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[1] The present paper proposes an empirical approach for the modeling of vegetation
development, using moisture measurements only. The study is based simply on the use of
two databases: one containing soil moisture products derived from ERS scatterometer data
over the period 1991–2006 and the other containing normalized difference vegetation
indices (NDVI) derived from advanced very high resolution radiometer over the period
1991–2000. The study is applied over the Kairouan plain, the central semiarid region of
Tunisia (North Africa). Soil moisture products were first validated on the basis of
comparisons with Global Soil Wetness Project, Phase 2 Data, outputs and rainfall events.
The soil moisture distribution during the rainy period between October and May is
described and is found to be correlated with the vegetation dynamics estimated using the
NDVI products. Finally, a semiempirical model is proposed, based on satellite moisture
and NDVI products, which allows the NDVI value to be estimated for a period of 1 month
during the rainy season as a function of the moisture profile estimations obtained during
the previous months. This approach could prove very useful and provide a simple tool
for the modeling of vegetation dynamics during rainy seasons in semiarid regions.

Citation: Zribi, M., T. Paris Anguela, B. Duchemin, Z. Lili, W. Wagner, S. Hasenauer, and A. Chehbouni (2010), Relationship
between soil moisture and vegetation in the Kairouan plain region of Tunisia using low spatial resolution satellite data, Water
Resour. Res., 46, W06508, doi:10.1029/2009WR008196.

1. Introduction

[2] In semiarid regions, and northern Africa in particular,
the absence of rainfall, together with the occurrence of long
periods of drought, represent one of the main environmental
factors having a negative effect on agricultural productivity.
The evaluation of vegetation cover and the monitoring of
hydric stress are indispensable in these regions, particularly
in areas with pluvial agriculture. The challenge is to develop
an approach for the monitoring of vegetation cover and
drought, which can contribute toward the making of appro-
priate and timely decisions in response to drought. A variety
of drought‐monitoring products are used to generate a map,
including precipitation indices, streamflow levels, soil mois-
ture models, snowpack levels, and satellite vegetation index
data [Heim, 2002; Ntale and Gan, 2003; Dai et al., 2004].
The spatially and temporally continuous coverage offered by
satellite data enhances the value of these drought‐monitoring
products.
[3] The value of meteorological satellite imagery for the

investigation of the vitality and phenology of vegetation has
been well demonstrated [Tucker, 1979; Goward et al., 1985;
Peters et al., 1997]. As a consequence of its twice‐daily

coverage and synoptic view characteristics, the advanced
very high resolution radiometer (AVHRR), one of the Earth
observing instruments carried by the National Oceanic and
Atmospheric Administration’s (NOAA) satellites, is cur-
rently the instrument of choice for recording global, coarse‐
resolution images of the Earth. The normalized difference
vegetation index (NDVI), derived from AVHRR data, has
been extensively used for vegetation monitoring, crop yield
assessment and drought detection [Moulin et al., 1997;
Anyamba and Tucker, 2005; Barbosa et al., 2006].
[4] Nicholson and Farrar [1994] and Farrar et al. [1994]

analyzed the relationship between rainfall and NDVI. These
studies note significant differences in the NDVI‐rainfall
relationship for various types of soil. Richard and Poccard
[1998] demonstrated the NDVI’s sensitivity to seasonal and
interannual rainfall variations in southern Africa. Funk and
Brown [2006] have proposed a simple model for producing
1 to 4 month NDVI projections. These statistical projections
are based on satellite rainfall estimates and relative humidity
demand. All of these studies rely on the high correlation
between precipitation and vegetation development. Soil water
storage is the efficient component of precipitation, which is
used to stimulate the growth of vegetation. The other com-
ponents, that is, evaporation loss and runoff, are particularly
dependent on variations in soil type and climatic conditions
for any given study site. Therefore, in the present study, we
propose to analyze the relationship between soil moisture and
vegetation development, using satellite databases for mois-
ture and vegetation only, for a semiarid region, the Kairouan
plain, in Tunisia (North Africa).
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[5] Our objective is to propose a simple tool for the
forecasting of vegetation development, based on moisture
measurements only, without making use of climate data,
which can be particularly useful during periods of drought.
Soil moisture, which is a key factor in hydrological modeling
and the determination of land surface boundary conditions,
has a clear influence on surface‐atmosphere interactions and
subsequently has the potential of strongly affecting weather
patterns, hydrological variations and vegetation development
[Beven and Fisher, 1996; Koster et al., 2004; Saux‐Picart et
al., 2010]. In the last two decades, considerable efforts have
been made to develop remote sensing techniques for the
characterization of the spatial and temporal variability of soil
parameters at regional and global scales. In particular, in the
case of soil moisture, active and passive microwave techni-
ques, as well as interpretation tools, have been developed
[Jackson et al., 1996; Ulaby et al., 1996; Paloscia et al.,
2008]. The effectiveness of low‐resolution spaceborne scat-
terometers (active microwave) for land surface characteriza-
tion has been demonstrated by a large number of studies related
tomoisture estimation [Wagner et al., 1999a;Zribi et al., 2003,
2008; Ceballos et al., 2005; Pellarin et al., 2006; Paris
Anguela et al., 2008]. Considerable progress has been made
in determining soil moisture, and in evaluating feedback
effects between moisture and climate, at regional and global
scales [Brubaker and Entekhabi, 1996; Entekhabi et al.,
1996; Eltahir and Gong, 1996; Douville et al., 2001; Walker
and Houser, 2001].

[6] The present paper is organized as follows: Section 2
presents the study site, together with a brief description of
satellite data used in our analysis. Section 3 discusses the
evaluation of ERS moisture products on the basis of a
comparison with the Global Soil Wetness Project, Phase 2
Data (GSWP‐2), output moisture product and rainfall data.
It also provides details of the soil moisture’s statistical
behavior. Section 4 proposes an analysis of the correlation
of moisture with vegetation dynamics, and the development
of a simple approach for the estimation of vegetation
dynamics as a function of the soil moisture profile during the
rainy season (October–May). Finally, our conclusions are
presented in section 5.

2. Study Area and Data

2.1. Study Area

[7] The Kairouan plain [Leduc et al., 2007] is situated in
central Tunisia (9°30′E–10°15′E, 35°N, 35°45′N), (Figure 1).
The climate in this region is semiarid, with an average annual
rainfall of approximately 300 mm per year, characterized by
a rainy season lasting from October to May, with the two
rainiest months being October and March. As is generally the
case in semiarid areas, the rainfall patterns in this area are
highly variable in time and space: the extreme values recorded
in the Kairouan are 108 mm in 1950/51 and 703 mm in
1969/70. The mean temperature in Kairouan City is 19.2°C
(minimum of 10.7°C in January and maximum of 28.6°C in

Figure 1. Location of the Kairouan plain (9°30′E–10°15′E, 35°N–35°45′N).
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August). The winter is cool in the northwest of the site and
temperate elsewhere. The relative humidity varies between
70% and 55% in winter and 40% and 55% in summer. The
annual Piche evaporation measured in the Kairouan is
2070 mm, whereas the mean annual potential evapotranspi-
ration (Penman) is close to 1600 mm.
[8] The landscape is mainly flat. The vegetation in this

area is dominated by agriculture (cereals, olive and fruit trees
and market garden). Crops are various and their rotation is
typical of semiarid regions.
[9] In the past, most of the surface flow feeding the

Kairouan plain came from the three main catchments (Zeroud,
Merguellil and Nebhana), which are presently cut off by
large dams. The aquifer of the Kairouan plain represents the
largest basin in central Tunisia. It is fed by the infiltration
of surface waters (Zeroud and Merguellil) during floods in
the natural regime, or at the time of dam releases since the
construction of the Sidi Saad and El Haouareb dams
[Lacombe et al., 2008]. Surface and groundwater flows are
drained into Sebkha Kelbia, a large salt lake.

2.2. Satellite Data

[10] For the purposes of the present study, we propose to
use two long temporal series of satellite data. For the moisture
estimations, it was decided to work with the European
Remote Sensing Satellite (ERS) scatterometer soil moisture
product, provided by the Vienna University of Technology
[Wagner et al., 1999b]. ERS scatterometer has the advantage
of providing soil moisture data twice per week, of being
freely available (http://www.ipf.tuwien.ac.at/radar), and of
having provided global spatial coverage since 1991. Our
study is based on 11 years of data, collected between 1992
and 2006. For the characterization of the vegetation in this
region, we made use of NDVI products derived from
AVHRR data between 1991 and 2000.
2.2.1. ERS Scatterometer Data
[11] The ERS scatterometer radar (active microwave)

operates in the C‐band (5.3 GHz) using vertical polarization.
It is carried by the European Remote Sensing Satellites
ERS‐1 (1991–1996) and ERS‐2 (1995 up to present). Data
sets are not available for the period between 2001 and the
end of 2003, owing to technical problems on the ERS‐2
satellite. Over land, the measured radar backscattering coef-
ficient depends on soil moisture, surface roughness, vegeta-
tion characteristics and the incidence angle of the transmitted
radar beam. Soil moisture data is retrieved from the back-
scattering coefficient using a change detection method
developed at the Institute of Photogrammetry and Remote
Sensing (IPF), Vienna University of Technology (TU‐Wien)
and described byWagner et al. [1999a, 1999b]. This method
has been applied with success over different climatic regions,
the Canadian Prairies [Wagner et al., 1999a], the Iberian
Peninsula [Wagner et al., 1999c], Ukraine [Wagner et al.,
1999b], and Western Africa [Wagner and Scipal, 2000].
[12] In the TU‐Wien model, long‐term scatterometer data

is used to model the incidence angle dependence of the radar
backscattering signal s°. Once the incidence angle depen-
dence has been determined, the backscattering coefficients s°
are normalized to a reference incidence angle (40°). Finally,
the relative soil moisture data, ranging between 0% and
100%, are derived by scaling the normalized backscattering
coefficients s°(40) between the lowest/highest s°(40) values

corresponding to the driest/wettest soil conditions [Wagner,
1998].
[13] The derived soil moisture product, the surface soil

moisture (ms), represents the water content in the first 5 cm
of the soil in relative units, which range between extremes
corresponding to totally dry conditions, and total saturated
water capacity. The spatial resolution corresponds to cells of
approximately 50 km, with 25 km grid spacing. The temporal
resolution of the data is approximately two measurements
per week.
[14] In order to compare ms values with surface modeled

moisture, ms products were converted to physical units of
m3 m−3 by using the 90% confidence interval of a Gaussian
distribution [Pellarin et al., 2006] equal to m ± 1.65*s,
where m and s are the mean and the standard deviation of
simulated data (depending on which soil moisture productms

is compared to) in volumetric units, respectively:

�ðtÞ ¼ msðtÞ * ð�max � �minÞ þ �min; ð1Þ

where �(t) is the soil moisture content at a time t [m3m−3],
ms(t) is the ERS scatterometer surface soil moisture [‐] at a
time t, �max is the maximum wetness value [m3 m−3] equal
to (m + 1.65 * s), and �min is the minimum wetness value
[m3 m−3] equal to (m − 1.65 * s).
[15] With the aim to investigate the soil moisture content

in the soil profile, a two‐layer water model [Wagner et al.,
1999b] was used to obtain root‐zone soil moisture from
surface soil moisture radar measurements,ms. The Soil Water
Index (SWI) data was derived from ms using equation (1)
and represents the root‐zone soil moisture content in the
first meter of the soil in relative units ranging between wilting
point and field capacity:

SWIðtÞ ¼
P
i
ms tið Þe� t�tið Þ=T

P
i
e� t�tið Þ=T for ti � t; ð2Þ

where ms(ti) is the surface soil moisture estimate at time ti. At
time t, all measurements taken within a period [t, t − 3T] are
taken into consideration if at least four measurements have
been recorded within the most recent time period [t, t − T].
The parameter T, called the characteristic temporal period,
represents the time scale of soil moisture variations. In the
present case, T is set equal to 10 days. These products have
already been used in different environment studies [Ceballos
et al., 2005; Pellarin et al., 2006; Paris Anguela et al., 2008].
[16] Figure 2 illustrates the ms surface soil moistures over

the study sites for two dates. The data recorded on the first
date (20 February 1994) is affected by a strong spatial vari-
ability, linked to the local precipitation. Soil moisture shows
a high heterogeneity with a variation between 15% and 100%
at the northwestern area. The second date (23 February 1994)
corresponds to an approximately homogenous low state of
moisture, after drying over the study site.
2.2.2. NDVI Data
[17] The normalized difference vegetation index (NDVI)

is acquired by the advanced very high resolution radiometer
(AVHRR). This index, given by the ratio between the dif-
ference between the visible and near‐infrared channels, and
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the sum of these two channels, is linked to green vegetation
photosynthetic activity [Rousse et al., 1973]. A higher NDVI
value indicates a greater level of photosynthetic activity
[Tucker et al., 2004]. In version 3, processed by the Global
Inventory Modeling and Mapping Studies (GIMMS) group,
the data is corrected for intersensor differences, intrasensor
degradation, orbital drift and atmospheric contamination
[Pinzon et al., 2005; Tucker et al., 2004; Tucker et al.,
2005]. It is also intercalibrated with the Système Proba-
toire d’Observation de la Terre ou Satellite Pour l’Obser-
vation de la Terre = Trial Observation System for Earth
Observation or Satellite for Earth Observation (SPOT4‐
VEGETATION NDVI).
[18] Kaufmann et al. [2000], Kaufman et al. [2001], Zhou

et al. [2001], and Slayback et al. [2003] highlight the reli-
ability of this data set (e.g., no linear trend or discontinuities
detected in the time series). The data provided is already
synthesized on a 10 day basis, using the Maximum Value
Composite (MVC) technique. This technique permits the
production of nominally cloud‐free images from individual,
partly cloudy input scenes by selecting, from images taken
over a limited period of time, the most cloud‐free pixel
corresponding to the same geographical location. The 10 day
MVC technique is expected to ensure clear sky 10 day NDVI
values. We used data recorded over the ten year period, from
1991 to 2000. The source for this data set was the Global
Land Cover Facility, www.landcover.org. For the purposes
of the present study, we calculated a mean NDVI data for the
entire study site, using the 8*8 km spatial resolution data and
monthly mean values computed from 10 day averages.

2.3. Global Soil Wetness Project, Phase 2 Data

[19] The soil moisture products were provided by the Global
Soil Wetness Project, Phase 2 Data (GSWP‐2) [Dirmeyer et
al., 2006]. GSWP‐2 (http://www.iges.org/gswp/) is an inter-
national initiative, which was launched by the Global Energy
and Water Cycle Experiment (GEWEX) to provide global
data sets of soil wetness, energy, and water fluxes, by driving
13 land surface models with state‐of‐the‐art 1° × 1° atmo-

spheric forcing and land surface parameters over a 10 year
period (1986–1995). The baseline meteorological forcing
provided by GSWP‐2 is based on the reanalysis made by the
National Centers for Environmental Prediction and the U.S.
Department of Energy. Corrections for systematic biases in
the three‐hourly reanalysis fields are made by comparing the
data with global observed monthly climatologies from the
Global Precipitation Climatology Center and the Global
Precipitation Climatology Project. The daily profiles of soil
moisture used in this comparison are part of the multimodel
product. Analysis of the soil wetness products of GSWP‐2
has shown that Land Surface Models (LSMs) can be used to
provide a high‐quality reproduction of soil moisture anoma-
lies. [Guo and Dirmeyer, 2006].

3. Analysis of Moisture Products

3.1. Comparison Between ERS Moistures, GSWP‐2
Outputs, and Observed Rainfall

[20] Figure 3 provides a time series comparison between
ERS soil moistures, rainfall and GSWP‐2 output. For the
comparison of ERS and GSWP‐2 data sets, three statistical
parameters were calculated: the root mean square error
(RMSE), the determination coefficient (R2), and the bias
between the two data sets.
[21] The soil moisture estimations derived in the present

study are compared with the GSWP‐2 modeled top layer
(the first ten centimeters of soil) and the soil moisture pro-
files (100 cm depth), during the period from 1992 to 1996.
[22] The ERS surface soil moistures (Figure 3a) are corre-

lated with precipitation events, confirming that radar estima-
tions are qualitatively coherent. The rainfall data is provided
by daily measurements taken at the Kairouan rain gauge
station. Although the study zone is nonhomogeneous, it can
be seen that the soil moisture peaks (for ERS and GSWP‐2)
occur during the rainy season (October to March), after
rainfall events. Only one peak, occurring in January 1995,
remains unexplained, and is probably linked to a local pre-
cipitation event not recorded by the Kairouan gauge station.

Figure 2. Illustration of ms ERS moisture values over the study site for 2 days: (a) The data recorded on
the first date (20 February 1994), which are affected by strong spatial variability, linked to local precip-
itation effects. (b) The second date (23 February 1994), which after drying, has a nearly homogenously
low state of moisture.
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[23] Local variations in the ERS surface products are not
completely represented by the GSWP‐2 outputs, because,
for instance, it represents the ten first centimeters of soil,
which is less influenced by atmospheric conditions (rain,
wind and solar radiation) than the five first centimeters of
soil (ERS radar data). The simulated soil moisture globally
overestimates the ERS data (negative bias). This is consistent
with previous studies, which have revealed that GSWP‐2
tends to overestimate soil moisture in other African regions
[Zribi et al., 2008]. The statistical parameters derived from
the comparison can be considered as reasonable (RMSE
0.038 m3m−3, bias 0.026 m3m−3 and R2 of 0.26), owing to the
high variability of moisture in the first few centimeters of
soil [Le Morvan et al., 2008].
[24] The ERS products show high moisture values, spe-

cifically linked to rainfall events. This trend is closely related
to the site’s climate, characterized by high evapotranspiration

values, with which the surface dries generally very quickly
after a rainfall event.
[25] Figure 3b provides a comparison between monthly

SWI GSWP‐2 outputs (1 m depth) and ERS data estimations.
A good degree of coherence can be observed between the two
products. A delay, of the order of several days, can be seen
between rainfall events and the increase of moisture value on
ERS products. The GSWP‐2 simulation is able to reproduce
the main ERS estimated root‐zone soil moisture. The statis-
tical parameters derived from the simulation are reasonable,
with an RMSE of 0.042, a good R2 (0.6) and a low bias of
0.015. During the wet seasons, the ERSmoisture levels could
be high. We observe two maxima close to 0.35 in 1992 and
1993, which are less significant in the GSWP outputs. This
difference could be explained by an underestimation of the
satellite‐based evaluation of evaporation in this region. In the
dry years with long periods of drought, only small variations
in moisture are observed.

Figure 3. Intercomparison of ERS products, GSWP‐2 output, and rainfall during a period of 4 years,
from January 1991 to December 1995, for (a) surface moisture and (b) root‐zone moistures (depth 1 m).
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[26] As shown in October 2004, first isolated high‐
precipitation events of autumn have limited effect on mois-
ture content. In fact, this period, at the end of dry season, is
characterized by very high evaporation and runoff levels.
[27] Figure 3 shows that the surface soil moisture is more

variable than the root‐zone soil moisture: the root‐zone soil
moisture is an averaged value, taken over soil depths ranging
from 0 to 100 cm, in which extreme values are generally
smoothed.

3.2. Statistics of Moisture Estimations

[28] We observe generally strong variations between
moisture estimations in the dry and wet seasons, as shown in
the previous sections. In the present section, we propose to
analyze the behavior of moisture distributions at the surface
and for the 1 m root zone. We propose to fit the experimental
distributions with a lognormal analytic function [Zribi et al.,
2010]:

f xð Þ ¼ 1

�
ffiffiffiffiffiffiffiffi
2�x

p exp � 1

2

ln x� �

�

� �2
 !

; ð3Þ

where s and m are two adjusted parameters and x is the var-
iable corresponding to the soil moisture dependence.
[29] Table 1 summarizes these values for all studied years.

For the surface moisture values, we observe an increase in the
value of m during the wet season. For example, for the 1995–
1996 wet season, the value of m is equal to 2.93. On the other
hand, for the dry season in 1996–1997, the value of m is equal
to 1.57. Figure 4 illustrates the distribution of moisture for
different years, showing the differences from one year to the
next. For dry seasons, the maximum of moisture distribution
is around 5% for volumetric moisture. For wet years this
maximum is higher, around 15%. Presence ofmoistures higher
than 35% is limited even in wet seasons. This is because of
limited number of precipitation events and high evapotrans-
piration level.
[30] The same analysis was also carried out for the root‐

zone moisture. The variations of this parameter are less sig-
nificant than for the surface moisture, as shown is Figure 5.
For this reason, variations between the dry and wet seasons
are less pronounced. For example, during the 1995–1996 wet
season, the value of m is equal to 3.03. On the other hand,
during the 1996–1997 dry season, the value of m is equal to
2.01. This limited difference between dry and wet seasons is

typical of arid and semiarid Mediterranean regions charac-
terized by a limited number of precipitation events even for
wet years.

4. Vegetation Cover Analysis From SWI
and NDVI Estimations

4.1. Analysis of Correlation Between Moisture
and Vegetation Dynamics

[31] Figure 6 illustrates the vegetation NDVI dynamics
over the study sites, in which SWI data are compared with
the monthly precipitation values. First, we observe a quali-
tative correlation between precipitation and the moisture
index estimations, which is particularly noticeable after rainy
months. The vegetation dynamics are known to be correlated
with the moisture index value [Boyer and Kramer, 1995;
Rodriguez‐Iturbe, 2000], and this trend can be clearly
observed during the wet seasons, in particular for the case of
the 1995–1996 season. In dry years, an exceptionally large
decrease in moisture index is observed, associated with a
stabilization or even a decrease in the NDVI, as for example
in the case of the 1996–1997 season. The vegetation cycle is
very sensitive to the moisture index profile, and consequently
to precipitation. Only wet seasons with continuous precipi-
tation (like 1995–1996) are characterized by a vegetation
cycle with a continuous and regularly increasing NDVI,
reaching a maximum at the end of March. This maximum,
with limited values between 0.25 and 0.35, illustrate the large
dispersion of vegetation in the study site. During the dry
period between November 1993 and February 1994, a
decrease in moisture level, with near stabilization of the
NDVI values, is observed over a 4 month period. In the
case of the 1996–1997 season, the drought between
November and January led to a decrease in moisture level,
and a small decrease in the NDVI in December, following
a NDVI increase at the beginning of the rainy season.

4.2. Vegetation Cover Modeling From SWI Estimations

[32] As shown in section 4.1, a significant correlation can
be observed between the vegetation index and the previously
estimated root‐zone moisture values (Soil Water Index, SWI)
values. In the present section, we propose to derive a model
for the relationship between NDVI growth and SWI estima-
tions. The SWI estimations from the period between 1991 and
1998 are used for this analysis. For each year, the root‐zone
moisture values are taken for the period between September
and May, and the following model is proposed:
[33] 1. At the beginning of October, it can be assumed that

the dry season has ended, with a mean NDVI of approxi-
mately 0.19. This estimation is based on the mean value of the
NDVI during the period 1991–1998.
[34] 2. At the beginning of November we observe, in

general, the beginning of the vegetation cycle, with an asso-
ciated increase in NDVI. We consider that the increase in
vegetation estimated at the beginning of November is linked
to the soil moisture profile during the month of October. We
thus propose a simple linear relationship:

NDVIðnovÞ ¼ anov * SWI octð Þ þ bnov; ð4Þ

where NDVI(i) is the NDVI index estimated at month i and
SWI(i‐1) is the SWI index computed at month i‐1.

Table 1. Estimation of the Values of m and s Characterizing the
Lognormal Distributions Used to Fit Surface Moisture and Root‐
Zone Moisture Real Distributions for All Studied Years

Year

SSMa SWI Precipitation
(mm)m s m s

1993–1994 2.66 0.56 ‐ ‐ 262
1994–1995 Dry 2.02 0.99 2.33 0.35 196
1995–1996 Wet 2.93 0.68 3.03 0.31 430
1996–1997 Dry 1.57 1.25 2.01 0.57 140
1997–1998 Wet 2.91 0.39 2.94 0.21 421
1998–1999 2.35 0.81 ‐ ‐ 234
1999–2000 2.54 0.55 ‐ ‐ 213
2000–2003 ‐ ‐ ‐ ‐ ‐ ‐
2004–2005 2.76 0.49 ‐ ‐ 327
2005–2006 Wet 2.93 0.49 2.92 0.22 378
2006–2007 2.92 0.48 2.94 0.23 344

aSoil Surface Moisture.
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[35] 3. At the beginning of December, we take into
account the increasing values of NDVI during the month
of November. This increase is linked to the soil moisture
profile during the month of November:

NDVIðdecÞ � NDVIðnovÞ ¼ adec*SWInov þ bdec: ð5Þ

[36] 4. The same analysis is made up until the month of
June.

[37] We can thus consider

NDVIðnovÞ
NDVIðdecÞ � NDVIðnovÞ

:::

:::

NDVIðjuneÞ � NDVIðmayÞ

2
6666664

3
7777775
¼

SWI octð Þ 1

SWI novð Þ 1

:::::

SWI mayð Þ 1

2
6664

3
7775

� anov adec:::::ajune
bnov bdec:::::bjune

� �
: ð6Þ

Figure 4. Surface moisture distributions for eight studied years, during the rainy season between October
and May, fitted with lognormal analytical distributions.

7 of 13



Figure 5. Distributions of SWI data for six studied years, during the rainy season between October and
May, fitted with lognormal analytical distributions.
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Figure 6. (a–f) Illustration of SWI and the NDVI vegetation index cycles, with precipitation, for six
rainy seasons between October and May.
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On the basis of data from the period 1991–1998, we esti-
mate the mean statistical parameters ai and bi.
[38] Figure 7 illustrates, for 1 month in the rainy season,

the derived linear relationships between the variation of
NDVI values and the estimated moisture levels during the
previous month. We observe, as illustrated for example in
Figure 7a, an increase in NDVI during the month of
December, associated with an increase in SWI level estimated
during the month of November. Using the estimated para-
meters ai, bi, we simulated NDVI values for all of the studied
years. Figure 8 illustrates eight cases of NDVI estimations
compared to real NDVI values. The six first cases correspond
to six different vegetation seasons (1991–1992, 1993–1994,

1994–1995, 1995–1996, 1996–1997, 1997–1998), the data
of which was used to retrieve the parameters ai and bi. The
seventh and eighth cases correspond to the years 1998–1999
and 1999–2000 showing a good coherence between the real
and estimated NDVI values, with an RMS error lower than
0.017. The difference between wet and dry years is illustrated
for the 1995–1996 and 1996–1997 periods. For both cases,
we were able to accurately simulate the NDVI data (RMSE =
0.01 and 0.014). In the first case, a maximum NDVI of
approximately 0.33 is reached. For the second dry season,
the maximum is also correctly retrieved, with a value of
approximately 0.24. We also correctly simulate a decrease
in NDVI at the beginning of the rainy season (in November)
for the 1996–1997 period.
[39] This result demonstrates the feasibility of using a

simple, empirical approach to estimate the NDVI, which can
be particularly useful for making rapid diagnostics in drought
periods, using just two types of satellite data, without the
need for physical SVAT models. Preliminary regional esti-
mations of the expected vegetation growth could thus be
proposed, without the need to analyze satellite images. With
such an approach, it is also possible to make preliminary
estimations of vegetation growth as a function of different
scenarios.

5. Conclusions

[40] The objective of our paper is to propose an analysis
of the relationship between soil moisture and vegetation
development, using satellite databases only, for the evalua-
tion of moisture and vegetation conditions. Validation of the
ERS moisture products was proposed, using GSWP‐2 out-
puts and rainfall data. The ERS scatterometer and GSWP‐2
model data were generally able to capture the temporally
variable dynamics of soil moisture over the study site. In
general, the statistical performance of root‐zone moisture
predictions is better than that obtained for surface soil mois-
ture. The difference between surface and root‐zone moisture
trends can be explained by the fact that surface soil moisture
is more strongly affected by atmospheric conditions than
root‐zone soil moisture. An analysis of the ERS‐derived
moisture distributions is presented, showing the variations
between wet and dry seasons.
[41] Vegetation dynamics, expressed by the NDVI derived

from the AVHRR satellite database, show a high correlation
with the soil moisture profile. A model is proposed, for the
statistical estimation of the NDVI, over 1 month periods
during the rainy season, and of the vegetation cycle, using
moisture profile measurements alone taken from previous
months. This simple empirical approach could be very useful
for making preliminary forecasts of vegetation development,
without the need for complex physical models or a large
satellite database. It is important to note that the proposed
approach is limited to large‐scale areas, with vegetation types
particularly dependent on water existing on soil profile. A
local‐scale analysis could introduce errors due to heteroge-
neity of soil texture or vegetation types.
[42] It could be used for making appropriate and timely

decisions in response to drought. Vegetation coverage could
then be estimated 1 month before using satellite moisture
products with microwave (active and passive) and thermal
infrared sensors, or more simply from ground profile mea-
surements, which are representative of the temporal variations

Figure 7. Illustration of the linear relationships between
NDVI variation in a given month and root‐zone moisture
levels in the preceding month: (a) case for the month of
December, (b) case for the month of January, and (c) case
for the month of May.
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Figure 8. (a–h) Comparison between satellite NDVI estimations and the results obtained using the pro-
posed NDVI simulations, for eight studied years.
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of moisture in a study site [Albergel et al., 2008]. This
approach could be implemented operationally, to improve
early warning systems, and would be complementary to other
forecast methodologies based on climate analysis [e.g., Funk
and Brown, 2006]. Future work will include an analysis of
this approach in more local scales, for different types of
vegetation, using in particular the Moderate Resolution
Imaging Spectroradiometer (MODIS) and the VEGETATION
instrument on SPOT 1 km scale data.
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