI of 0.8. In this study, the TOA NDVI/
TOC NDVI ratio for IKONOS exceeded the typical observed
values given above, which means that IKONOS TOC NDVI is
probably underestimated.

Examination of the IKONOS image (Fig. 1) shows a highly
localized presence of cirrus clouds in the western region. Only
three stands seem to be situated in this region but we suspect
that heterogeneous atmospheric conditions over the sampled
sites are not correctly removed by the DOS technique. Indeed,
the ratio IKONOS TOANDVI/TOCNDVI calculated for the 28
stands is significantly correlated with their geographical
coordinates (r=0.79, P<0.0001). The slopes of this bilinear
regression on north–south and east–west axes are negative,
indicating that the atmospheric effects are maximal in the
western region and decrease linearly in a southeasterly
direction.

The effects of atmosphere–radiation interactions under these
conditions are not sufficiently taken into account by the DOS
technique (Teillet & Fedosejevs, 1995) and the effects of the
state of the sky cover are difficult to investigate in the absence
of in situ measurements of ground reflectance simultaneous
with image acquisitions. Several other theoretical weaknesses
may also introduce uncertainties in atmospherically corrected
NDVI (for more detail, see Hadjimitsis et al., 2004; Teillet &
Fedosejevs, 1995). From a practical point of view, determina-
tion of the DC minimum value may be subjected to errors
because the choosing of dark object value is made on the basis
of visual examination of the histogram (Chavez, 1988). Other
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possible errors in DC minimum value determination are
attributable to small image size, errors in the data recording
process, noise, and sensor drift (Hadjimitsis et al., 2004).
Nevertheless, the DOS technique has made good corrections for
atmospheric effects on remote-sensed data, as shown in
numerous studies based on reflectance measurements (Brivio
et al., 2001; Wang et al., 2004) and simulations (Chavez, 1996;
Teillet & Fedosejevs, 1995).

After atmospheric corrections of SPOT and ETM+ data, the
ratios TOA NDVI/TOC NDVI were in the range typically
observed, as outlined above. If we assume that the IKONOS
TOA NDVI/TOC NDVI ratio should be similar to ratios
obtained with SPOT and ETM+, then average IKONOS TOC
NDVI would be ≈0.7 (IKONOS TOC NDVI=IKONOS TOA
NDVI/0.87). Consequently, we conclude that, even after
efficient atmospheric corrections, IKONOS TOC NDVI is
still lower than that of ETM+ and SPOT. In this case, the offset
is −0.12 between IKONOS and ETM+, and −0.11 between
IKONOS and SPOT. This is approximately the same as the
offset between IKONOS and the other two sensors when
radiance and TOA reflectances are used.

5. Conclusions

IKONOS, ETM+, and SPOT HRVIR are among the most
frequently used sensors for terrestrial applications. Given the
subtle responses of canopies to environmental changes, and the
small variations of canopy reflectance that are investigated, the
intercomparison of these three sensors is an important task that
may open new perspectives on spatial and temporal analyses of
changes in forest canopies.

Based on in situ measurements of LAI in 28 forest stands, the
relationships established between LAI and SVI show that the
three sensors have the same ability for LAI prediction. On
average, the RMSE values from the different SVIs are very
close (≈1.0m2/m2). On the other hand, SVIs determined using
IKONOS radiometric data are systematically lower than those
using SPOT and ETM+. The offset is about −0.11 for radiance
and TOA reflectance-based NDVI, and about −0.21 after
atmospheric corrections. Factors with the potential to explain
these differences were evaluated based on simulations using the
SAIL bidirectional canopy reflectance model coupled with the
PROSPECT leaf optical properties model (i.e., PROSAIL). The
analysis showed that:

(a) Using radiance spectral responses from each of three
sensors as inputs to the PROSAIL model, IKONOS red
reflectance is 53% higher than SPOT and ETM+. The
IKONOS near-infrared band is 5% lower. The differences
in the red band cause an average negative offset of
IKONOS NDVI of about 0.08 for LAI ranging from 0.7
to 6.9m2/m2. The spectral behavior of ETM+ and SPOT
may be considered to be identical.

(b) The gap between IKONOS and both SPOT and ETM+ for
red reflectance and NDVI is LAI-dependent. It increases
as LAI increases until the signal saturation threshold is
reached (LAI≈4m2/m2).
Based on PROSAIL simulations, and by truncating the
radiance spectral response of the IKONOS red band to match
that of ETM+, the discrepancies between the two sensors in the
red band and in the NDVI can be largely reduced and the output
may be considered similar. It follows from these findings that
the edge distortion in the red region of IKONOS spectral
response in the red band is the main factor explaining the
differences between this sensor and both SPOT and ETM+.

Finally, we conclude that for bare soils or surfaces covered
by very sparse vegetation, radiometric data acquired by
IKONOS, SPOT, and ETM+ are similar and may be used
without any correction. For surfaces with dense vegetation, a
negative offset of 10% of IKONOS NDVIs should be
considered.
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