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ABSTRACT

A number of studies have been devoted to derive the diurnal course of regional evapotranspiration (ET)
especially in semi-arid areas where the assessment of this term is of crucial importance for water
resources management. One approach to derive regional evapotranspiration is based on the use of
aggregation schemes in conjunction with energy-balance or land-surface models. However, the
effectiveness of this approach cannot be fully assessed without a comparison between the model’s flux
simulations and the ground truth observations. In the present study, the issue of using scintillometry for
validating spatial and temporal aggregation schemes over heterogeneous grids has been investigated.
Data collected within the SUDMED project over the oliveyard of Agdal which was located near the
Marrakech city (Morocco), have been used to test the aggregation schemes. The Agdal oliveyard was
made up of two contrasted fields, or patches. Even though the two sites appear relatively homogeneous,
they differ strongly in terms of soil moisture status and vegetation percent cover. The higher soil
moisture in the northern site creates heterogeneity at the scale of the entire olive yard (i.e. at grid-scale).

Firstly, the diurnal course of the grid-scale evapotranspiration ({ETim)sa) estimated from spatial
aggregation scheme is compared to that derived from the scintil etry ((ETjas)). The (ETgim)sa iS
obtained as the residual term of the energy balance providing the estimaté€s of the available energy
(AE(=Rn4— G), where R, and G are the net radiation and the soil heat flux, respectively, and sensible heat
flux. The'latter is estimated by using a simple two-layer model developed by Lhomme et al. (1994). The
root mean square difference (RMSD) and the correlation coefficient (R?) between (ETsim)sa and (ETjas)
were about 46 W m~2 and 0.78, respectively. Secondly, we compared the diurnal cdtirse of the grid-scale
evapotranspiration ((ETgm)ta) estimated from the temporal aggregation scheme with the yET|as).
(ETsim)Ta is obtainéd by extrapolating the instantaneous values of the available energy ahd the
evaporative fraction (EF(=ET/AE) estimated at the satellite overpass to daily ones. The instantaneous
values of AE and EF have been derived using remotely sensed surface temperature measured using a
ground-based infrared thermometer combined with ancillary micrometeorological data such as wind
speed, incoming and outgoing solar radiation, and temperature and humidity of the air. The RMSD and
the R? were about 43 W m~2 and 0.7, respectively. Despite the complexity of the site induced by the
strong heterogeneity in the soil moisture which is related to the employed irrigation method (flood
irrigation), and the consequences in terms of the footprint of the instruments, the obtained statistical
results showed that both aggregation schemes performed successfully with regard to estimates of the
evapotranspiration over heterogeneous grids.

Finally, to further assess the performance of the developed approach, a second dataset collected in
northern Mexico has been also used. The result shows that the approach provides acceptable values of
aggregated evapotranspiration. Consequently, scintillometry can potentially be used in the development
and the validation of aggregation approaches to improve the representation of surface heterogeneity
land—surfaceA—atmosphere models operating at large scales.

© 2009 Published by Elsevier B.V.

1. Introduction

Regions classified as semi-arid or arid constitute roughly one-
third of the total global land surface. In these regions, due to the
combined effect of human intervention and the expected
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with several challenges. Among them, water resource scarcity
combined to increase of water demands, competition among
different water user groups, which lead to over-exploitation of
aquifers. The serious environmental and socio-economic conse-
quences of these factors have led the earth science community to
investigate the issue of the impact of human and natural induced
changes on the hydrological cycle and water resources with the
ultimate objective of developing tools so that managers and
politicians can make decisions based on state of the art science. In
this context, a strong emphasis has been directed toward
understanding the processes controlling the exchanges of water
and energy between the land surface and the atmosphere. Due to
the importance of the evapotranspiration (ET) flux in the water
cycle, especially in arid and semi-arid regions, efforts have been
particularly oriented toward improving its estimates at different
space-time scales. However, quantifying diurnal ET variation over
large and heterogeneous areas is not straightforward (Kustas and
Norman, 2000).

In this regard, remotely sensed data can be a valuable tool to
address this issue (Kustas and Norman,,1996, 1999; Kustas et al.,

IgOO], 2004; Norman et al., ,1995, Zdb3, 2006). Geostationary

sensors can provide regional scale of ET with temporal sampling
from 15 min to 1 h, but their spatial resolution is very coarse. In
fact, a single pixel may contain surfaces with widely varying
characteristics (mixed fields), which make the interpretation of the
data very difficult. In contrast, sun-synchronous satellites provide
data with better spatial resolution, but the temporal resolution is
poor. Therefore the issue of discrepancy between the space-time
scale of satellite observation and that at which the process needs to
be described is still an open research question (McCabe and Wood,
2006).

For the purpose of irrigation management, the combination of
the sun-synchronous sensors data and aggregation schemes can
provide a workable solution (Chehbouni et al., 2008a). The
aggregation scheme is conceived as a method which seeks to link
the model parameters that control surface exchange on a patch
scale with the area-average value of equivalent model parameters
applicable on a larger scale or grid-scale, assuming that the same
equations are used to describe surface fluxes at both scales. In this
regard, substantial progress has been made in the last decade to
develop aggregation schemes which range from physically based
through semi-empirical, to entirely empirical (Braden, 1995;
Chehbouni et al., 1995; Raupach and Finnigan, 1995) or experi-
mental studies (Arain et al.,, 1996; Blyth and Harding, 1995;
Chehbouni et al., 2000a; Moran et al., 1997; Noilhan et al., 1997;
Sellers et al., 1997). However, one of the main difficulties regarding
the development of these aggregation procedures is the evaluation
of their outputs/performances against ground observations. The
straightforward solution is to deploy a network of patch scale
measurement devices such as eddy correlation systems. However,
due to the high cost of the devices and the requirement for
continuous availability of well-trained staff to operate and
maintain them, this solution cannot be implemented on an
operational basis.

In this context, scintillometry can be considered as an attractive
method for routinely measuring area-averaged surface fluxes.
Using a Large Aperture Scintillometer (LAS), one can obtain area-
averaged surface fluxes over distances from a few hundred metres
up to several kilometres. Recently, several investigations have
indeed demonstrated its potential to derive area or path average of
the sensible heat flux over large and heterogeneous surfaces
(Asanuma and Lemoto, 2006; Chehbouni et al., 1999, 2000Db, ,in
press; Ezzahar et al.,A2007a, 2009; Hoedjes et al., 2007; Kleissl et §l.,
2006; Lagouarde et al., 2002; Marx et al., 2008; Watts et al., 2000).
The combination of LAS measurements and estimates of available
energy can provide reasonable retrieval of area-averaged ET as the

residual term of the energy-balance equation (Chehbouni et al.,
2000Db, jn press; Ezzahar et al., 2007b, 2009; Hemakumara et al.,
2003). éonsequently. the scintillometer (LAS), is becoming popular
in hydrometeorological studies, because it is relatively cheap,
robust and easy to operate and maintain.

The main objective of the current study is to assess whether the
LAS can be used to validate spatial and temporal aggregation
schemes at grid-scale by comparing the ET derived from the LAS
and those estimated from both aggregation methods. For the
spatial aggregation method, the ET was obtained as the residual
term of the energy balance providing the estimates of the available
energy and sensible heat flux using ground-based radiometric
surface temperature measurements and an ancillary microme-
teorological data. For the temporal aggregation method, the ET was
obtained by extrapolating the instantaneous values of the available
energy and the evaporative fraction estimated at the satellite
overpass to daily ones using a simple heuristic approach developed
by Chehbouni et al. (2008a). This approach used the radiometric
surface temperature derived at the satellite overpass and an
ancillary micrometeorological data. The particularity of the
studied is related to two factors. First, the nature of the study
site is very complex: tall, sparse, large and contrasted olive trees
fields and the method employed for irrigation (flood irrigation)
which amplifies the heterogeneity of the grid. Second, as far as we
know, this is the first study where that the LAS has been used to
validate both spatial and temporal aggregation schemes.

2. Experiment site and measurements

The experiment was carried out in the fall of 2002, between day
of year (DOY) 295 and 306 (22 October to 2 November) in a 275-ha
Agdal olive orchard which is located to the southeast of Marrakech,
Morocco (31°36’N, 07°58'W). This experiment was a part of the
SUDMED project (Chehbouni et al., 2008b) which took place in
southern Mediterranean region (Marrakech, Morocco), to assess
the spatio-temporal variability of water needs and consumption
for irrigated crops during water shortages. In this section, site
description and experimental set-up are briefly summarized; the

JFransfhitter "\

1000 Metres

Fig. 1. Overview of the location site and the experimental setup (Quickbird image).
The locations of LAS and micrometeorological towers (MT) are marked.
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reader is referred to Ezzahar et al. (2007a) for a complete
description. Fig. 1 displays the area of interest on a very high
spatial resolution image acquired by the Quickbird satellite. The
climate is typically semi-arid Mediterranean; precipitation falls
mainly during winter and spring (about 75% of the total
precipitation), from the beginning of November until the end of
April, with an average ranging from 192 to 253 mm per year. The
atmosphere is dry with an average relative humidity of 56% and the
evaporative demand is very high (1600 mm per year, Er-Raki et al.,
2008), greatly exceeding the annual rainfall.

The experimental area is divided into two sites, which were
relatively homogeneous in terms of vegetation types, but differ
strongly in characteristics (mainly soil moisture status, and, to a
lesser extent, vegetation percent cover). These sites are referred to
as the “southern site” and the “northern site” (see Fig. 1). The
average height of the olive trees during the experiment period was
6.5 m at the southern site and 6 m at the northern site. The mean
fraction cover was approximately 55% at the southern site and 45%
at the northern site, as obtained from hemispherical canopy
photographs (using a Nikon Coolpix 950" with a FC-E8 fish-eye
lens converter, field of view 183°).

Both sites were equipped with a set of standard meteorological
instruments to measure wind speed and direction (model Wp200,
R.M. Young Co., Traverse City, MI, USA); air temperature and
humidity (model HMP45AC, Vaisala Oyj, Helsinki, Finland) at 9 m
above the ground. These instruments were set up 9 m above
ground. Net radiation was measured using net radiometers (a
model CNR1, Kipp and Zonen, Delft, The Netherlands at the
southern site and a model Q7, REBS Inc., Seattle, WA, USA at the
northern site). These radiometers were placed at 8.5 m height to
embrace vegetation and soil radiances by ensuring the field of view
was representative of their respective cover fractions. The CNR1
measures the four components of the net radiation, j.e. indepen-
dent estimates incoming and outgoing solar and far-infrared
radiation. In order to calculate the albedo over the northern site,
two pyranometers (model CM5, Kipp & Zonen, Delft, l;l“ he Nether-

lands) were mounted to measure incoming and outgoing short-
wave radiation. Soil and vegetation surface temperatures were
measured using two infrared thermometers (model IRTS-Ps,
Apogee Instruments Inc., Logan, UT, USA), with a 3:1 field of view,
at heights of 1 and 8.4 m respectively. Soil heat flux density was
measured at a depth of 0.01 m using soil heat flux plates (HFT3-L,
Campbell Scientific Ltd.) which were installed at three locations in
order to get good average values; underneath the canopy (always
shaded), in between the trees (mostly sunlit), and in an
intermediate position. Time Domain Reflectometery (TDR) probes
(model CS616, Campbell Scientific Ltd.) were installed at depth of
0.05 m to measure soil water content. Their outputs have been
calibrated using the gravimetric method. The slope, the intercept
and the correlation coefficient of the obtained linear regression
were 66,,-58 and 0.96 respectively. Measurements were taken at
1 Hz, ané averages stored at 30-min intervals on CR10X data
loggers (Campbell Scientific Ltd.). The prevailing wind direction
during the study period was from the northwest. The half-hourly
values of the measured climatic variables including the air
temperature, air relative humidity, incoming solar radiation, and
wind speed are shown in Fig. 2.

Besides the standard meteorological measurements, two eddy
covariance systems were installed to provide continuous mea-
surements of the vertical fluxes of heat, water vapour and CO, at a
height of 8.8 and 8.7 m for the southern and northern sites,
respectively. The EC systems consisted of a 3D sonic anemometer
(CSAT3, Campbell Scientific Ltd.) and an open-path infrared gaz
analyzer (Li7500, Licor Inc.). Raw data were sampled at a rate of
20Hz and were recorded using CR23X dataloggers (Campbell
Scientific Ltd.) which were connected to portable computers to
enable storage of large raw data files. The half-hourly values of
fluxes were later calculated off-line after performing coordinate
rotation, frequency corrections, correcting the sonic temperature
for the lateral velocity and presence of humidity, and the inclusion
of the mean vertical velocity according to Webb et al. (1980). Data
from the eAddy covariance system were processed using the
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Fig. 2. Half-hourly values of weather variables during the study period.
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software ‘ECpack’ developed by the Meteorology and Air Quality
group, Wageningen University (available for download at http://
www.met.wau.nl/).

Two identical Large Aperture Scintillometers were mounted at
heights of 14 m in the southern site and 14.5 m in the northern site
(see Fig. 1). These instruments were constructed by the Meteor-
ology and Air Quality Group (Wageningen Agriculture University,
The Netherlands) and were originally designed by Ochs and Wilson
'K1993). They have an aperture size of 0.15 m and the transmitter
operates on a wavelength of 0.94 wm. At the receiver, C? is
sampled at 1 Hz and stored as 1-min averages using a CR510 data
logger (Campbell Scientific Ltd.). Over the southern site, the LAS
was installed perpendicular to the dominant wind direction, over a

ath length of 1050 m. The transmitter was mounted on a tripod
1nstalled on a roof, located on the southwest corner of the southern
site, while the receiver was mounted on a 15-m-high tower that
was positioned next to the road that separates the two sides of the
orchard. Over the northern site, the LAS was almost parallel to the
dominant wind direction, and it measured over a path length of
1070 m. The transmitter was mounted on a tripoc{Pinstalled on a
roof located near the northern corner of the northern site. The
receiver was installed on the same tower as the receiver of the LAS
installed over the northern site in such a manner that the two
signals did not interfere. The measured values of C2 were used to
derive the sensible heat fluxes (see Appendix A) and the
evapotranspiration from the LAS was calculated by imposing the
energy-balance closure assumption using the measured net
radiation and the measured soil heat flux. Ezzahar et al. (2007a)
have evaluated the accuracy of the both scintillometers by
comparing the derived sensible heat fluxes with those measured
with eddy covariance systems for the same period of the current
study. The obtained linear regression yielded a slope of 0.95 (1),
correlation coefficient of 0.89 (0.74) and a root mean square
difference of 24 W m 2 (27 W m2) for the southern site (northern
site). The statistical results of these comparisons showed a better
agreement for the southern site than for the northern site due to
the contrast between the two sites in terms of water availability.
Indeed, in addition to the difference in the cover and height of
vegetation between the two sites, the period of this study was
chosen in order to have a distinct difference between the two sites
in term of soil moisture. The southern site was dry and the
northern site had just been irrigated. Fig. 3 shows the evolution of
the volumetric water content throughout the experiment. From
Fig. 3, it is clear that the grid, comprised of the northern and
southern sites, is very heterogeneous. Therefore, this study
presents a good opportunity to estimate the ET over heterogeneous
grids.

06
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Fig. 3. Evolution of the volumetric water content during the experimental period for
the southern site (dotted line) and northern site (solid line).

3. Modeling approach
3.1. Model for surface flux estimates

3.1.1. Sensible heat flux
For homogeneous vegetation cover conditions, a single-source

Soil-Vegetation-Atmosphere Transfer (SVAT) model may be
suitable for estimating the sensible heat flux; however in most
cases the landscape is under partial vegetation canopy so that soil
and vegetation contribution to the sensible heat flux exchange
should be explicitly taken into account (Norman et al., 1995). For
more complex canopies as the present study site, a two-source
energy-balance model provides a more realistic representation of
the sensible heat flux exchanges with the lower atmosphere
(Lhomme et al., 1994; Merlin and Chehbouni, 2004; Norman et al.,

000). In this specific study, the sensible heat flux is estimated
using the simple two-layer model developed by Lhomme et al.
(1994). Here, only a brief description of the model is provided, the
reader is referred to Lhomme et al. (1994) for a complete
description. According to Lhomme et al. (1994), the sensible heat
flux at the patch scale is expressed as follows:

Tgr —Ta) — cd
Hyiod = 0Cp F £ Ta i)re

(1)

where r, is the aerodynamic resistance to heat transfer between
the level of apparent sink of momentum and the reference height
(sm~!) (Brutsaert, 1982). r, is calculated using the classical
formulae which take into account the stability correction functions
for wind and temperature (Brutsaert, 1982). Tr is the surface
temperature (K), and r. is the equivalent resistance defined by:

Tl
TR aflas (2)
Taf + Tas

where 1,5 is the aerodynamic resistance between the soil and the
canopy source height (Shuttleworth and Gurney, 1990) and r,¢ is
the bulk boundary layer resistance of the canopy (Choudhury and
Monteith, 1988). The term &T represents the temperature
difference between the foliage and the soil. Lhomme et al.
(1994) have linked statistically 8T to (Tgy— T.) by the following
empirical equation:

8T = a(Tg — T)™ (3)

Finally c is given by

CZ{%}*J% (4)

where f), is the fractional vegetation cover, a and m are empirical
coefficients (a positive real number and m positive integer) which
were determined statistically by adjusting H estimated to H
observed. The value of 0.25 and 2 were used respectively for a and
m (Hoedjes et al., 2008)

3.1.2. Available energy

In general, the estimation of the evapotranspiration as the
residual term of the energy-balance equation over a heterogeneous
grid requires, additionally to the sensible heat flux estimates, a
network of the net radiometers and the soil heat flux in order to
capture the heterogeneity of the grid, which is also costly and not
really feasible for operational purposes. Therefore, we proposed to
estimate the available energy using a simple model which uses
radiometric surface temperature, albedo and incoming solar
radiation data (Chehbouni et al. (2008a)). This model is described
as follows:
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3.1.2.1. Net jadiation. The net radiation quantifies the energy
available for crop evapotranspiration, photosynthesis, and soil
heating (Monteith and Unsworth, 1990). It is the difference
between the incoming and outgoing shortwave and Ieong wave
radiation fluxes, and is expressed as follows:

Ro = (1 — a)Rg + &R, — R (5)

where « is the surface albedo, R, is the global solar radiation, & is
the surface emissivity which has an almost constant value (in

Q1 practical work a value of 0.98, may be taken for crop canopies;

Ortega et al., 2000; Jones et al., 2003), R, the atmosphere thermal
radiation and R; is the thermal radiation which is emitted by the
surface. Both R, and R; can be expressed in function of air
temperature and surface temperature (Monteith and Unsworth,
1990; Duarte et al., 2006), respectively. Then, Eq. (5) can be
rewritten as:

Ry = (1 — )Ry + &s0(e,TH — T3) (6)

where o is the Stefan-Boltzman constant and ¢, is the emissivity of
the atmosphere.

Several authors have proposed empirical relationships which
relate the atmospheric emissivity to the air temperature (Ang-
strom, 1918; Brunt, 1932; Idso, 1981). For clear skies, Brutsaert
(1975) has computed ¢, from air temperature and vapour pressure
as:

e, 1/7
&1 = 1.24<T—> (7)

a

where e, is the air vapour pressure (hPa). In what follows, this
equation will be used without including any correction for the
effect of clouds, because as shown as shown in Fig. 2, the
experimental period contained only a few cloudy data.

3.1.2.2. Soil heat flux. The soil heat flux (G), which is a function of
the thermal conductivity of the soil and the vertical temperature
gradient, is difficult to obtain in a physical-based manner over
large heterogeneous areas. Several researchers have parameter-
ized G as a constant proportion of R, (i.e. G = cR,) that is fixed for
the entire day or period of interest (Mecikalski et al., 1999; Norman
et al., 1995, 2000; Crawford et al., 2000; Su, 2002). Recommended
values for G/R, are around 0.30 for sparse canopies but values
ranging from 0.15 to 0.40 have been reported in the literature
(Brutsaert, 1982; Choudhury, 1987; Humes et al., 1994; Kustas and
Goodrich, 1994). Recently, Santanello and Friedl (2003) have
reported that G is unfortunately neither constant nor negligible on
diurnal time scales. G/R,, can range from 0.05 to 0.50 and is driven
by several factors: time of day, soil moisture and thermal
properties, as well as the amount and height of vegetation (Kustas
et al.,, 1993). In the current study, the ratio of the soil heat flux to
net radiation was estimated according to Santanello and Friedl
(2003) as follows:

G |:27T(l' + 10800)}

R = Acos B (8)

n
where t is the time of day in seconds, and A and B are adjusting
factors which were set by Santanello and Friedl (2003) as 0.31 and
74 000 s, respectively. Using the same factors, this model was used
with success over a wide range of climate and surface conditions
(Hoedjes et al., 2008; Chehbouni et al., 2008a; and Ezzahar et al.,
2009).

Provided that sensible heat flux H, net radiation R,, and soil heat
flux G estimates are obtained using the aforementioned formula-
tions, estimated latent heat flux ET can be derived as the residual
term of theAenergy—balance equation.

3.2. Aggregation Iprocedures

In this section, two aggregation algorithms are presented to
estimate the diurnal course of evapotranspiration at the grid-scale:
spatial aggregation which consists of upscaling the patch
measurements/or estimates to grid-scale estimates and the
temporal aggregation which consists of extrapolating the grid-
scale instantaneous values which can be derived from remote
sensing to daily ones. In what follows, the area-averaged over the
grid is denoted by the angle brackets,A().

3.2.1. Spatial aggregation

In the following, the theory which underlies essential aspects of
the application of the spatial aggregation algorithm to formulate
the grid-scale surface fluxes is described. The spatial aggregation is
conceived as a method which seeks to link the model parameters
which control surface exchange on a patch scale with the area-
average value of equivalent model parameters applicable at larger,
model grid-scale, and to adopt the equations that are accepted as
reasonable descriptions of surface-atmosphere exchanges at the
patch scale to describe the area-averaged behavior of hetero-
geneous cover on the grid-scale. The strategy adopted in this
current study to infer grid-scale surface fluxes is based on two
assumptions (Shuttleworth et al., 1997; Chehbouni et al., 2000a,
2008a): the first one consists in determining grid-scale surface
fluxes in such a way that the flux equations on the grid-scale must
have the same form as those used on a patch scale but whose
arguments are the aggregate expressions of those on the patch
scale. The second one stipulates that “the effective or area-average
value of land surface parameters is estimated as a weighted average
over the component cover types in each grid through that function
involving the parameter which most succinctly expresses its relation-
ship with the associated surface flux” (Shuttleworth et al., 1997).
Expressions of grid-scale surface fluxes (denoted by angle
brackets) resulting from the application of this simple aggregation
rule are given below:

(Rn) = (1 = {@))Rg + (&s)0(eaT] — (T)) (9)

©) _ pcos {Zn(t + 10800)}

Ra) B (10)

((Tr) = Ta) = [((Fas)/{Tas) + (rar)) — f1(a({Tr) — Ta)™)
(ra) — (re)

(Hsim) = pCp [
(11)

Similarly, the application of the second assumption leads to the
following set of relationships between local (subscript i) and
effective (in brackets) radiative temperature, surface emissivity,
surface albedo, displacement height and roughness length
(Chehbouni et al., 2008a):

[ fie(Tr)* 0%
<M—P7y—} (12)
(6s) =D _ fitsi (13)
() =>_ fien (14)

Please cite this article in press as: Ezzahar, J., Chehbouni, A., The use of scintillometry for validating aggregation schemes over
heterogeneous grids. Agric. Forest Meteorol. (2009), doi:10.1016/j.agrformet.2009.09.004

344

345
346
347
348
349
350
351
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378

380

383
385
386
387
388

391
380

394
392

396


http://dx.doi.org/10.1016/j.agrformet.2009.09.004

396

399

400
402
403
404
405

408
408
409
410
411
412
413
414

418
418
419
420
421
422
423
424
425
426
427
428
429

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

G Model
AGMET 4151 1-12

a diurnal constant value of EF induces a large error in the
calculation of ET.

To overcome this problem, Hoedjes et al. (2008) have proposed
a new heuristic approach to parameterize the diurnal course of EF
over homogeneous surfaces using the atmospheric parameters and
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In(zo) = filn(zo,) (15)
i
d)=>" fidi (16)
i

where f; is the fraction of the surface covered by the patch i with
obviously Y, f; = 1. Tg; is the radiometric surface temperature over
the patch i. In this study, Tg; was derived from measured soil and
canopy temperatures weighted by the fractional area of vegetation
(Ezzahar et al., 2007b; Norman et al., 1995) as follows:
Toi~ [T+ (1 - foTd)
where f is the cover fraction of olive trees, and T and T, are the
measured soil and canopy temperatures respectively, using two
infrared thermometers.

&, aj, Zoi and d; are the surface emissivity, the albedo, the
roughness length and the displacement height for the patch i.

Finally, the grid-scale evapotranspiration derived from the
spatial aggregation method (denoted asyETs;)sa) can be obtained
as the residual term of theAenergy—bal ce equation:

(ETsim)sa = (Rn) — (Hsim) — (G) (18)

Although this method seems very practical for estimating
surface fluxes. However, as stated by Chehbouni et al. (2000a), it
has a major limitation since its derivation is from semi-empirical
relationships between the local and effective surtélce parameters
are not always theoretically supported. In the regard, the
relationship between model and observational variables (see
Eq. (3)), which is established at patch scale, can introduce
additional errors when extended to grid-scale. However, the
finding of Chehbouni et al.£2000a, 2008a) seems to indicate that
these errors have a limited impact on surface flux estimates.
Nevertheless, establishing physically based relationships between
model and observational variables at /grid—scale is an ongoing
research topic.

(17)

3.2.2. Temporal aggregation

Grid-scale evapotranspiration ((ET)) can be also determined
using remote sensing data in conjdfction with an energy-balance
model. Practically, the sun-synchronous sensors are the most
suitable for deriving ET) (French et al., 2005; Chehbouni et al.,
2008a). However, thése sensors provide only instantaneous values
at the satellite overpass. These are of limited interest to water
managers who are primarily focusing on daily values of ,JET)
(Bastiaanssen et al., 2000). Several methods have been propdsed
for extrapolating instantaneous ET to daily values. The simplest
consist of relating daily ET to the instantaneous near surface
vertical temperature gradient at midday (Jackson et al., 1977), or
assuming the ET diurnal course is similar to that of solar irradiance,
to be approximated by a sine function. However, due to their
empirical character, both method accuracies are limited (Zhang
and Lemeur, 1995). Another possibility is assuming a constant
daytime evaporative fraction (EF(=ET/AE)), to be used with daily
available energy (AE(=Rnx— G)) for deriving daily ET (Sugita and
Brutsaert, 1991; Gomez €t'al., 2005). The EF is defined as the ratio
of ET to the available energy, AE. Recently, Hoedjes et al. (2008)
have shown that assuming a constant daytime EF to derive
accurate ET cannot be generalized to all surface conditions. Under
dry conditions, the constant EF assumption seems to lead to
reasonable results with regard to daily ET estimation. While under
wet conditions, EF depicts a concave up shape with a pronounced
decrease during early morning and a sharp increase during late
afternoon (see Fig. 2 in Hoedjes et al., 2008). Furthermore, since the
largest evaporative fluxes occur during these conditions, the use of

soil moisture status (dry or wet). This approach has been
generalized by Chehbouni et al. (2008a) to a mixture of contrasted
three fields (cotton, chickpea and wheat) in northern Mexico. In the
current study, we applied the same method developed by
Chehbouni et al. (2008a) to derive JEF) over a grid sparse olive
tree canopy. Compared to earlier stlitlies, our investigations were
performed in difficult environmental conditions due to the type of
vegetation (tall and sparse vegetation), and the irregular space-
time soil moisture pattern induced by the type of irrigation. On the

rid-scale, the actual JEF) diurnal course parameterized when
accounting for both atfitospheric demand and soil moisture status
is given byAChehbouni et al. (2008a):

(EFsim)rif*° B <15
<EFls\i§> = 7 for < » > ) (19)
(ER0) (6")>15

(EFsim) is the EF diurnal course parameterized when accounting for
atmospheric demand (i.e. global solar radiation (Rg) and relative
humidity (RH)) only, which is formulated as:

B Ry RH
(EFgim) = 1.2 — (0'4W+0'5ﬁ) (20)

rif3% is a correction factor given by:

1130
1o = —gmi 1)

where (EFL3%) is (EFgp,) at 11:30 UTC, and EFﬁ;i?? is the EF
estimated from remote sensing observations at 11:30 UTC
calculated as:

AE))LZ _ ((Hgrm))L130
<EF]]{ér31?>:(< >)RG(TAE>)(£l3m§) DR 7

where ((Hsim))gey is the value of the sensible heat flux at,11:30.
The latter was estimated from Eq. (11) using the etjf\ective
radiometric surface temperature (Eq. (12)). ((AE)A30 is the
estimated available energy at 11:30 UTC calculated by combining
Egs. (9) and (10) using also the effective radiometric surface
temperature.

1130y js  the value of the Bowen ratio
(((Hsim))2a0 /((AE))R3Y — ((Hgin))A13%) at 11:30 UTC, which is used
to switch from a constant to a daily variable ,EF).

In this study, the time of 11:30 UTC s chosen since it
corresponds to the local time of overpass of the ASTER satellite
(Hoedjes et al., 2008). When choosing the AVHRR overpass time
over north-western Mexico, j.e. 14:00 UTC, Chehbouni et al.
(2008a) have shown that this parameterization was also reason-
able.

In addition to the parameterization of theEF), retrieval of the
diurnal course,ET) requires also (AE) over thée diurnal cycle, which
is not routineloavailable. Here again, the same heuristic approach
developed by Chehbouni et al. (2008a) on the grid-scale, was used
in this specific study. This approach combines the instantaneous
remote sensing observations of AE (((AE))}@?) at11:30 UTC witha
function yR) involving the meteorological information which can
be obtaiAed from observation networks and/or weather forecasts
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to derive AE diurnal courses. The latter is expressed as:

((AE))* (R)
<(<AE>)}<E?H°> B f(<R”3O>> (22)
where R is a function given by:
(RY) = (1= (@)R, + (es)ebo (TH)" (23)

where t is the time of the day, fis the following 2nd order function:

(®) ) ( () ) ( (®) )
f oy | — R 1130 + a1 130\ | T
(<R ) (R™) (R

where ag, a; and a, are empirical coefficients established by
Hoedjes et al. (2008) as 0.48495, 1.15120 and 0.34285, respec-
tively, when calibrating this function over a Ipomogeneous olive
orchard in Morocco. Using the same coefficients, Chehbouni et al.
(2008a) have extended the AE parameterization with success to
rid-scale. It is of important to notice that outgoing long wave
radiation is purposely not introduced in Eq. (23). This was made to
avoid the requirement for daily course of surface temperature
which is not available at the appropriate space scale.
Finally, the grid-scale evapotranspirationlgdenoted, (ETsim)TA) IS
obtained as foﬁows:

(ETsim)ra = (EFSG ) ((AE))"

(24)

(25)

4. Results and discussion

In this study, only daytime observations have been considered,
since the most important surface fluxes occur during this interval,
and the behavior of the temperature structure parameter is not
well known for stable conditions which can create greater
uncertainty in the fluxes, especially over heterogeneous surfaces.
Note that the half-hourly time scale is used in all analysis. This
section will be organized as follows: firstly a comparison between
the sensible heat fluxes derived from the LAS and those estimated
using the Lhomme et al. (1994) model on the grid-scale. Secondly,
we compare the LAS-derived diurnal course of the evapotranspira-
tion and that estimated using spatial and temporal aggregation
schemes on the/grid—scale.

4.1. Sensible heat fluxes

Before evaluating the accuracy of the application of the
Lhomme et al. (1994) model on the Kgrid—scale, we first present

200
O Southern site

M Northern site

1504

1004

504

Sensible heat flux (Wm-2)

205 296 297 298 299 300 301 302 303 304 305 306
DOY

Fig. 4. Daily average daytime values of the sensible heat flux derived from the LAS
over the northern and southern sites during the study period.

in Fig. 4 the daily average daytime values of the sensible heat flux
derived from the LAS over both sites. The contrast between the two
sites in terms of water availability (irrigation) can clearly be seen in
this figure. Sensible heat flux values over the southern site are
considerably higher than those over the northern site. The
maximum difference between the values of H was around
63 W m ~2, seen on DOY 302.

At the patch scale, the Lhomme et al. (1994) model has been
tested with success using the data collected over the southern site
(Hoedjes et al., 2007, 2008). However, as far as we know such a
study of the ap "icability of the Lhomme et al. (1994) model to the
qcirid—scale has never been performed before. In this study, an effort

as been made to apply this model over a heterogeneous grid
which comprised the northern and southern sites using the
aggregation rules. The simulated grid-scale sensible heat flux (
Hsim)) was estimated using Eq. (11). Since satellite based surface
emperature measurements were not available, ground-based
surface temperature measured over each patch were used to
construct grid-scale surface temperature using Eq. (12). Similarly,
Egs.(15)and (16) have been used to derive grid-scale displacement
height and roughness length. Note that their patch scale values
were derived as fraction of the vegetation height.

The effectiveness of this approach should have been validated
by installing one scintillometer spanning the entire grid-scale.
However, this could not be achieved easily for practical reasons
since this unique scintillometer should have been installed much
higher than the two LAS used in this study in order to avoid
saturation.

To overcome this problem, Ezzahar et al. (2007a) developed a
new approach to infer an aggregated structure parameter of the
refractive index on the grid-scale ((C2)) using the same data
collected in the current study. This approach combines LAS patch
scale measurements, meteorological data and aggregation
schemes. For more details the reader can refer to Ezzahar et al.
(2007a). It is worth mentioning that the obtained (C?) behaved
according to Monin- Obukhov Similarity Theory. Then, this (C2)
was used to derive the égrid—scale sensible heat fluxp&HLAsn by
applying MOST at the lgri -scale. The accuracy of this approach has
been investigated by comparing s H;as) to the area average of
sensible heat flux measured by theéddy covariance systems which
were installed on the meteorological towers (see Fig. 1). The result
of this comparison showed a good agreement with a
RMSD =20.3 Wm 2 and R?=0.89 (Ezzahar et al., 2007a). Here,
the values obtained for, H; 45 ) in Ezzahar et al. (2007a) have been
used to validate <H5imAFig. 5 displays the comparison between

Hias) and (HghY. The RMSD is 30 W m 2 and the correlation
oefficient and the slope associated with the linear regression

300
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- .
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P2 S AT
aed s v,
vV 100+ . . e %
- . L]
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L
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0 e T T
0 100 200 300

<H; 15> (Wm™)

Fig. 5. Comparison between the sensible heat fluxes,,(Hs;,) (using the Lhomme et al.

A(l994) model at grid-scale), and (Hjas) (obtainedA}y combining LAS patch scale
measurements, meteorological data and an aggregation model, Ezzahar et al.,
2007a).
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Footprint

Low contribution

I High contribution

Irrigation

=)

0o 1000 Metres

w*=0.35ms1, L= -25m, Sigma v =0.76 ms,

Wind direction=350°

Fig. 6. Footprint of the LAS, calculated using the footprint model of Horst and Weil (1994). The direction of irrigation isAalso shown.

forced to the origin were 0.76 and 0.90, respectively. This result
indicates that the aggregation schemes are not exact and errors are
associated with some of the assumptions used to drive them.
Additionally, some scatter is related to the footprint effect of the
scintillometers (see Fig. 6). Nevertheless, considering the complex-
ity of the study site, the obtained result is very encouraging.
Consequently, it can be concluded albeit its simplicity, the
Lhomme et al. (1994) model, can be considered a suitable model
for estimating the sensible heat fluxes using the effective
radiometric surface temperature over heterogeneous grids.

4.2. Evapotranspiration

4.2.1. Spatial aggregation

Before evaluating the accuracy of the evapotranspiration
derived from the spatial aggregation, we compare first the grid-
scale available energy ((AEsi,)) against the Aground—based mea-
surement (denotedy AEy.s)) in Fig. 7. The (AEs;,) was obtained by
combining Egs. (99%nd (10). Here again, the estimation of the
AEsim) used the effective radiometric surface temperature
Eq. (12)) through Eq. (9). The effective surface emissivity and
albedo required for the estimation of the yAEs;,,), were derived
from Egs. (13) and (14). They AEycas) was deAved as area-weighted
averages of those measuréd over the southern and the northern

1:1
e . e
b
400 "MM‘ .
L]
A ., ®
7 .,
(23] .
< (1
v
L ]
200 4 o .
o, .
)
™ L]
0 T T
0 200 400 600
<AEmMeas™

Fig. 7. Comparison between the estimated ((AEs;y,), obtained using the spatial
aggregation scheme, Eqgs. (9) and (10)) and observed ((AEyeas), obtained as area-
weighted averages of those measured over both sites) area-averaged available
energy.

sites. The correspondence betweeny AEs;y,) and (AEye.s) was quite
good. The RMSD value was 40 Wih~2, and the linear regression
forced to the origin yielded a 0.89 slope value and a 0.98 correlation
coefficient. It should be noted that in this specific study, the
atmospheric radiation was estimated using Brutsaert’s formula
without cloudiness correction; because the experiment period
included few cloudless data.IFxcept DOY 295, all days were sunny
(see Fig. 2). Therefore, the use of Brutsaert’s equation will not
introduce significant error in the estimation of atmospheric
radiation. However, there might be other sources of errors such
as those related the uncertainly associated with the aggregation
method which is purely of a semi-empirical nature, as well as those
associated with the measurement of net radiation which ranges
from 5% to 7% for instruments of the same manufacture and,10% to
15% éetween manufacturers (Field et al., 1992). It is also possible
that some error compensation might have occurred which may
explained the fact that difference between the estimated and
measured available was less than expected even over homo-
geneous surfaces.

Using values of Y AEs;,,,) and (Hsin,) which were calculated using
the effective radi(A\etric surface temperature (see Egs. (9)-(11)),
the diurnal course of grid-scale evapotranspiration, 4 ETsiy,)sa was
estimated as the residual term of the energy-baldhce equation
(Eq. (18)).AETSim)5A was compared to t eAgrid—scale evapotran-
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Fig. 8. Comparison between ,ETs;i,)sa (estimated using the spatial aggregation
scheme) and,(ET; »5) (obtained Yorm the LAS as the difference between theA<AEMeas>
and (Hyas)).
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spiration
the AEMeaS> and <H]_A5> in Flg 8. The RMSD betWeeI]AETSim>SA and

ETas)) derived from the LAS as the difference between

(ET\s) was 46 W m~2 and the correlation coefficientdnd the slope
associated with the linear regression forced to the origin were 0.78
and 0.87, respectively. This confirms the results reported by several
authors where the potential of the LAS to derive accurate
evapotranspiration has been demonstrated (Ezzahar et al.,

3007b, 2009; Chehbouni et al., 2000Db, ,in press; Hemakumara
et al., 2003; Hoedjes et al., 2002). It should be noted that the
problem of closure of the energy balance has no big effect on the
results, because both approaches forced the energy-balance
closure. Such discrepancy can be explained by the combination
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of two factors. First, the error associated to the impact of the
footprint. Second, since the ET is obtained as the residual term of
the energy-balance equation, any difference between measured
and estimated available energy and sensible heat flux is directly
translated into error in the estimated ET. However, despite the
observed scatter, the correspondence between yETs;y)sa and
(ET1as) is acceptable considering the difficulty estimating

rid-scale latent heat flux over such complex grid. Finally, it can be
concluded that the spatial aggregation procedure yielded reason-
able grid surface fluxes estimates.

4.2.2. Temporal aggregation
In this section an effort has been made to extend the heuristic
approach which consists of extrapolating instantaneous values to
daily ones proposed by Hoedjes et al. (2008) over a homogeneous
patch to a heterogeneous grid (tall and sparse vegetation, irrigation
method employed). Before obtaining the grid-scale evapotran-
spiration using the temporal aggregation, the grid-scale of
available energy ( AEs;,,)) estimated using Eq. (22), was compared
to the ground-Bdsed measurements (YAEyess)) in Fig. 9. The
correspondence betweeny AEs;,) and (At\jeas) was quite good. The
RMSD value was 47 W , and the linear regression forced to the
origin yielded a 0.90 slope value and a 0.91 correlation coefficient.
By comparing these results with those obtained when we used the
spatial aggregation, it can be seen that in addition to the error
related to the spatial aggregation, the use of the temporal
aggregation generates an added extra error in the estimation of
AE) (about 21%). However, considering the complexity of the grid,
he footprint effect and the error associated with the assumptions
used to drive aggregation rules, it can be concluded that the
proposed heuristic approach leads to reasonable estimates of the
diurnal course area average available energy. The results of this
study confirm and generalize the findings of Hoedjes et al. (2008)
who established this heuristic approach on the southern site which
was one of the two patches of our grid-scale study as well as those
established by Chehbouni et al. (2008a) over short vegetation.
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Fig. 9. Comparison between the estimated ((AEs;n,), obtained using the temporal
aggregation scheme (Eq. (22))) and observed ({AEwmeas), obtained as area-weighted
averages of those measured over both sites) area-averaged availab’l\e energy.

<ET| s> (Wm'™)

Fig. 10. Comparison between ,ETs;,)Ta (estimated using the temporal aggregation
scheme through Eqgs. (19)-(23}) and,(ET, »s) (obtained form the LAS as the difference
between they AEyeas) and (Hyas)). AAO included is the grid-scale evapotranspiration
calculated b{*considering a constant diurnal evaporative fraction (EF) equal to that
at 11:30 UTC (EFq130)-

Finally, the diurnal course of the grid-scale evapotranspiration,
ETsim)Ta, Was retrieved using Eqs. (19}(25). Fig. 10 displays the
alidation of theseyETq;m)Ta retrievals, against values derived from
the LAS ((ET) »s)). Also included is the grid-scale evapotranspiration
calculatell by considering a constant diurnal evaporative fraction
(EF) equal to that at 11H30 (EF,3p). It can be clearly seen that taking
into account the diurnal variation of EF significantly improves
ETsim)Ta retrieval. RMSD between 4 ETgn)ta and (ETpas) was
3 W m2, the relative error was 19And the slope was 0.88, as
compared to 52 W m 2, 27% and 0.82, respectively when using a
constant EF. These results corroborated with those established by
Hoedjes et al. (2008) and Chehbouni et al. (2008a). Additionally, by
properly taking into account the effect of the grid heterogeneity due
tobothvegetation and soil moisture variations along the grid and the
error associated to the application of the aggregation rules, the
agreement between theA(ETsim>TA and (ETpxs) is considered to be
acceptable.

In general, as for the spatial aggregation scheme, the temporal
aggregation method can be considered suitable for practical
purposes. Indeed, the spatial aggregation needs the diurnal courses
of the radiometric surface temperature for calculating the sensible
heat fluxes and the available energy. However, this variable cannot
be obtained using remote sensing technique at the required scale
for irrigation management purposes (a few hundred meters
resolution). Geostationary sensors can provide the diurnal courses
of spatially radiometric surface temperature with temporal
sampling from 15 min to 1 h, but their spatial resolution is very
coarse. The advantage of combining spatial and temporal
aggregation schemes is to be able to estimate daily value of ET
at the grid-scale using a single value of surface temperature at the
satellite overpass time.

Fig. 11. Experimental design for the Yaqui valley experiment (Chehbouni et al.,

A2008a, in press).
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worth noting that the aggregation algorithms presented here have
some limitations. The method to establish relationships between
the local and effective surface parameters is purely of a semi-
empirical nature which is not universal. Additionally this method
uses local measurements of surface temperature; albedo and solar
radiation which were assumed to be representative of the
individual site. This assumption can certainly lead to some errors
since the heterogeneity is also encountered at the field or patch
scale. Future research should be thus directed towards building
robust physical relationships between the local and effective
surface parameters as well as testing it using remotely sensed data,
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Fig. 12. Comparison between ,ETs;,,)ta (estimated using the temporal aggregation
scheme (Chehbouni et al., 2008a)) andA<ETLA5> (obtained form the LAS, Chehbouni
et al,,Ain press).

To further assess the performance of the developed combina-
tion of temporal and spatial aggregation methods, a second dataset
collected in northern Mexico (Chehbouni et al., 2008a, in press)
was used. The grid consisted of three adjacent fields: cotton,
chickpea and wheat. The three fields with eddy covariance flux
towers are shown in Fig. 11. Both studies used the same data. Here,
we briefly recall the objectives of these studies. In Chehbouni et al.
(2008a), the temporal aggregation scheme for deriving diurnal
course of Y ETg;m)ta Was tested with success over the three fields by
comparing the  ETg;,)ra retrievals to those measured by the eddy
covariance sysAms. This was achieved by using the same temporal
aggregation scheme used in this study (Eqgs. (19}\—(25)). The study
of Chehbouni et al. (in press) aimed to assess the potential and the
limitations of the ﬂAS in inferring Apath average of the sensible (
(Hias)) and latent ((ETpas)) fluxes over the three fields by

Aomparing the LAS fluxes to those measured by the eddy
covariance systems.

Fig. 12 presents the comparison of yETqm)ta (derived in
Chehbouni et al. (2008a)) withyET| as) (deriveéd in Chehbouni et al.,
in press). The statistical resultS'bf this comparison showed that the

MSD was about 48 W m~2 and the correlation coefficient and the
slope associated with the linear regression forced to the origin
were 0.90 and 0.65, respectively. Comparing these results with
those obtained in the current study, it can be concluded that the
proposed approach can be used with success in different
environmental conditions. The results are an important step
toward developing the remote sensing algorithms for better
estimation of the evapotranspiration on a large scale relying on the
use of the scintillometry. Additional investigation using data
collected over a range of surface type combinations are required to
generalize and confirm our finding, and more importantly, future
research should be directed towards building robust relationships
between model and observational variables directly at the grid-
scale.

5. Conclusions

Comparisons of grid-scale evapotranspiration derived from the
scintillometer with those estimated from the spatial and temporal
aggregation schemes, under difficult environment conditions
(sparseness of vegetation and heterogeneity in terms of soil
moisture pattern induced by the “flood irrigation” method),
showed an acceptable result using data collected in the central
of Morocco. Additionally, the temporal aggregation scheme has
been tested with success over a heterogeneous grid in a semi-arid
region in northern Mexico. This finding confirms and generalizes
the consistency of the aggregation schemes for accurate estimates
of the evapotranspiration over heterogeneous grids. However, it is

which provide spatial distribution of surface temperature, albedo
and solar radiation.
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Appendix A
A.1. Surface fluxes using scintillometry

The LAS is a device that provides measurements of the variation in
the refractive index of air caused by atmospheric turbulence. This
instrument consists of a transmitter and a receiver, both with an
aperture diameter of 0.15 m, set up at a separation distance (or path
length) ranging from 250 to 5000 m. The transmitter emits
electromagnetic radiation, which is scattered by the turbulent
atmosphere, and the resulting variations in signal intensity (scintilla-
tions) are recorded by a receiver comprising an identical mirror and a
photodiode detector. The intensity fluctuations are related to the path
average structure parameter of the refractive index of air, C2. The
scintillations are primarily the result of fluctuations in air tempera-
ture and humidity. Strictly speaking, the measured C? is related to the
structure parameters of temperature CZ, of humidity Cg, and the
covariant term Cr,. For electromagnetic waves in the visible and near-
infrared region, however, humidity related scintillations are much
smaller than temperature related scintillations. Wesely (1976), and
more recently Moene (2003), have shown that for a LAS operating at a
near-infrared wavelength, we can derive the structure parameter of
temperature C? from C? using:

. T2 2/ 003\ 2
G=CG|——————] (1 +'—>
! ”<—0.78 x 106p> < B

where T, is the air temperature (K), p is atmospheric pressure (Pa)
and B is the Bowen ratio. The factor involving the Bowen ratio is the
correction term for the influence of humidity fluctuations.

(A1)

Using Monin-Obukhov Similarity Theory (MOST), the sensible
heat flux (Hpas) can be obtained from C2 and additional wind speed
data through the following dimensionless relationship:

C2(zips — ) Zias — d Zias — d\ 23
T( LA;"2 ) _ fT( LASL ) = (1 —cp LASL > (A.Z)

where L is the Obukhov length (m) (L = pc,Tau3 /kgHias), and T- is

the temperature scale (T, = ;f;ﬂs) The friction velocity (u-) is
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expressed as:

u, = ku {Ln ((ZLA;O_ d)> _ 1/f((zLAs —d)]”

I (A3)

where z; 55 is the effective height of the LAS above the surface, 1 is
the integrated stability function (Panofsky and Dutton, 1984), d is
the displacement height and z, is the roughness length, k is the von
Karman constant, g is the gravitational acceleration, p is the density
of airand ¢, is the specific heat of air at constant pressure. Here,d and
zo were calculated as a function of the vegetation height (Ezzahar
et al., 2007a,b). During the iteration procedure, the Bowen ratio is
evaluated using the H; 55, measured net radiation (R,) and measured
soil heat flux (G) [8 = (Hias/(Rn — G — Hyas))]- In this study we will
confine ourselves to unstable conditions and will use the MOST
relationship fr inAEq. (2) given by De Bruin et al. (1993).

Finally, the ET from the LAS can be derived by imposing the
energy-balance closure assumption (Chehbouni et al., 2000b, jin
press; Ezzahar et al., 2007b, 2009; Hemakumara et al., 2003; Hoedjes
et al., 2002).
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