E. G. Njoku and L. Li, Retrieval of land surface parameters using passive 1033 microwave measurements at 6?18 GHz, IEEE Trans. Geosci. Remote, 1034.

C. S. Draper, J. P. Walker, P. J. Steinle, R. A. Jeu, and 1. T. Holmes, An evaluation of AMSR???E derived soil moisture over Australia, Remote Sensing of Environment, vol.113, issue.4, pp.703-710
DOI : 10.1016/j.rse.2008.11.011

C. Kummerow, W. S. Olson, and L. Giglio, A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors, IEEE Transactions on Geoscience and Remote Sensing, vol.34, issue.5, pp.1213-1232, 1042.
DOI : 10.1109/36.536538

M. Grecu and E. N. Anagnostou, Overland precipitation estimation from 1044 TRMM passive microwave observations, J. Appl. Meteor, vol.40, issue.8, pp.1045-1367, 1046.
DOI : 10.1175/1520-0450(2001)040<1367:opeftp>2.0.co;2

T. J. Jackson, M. H. Cosh, R. Bindlish, P. J. Starks, and D. D. Bosch, Validation of 1048 advanced microwave scanning radiometer soil moisture products, p.1049, 1047.

Y. H. Kerr, P. Waldteufel, J. Wigneron, S. Delwart, F. Cabot et al., The SMOS mission: New tool for monitoring key elements of the 1055 global water cycle, Proc. IEEE, pp.666-687, 1052.

S. Bircher, J. E. Balling, N. Skou, and Y. Kerr, SMOS validation by 1061 means of an airborne campaign in the Skjern river catchment, 1062.

E. G. Njoku and L. Li, Retrieval of land surface parameters using passive 1033 microwave measurements at 6?18 GHz, IEEE Trans. Geosci. Remote, 1034.

C. S. Draper, J. P. Walker, P. J. Steinle, R. A. Jeu, and 1. T. Holmes, An evaluation of AMSR???E derived soil moisture over Australia, Remote Sensing of Environment, vol.113, issue.4, pp.703-710
DOI : 10.1016/j.rse.2008.11.011

C. Kummerow, W. S. Olson, and L. Giglio, A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors, IEEE Transactions on Geoscience and Remote Sensing, vol.34, issue.5, pp.1213-1232, 1042.
DOI : 10.1109/36.536538

M. Grecu and E. N. Anagnostou, Overland precipitation estimation from 1044 TRMM passive microwave observations, J. Appl. Meteor, vol.40, issue.8, pp.1045-1367, 1046.
DOI : 10.1175/1520-0450(2001)040<1367:opeftp>2.0.co;2

T. J. Jackson, M. H. Cosh, R. Bindlish, P. J. Starks, and D. D. Bosch, Validation of 1048 advanced microwave scanning radiometer soil moisture products, p.1049, 1047.

Y. H. Kerr, P. Waldteufel, J. Wigneron, S. Delwart, F. Cabot et al., The SMOS mission: New tool for monitoring key elements of the 1055 global water cycle, Proc. IEEE, pp.666-687, 1052.

S. Bircher, J. E. Balling, N. Skou, and Y. Kerr, SMOS validation by 1061 means of an airborne campaign in the Skjern river catchment, 1062.

I. E-e-e-p-r-o-o-f, Soil moisture active and passive microwave products: 1066 Intercomparison and evaluation over a Sahelian site, Hydrol. Earth Syst, p.1067, 2010.

C. /. Sci, S. S. Val, J. P. Peischl, M. Walker, D. Allahmoradi et al., In situ soil moisture observations for the The 1071 SMOSMANIA network Towards vali- 1075 dation of SMOS using airborne and ground data over the Murrumbidgee 1076 catchment Temporal 1078 persistence and stability of surface soil moisture in a semi-arid water- 1079 shed Multi-scale soil moisture measurements 1083 at the Gourma meso-scale site in Mali Spaceborne soil moisture esti- 1086 mation at high resolution: A microwave-optical/IR synergistic approach, Proc. IGARSS Proc. MODSIM, pp.141-156, 1069.

I. Llossera, R. Corbella, C. Panciera, Y. H. Rüdiger, J. P. Kerr et al., Downscaling SMOS-derived soil moisture 1090 using MODIS visible/infrared data An improved algorithm 1093 for disaggregating microwave-derived soil moisture based on red, near- 1094 infrared and thermal-infrared data A sequential model 1097 for disaggregating near-surface soil moisture observations using multi- 1098 resolution thermal sensors Soil moisture measurement in heterogeneous terrain The SMOS soil moisture retrieval algorithm, Proc. 1102 MODSIM?International Congress Modelling Simulation Modelling 1103 Simulation Society Australia New Zealand, 1105 SMOS Level 2 Processor Soil Moisture Algorithm Theoretical Basis 1106 Document (ATBD) Disaggregation as a top-down approach for evaluating 1114 40 km resolution SMOS data using point-scale measurements: Applica- 1115 tion to AACES-1 Proc. SPIE, Remote Sens. Agriculture, Ecosystems, pp.4599-4622, 1088.

X. K. Hydrol, R. R. Nishida, J. M. Nemani, S. W. Glassy, ]. Running et al., Develop- 1118 ment of an evapotranspiration index from Aqua/MODIS for monitoring 1119 surface moisture status The derivation of the green vegetation frac- 1122 tion from NOAA/AVHRR data for use in numerical weather prediction 1123 models Disaggregation of MODIS surface 1126 temperature over an agricultural area using a time series of Formosat-2 1127 images, IEEE Trans. Geosci. Remote Sens. Int. J. Remote Sens. Remote Sens. Environ, vol.4124, issue.114 11, pp.782-822, 1120.

A. C. Pinheiro, J. Descloitres, J. L. Privette, J. Susskind, L. Iredell et al., Near-real time retrievals of land surface temperature within 1131 the MODIS rapid response system A simple parameterization of land surface 1134 processes for meteorological models Towards deter- 1137 ministic downscaling of SMOS soil moisture using MODIS derived soil 1138 evaporative efficiency Estimating crop water 1141 deficit using the relation between surface-air temperature and spectral 1142 vegetation index, Remote Sens. Environ. Monthly Weather Rev. Remote Sens. Environ. Remote Sens. Environ, vol.106, issue.49 3, pp.326-336, 1132.

T. N. Carlson, R. R. Gillies, and E. M. Perry, A method to make use 1145 of thermal infrared temperature and NDVI measurements to infer soil 1146 water content and fractional vegetation cover, Remote Sens. Rev, vol.52, pp.45-49, 1147.

O. Merlin, G. Chehbouni, J. P. Walker, R. Panciera, and Y. Kerr, A Simple Method to Disaggregate Passive Microwave-Based Soil Moisture, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.3, pp.786-796, 1151.
DOI : 10.1109/TGRS.2007.914807

W. P. Kustas and J. M. Norman, Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover, Agricultural and Forest Meteorology, vol.94, issue.1, pp.13-29, 1155.
DOI : 10.1016/S0168-1923(99)00005-2

M. C. Anderson, J. M. Norman, G. R. Diak, W. P. Kustas, and 1. J. Mecikalski, A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing, Remote Sensing of Environment, vol.60, issue.2, pp.195-216, 1159.
DOI : 10.1016/S0034-4257(96)00215-5

O. Merlin and G. Chehbouni, Different approaches in estimating heat flux using dual angle observations of radiative surface temperature, International Journal of Remote Sensing, vol.97, issue.1, pp.275-289, 2004.
DOI : 10.1016/S0034-4257(96)00049-1

T. J. Lee and R. A. Pielke, Estimating the Soil Surface Specific Humidity, Journal of Applied Meteorology, vol.31, issue.5, pp.480-484, 1992.
DOI : 10.1175/1520-0450(1992)031<0480:ETSSSH>2.0.CO;2

T. S. Komatsu, Toward a Robust Phenomenological Expression of Evaporation Efficiency for Unsaturated Soil Surfaces, Journal of Applied Meteorology, vol.42, issue.9, pp.1330-1334, 1167.
DOI : 10.1175/1520-0450(2003)042<1330:TARPEO>2.0.CO;2

O. Merlin, J. P. Walker, J. D. Kalma, E. J. Kim, J. Hacker et al., The NAFE???06 data set: Towards soil moisture retrieval at intermediate resolution, Advances in Water Resources, vol.31, issue.11, pp.1444-1455, 1169.
DOI : 10.1016/j.advwatres.2008.01.018

Z. Wan and J. Dozier, A generalized split-window algorithm for retriev-1174 ing land-surface temperature from space, IEEE Trans. Geosci. Remote 1175 Sens, vol.34, issue.4, pp.892-905, 1176.

O. Merlin, A. Bitar, V. Rivalland, P. Béziat, E. Ceschia et al., An Analytical Model of Evaporation Efficiency for Unsaturated Soil Surfaces with an Arbitrary Thickness, Journal of Applied Meteorology and Climatology, vol.50, issue.2, pp.457-471, 1177.
DOI : 10.1175/2010JAMC2418.1

URL : https://hal.archives-ouvertes.fr/hal-00525063

N. Agam, W. P. Kustas, M. C. Anderson, F. Li, and C. M. Neale, A vegetation index based technique for spatial sharpening of thermal imagery, Remote Sensing of Environment, vol.107, issue.4, pp.545-558, 1181.
DOI : 10.1016/j.rse.2006.10.006

E. E. Small and S. A. Kurc, Tight coupling between soil moisture and the 1184 surface radiation budget in semiarid environments: Implications for land-1185 atmosphere interactions, Water Resour. Res, vol.39, issue.10, pp.1278-1186

C. Rüdiger, J. P. Walker, and Y. H. Kerr, On the airborne spatial coverage 1188 requirement for microwave satellite validation, 1189.

M. Catchment and . Melbourne, Australia: Dept. Civil Environ, p.1193

A. J. Teuling, R. Uijlenhoet, R. Hurkmans, O. Merlin, R. Panciera et al., Dry-end surface soil moisture variability 1196 during NAFE'06, Geophys. Res. Lett, vol.34, pp.17-402, 1195.
DOI : 10.1029/2007gl031001

URL : http://edepot.wur.nl/54284

W. T. Crow and E. F. Wood, The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97, Advances in Water Resources, vol.26, issue.2, pp.137-149, 2003.
DOI : 10.1016/S0309-1708(02)00088-X

Q. K. Hassan, C. P. Bourque, F. Meng, and R. M. Cox, A Wetness Index Using Terrain-Corrected Surface Temperature and Normalized Difference Vegetation Index Derived from Standard MODIS Products: An Evaluation of Its Use in a Humid Forest-Dominated Region of Eastern Canada, Sensors, vol.7, issue.10, pp.2028-2048, 2007.
DOI : 10.3390/s7102028

O. Merlin, photograph and biography not available at the time of 1207 publication, p.1208