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Abstract�²  A simple approach for correcting the effect of 
vegetation in the estimation of the surface soil moisture (wS) from 
L-band passive microwave observations is presented in this study. 
The approach is based on semi-empirical relationships between 
soil moisture and the polarized reflectance including the effect of 
the vegetation optical depth which is parameterized here as a 
function of the Normalized Vegetation Difference Index (NDVI). 
In a first step, the method was tested against in-situ 
measurements collected over a grass site from years 2004 to 2007 
(SMOSREX experiment) Two polarizations (horizontal/vertical) 
and five incidence angles (20º, 30º, 40º, 50º and 60º) were 
considered in the analysis. The best wS estimations were obtained 
when using both polarizations at the angle of 40º. The average 
accuracy in the soil moisture retrievals was found to be about 
0.06 m3/m3, improving the estimations by about 0.02 m3/m3 in 
comparison with the case when the vegetation effect is not 
considered. In a second step, the proposed method was applied to 
the microwave observations acquired from the Soil Moisture 
Ocean Satellite (SMOS) and optical observations acquired from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) 
over Australia for 2010 in order to evaluate its applicability to 
spaceborne remote sensing observations. The results showed the 
potential interest of using information on vegetation (through a 
vegetation index such as NDVI), in the semi-empirical regressions 
which were calibrated over the Australian site. 
 

Index Terms�² Soil moisture, L-band, NDVI, surface 
temperature. 

I. INTRODUCTION 

oil moisture (SM) plays a key role in the hydrological 
cycle and land-atmosphere interactions. Several studies 

documented the importance of soil moisture in a wide range of 
scientific areas, for instance,climate simulations and weather 
forecast [1-6], crop growth simulation models [7-8], rainfall-
runoff transformation models [9], soil evaporation and plant 
transpiration [10-12], among others. 
 

Manuscript will submitted on May, 2011.  
C. Mattar , J. A. Sobrino, and J.C. Jiménez-Muñoz are with the Global 

Change Unit (GCU), Image Processing Laboratory, University of Valencia, c/ 
Catedrático Agustín Escardino Nº9 - 46980 Paterna, Valencia, Spain (email: 
cristian.mattar@uv.es).  

J.�±P. Wignerorn, N. Novello, and D. Guyon are with Ecologie 
�)�R�Q�F�W�L�R�Q�Q�H�O�O�H�� �H�W�� �3�K�\�V�L�T�X�H�� �G�H�� �O�¶�(�Q�Y�L�U�R�Q�Q�H�P�H�Q�W�� ���(�3�+�<�6�(������ �,�Q�V�W�L�W�X�W�� �1�D�W�L�R�Q�D�O��
de la �5�H�F�K�H�U�F�K�H�� �$�J�U�R�Q�R�P�L�T�X�H�� ���,�1�5�$������ ������������ �9�L�O�O�H�Q�D�Y�H�� �G�¶�2�U�Q�R�Q�� �&�H�G�H�[����
France.  

J.-C. Calvet is with the Météo-France Centre National de Recherches 
Meteorologiques, 31057 Toulouse, France. 

C. Albergel is with the European Centre for Medium-Range Weather 
Forecasts (ECMWF), Shinfield Park, Reading, RG2 9AX, United Kingdom. 

�3���� �5�L�F�K�D�X�P�H���� �$���� �0�L�D�O�R�Q�� �D�Q�G�� �<���� �.�H�U�U�� �D�U�H�� �Z�L�W�K�� �W�K�H�� �W�K�H�� �&�H�Q�W�U�H�� �G�¶�(�W�X�G�H�V��
Spatiales de la Biosphère (CESBIO), 31401 Toulouse Cedex 09, France. 

 
Despite the multidisciplinary importance of surface soil 

moisture, reliable regional and regular determination of this 
variable is very difficult through conventional point 
measurements [13]. Thus, remote sensing techniques appear as 
a potential tool to assess soil moisture at different scales. In 
this context, previous research has shown that passive 
microwave measurements are the most relevant remote sensing 
technique to monitor soil moisture over land surface at global 
scale [14-18]. In particular, microwave observations at L-band 
frequencies (1.4 GHz), are very interesting as they have a high 
sensitivity to soil moisture and a low sensitivity to the cloud 
cover and to the atmospheric effects. 

Recently, the Soil Moisture and Ocean Salinity (SMOS) 
mission has been launched. The baseline SMOS payload is an 
L-band (1.4 GHz) two dimensional (2D) interferometric 
radiometer that aims at providing global maps of soil moisture 
with an accuracy better than 4 % (in m3/m3) every 3 days and 
with a resolution better than 50 km [19]. In the near future, the 
Soil Moisture Active Passive (SMAP) mission will be the 
second spacecraft platform estimating the surface soil moisture 
at L-band [20]. These L-band passive microwave technologies 
generate an important challenge in developing efficient soil 
moisture retrieval algorithms. The main difficulty in the 
estimation of soil moisture by using L-band radiometry arises 
from the presence of the overlying vegetation: the vegetation 
layer attenuates the soil emission and adds its own emission to 
the land surface emission. Nevertheless, several authors have 
developed simple approaches to account for the vegetation 
effects [16, 21]. These approaches are generally based on the 
so-called "tau-omega" model, which is based on the optical 
depth (�W), accounting for vegetation attenuation effects, and the 
single-scattering albedo (�Z), accounting for vegetation 
scattering effects. The L-band Microwave Emission of the 
Biosphere (L-MEB) model used in the SMOS level-2 
algorithms [22-23] is also based on the "tau-omega" model. 

As an alternative to the use of retrieval algorithms based on 
forward model inversion [18], vegetation effects at L-band 
have been taken into account in several works using semi-
empirical regressions based on bi-angular [24] or bi-
polarization observations [25-27]. However, these approaches 
were based solely on microwave observations and did not 
attempt to use additional information on the vegetation 
development, as provided by optical indexes in the optical 
domain, such as the Normalized Difference Vegetation Index 
(NDVI) or the Enhanced Vegetation Index (EVI) [28]. 
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Therefore, the aim of this paper is to evaluate a simple 
regression method to estimate the surface soil moisture using 
combined microwave and optical data accounting for the 
vegetation effects. The method is based on the semi-empirical 
regressions derived from [24], but including the vegetation 
effects through the use of the Normalized Difference 
Vegetation Index (NDVI). In-situ measurements obtained 
during the long term SMOSREX experiment [29] were used to 
evaluate the proposed regression approach. An application of 
the method to spaceborne remote sensing observations is also 
presented using data acquired from SMOS and the Moderate 
Resolution Imaging Spectroradiometer (MODIS) sensors. 

This paper is structured as follows: Section 2 presents the 
material and describes the proposed method. Section 3 
presents the calibration and validation strategy. Section 4 
shows the results obtained in the calibration and validation 
study over the SMOREX site and also a simple application to 
combined SMOS/MODIS observations over eastern Australia. 
Finally, section 5 provides a brief discussion and the 
conclusion of this study. 

II.  DATA 

 
A. In situ data: The SMOSREX experimental site 
 

In-situ measurements of soil moisture, surface temperature, 
radiometric passive microwave temperature and visible/near 
infrared reflectance acquired in the framework of the Surface 
Monitoring of the Soil Reservoir Experiment (SMOSREX) 
field campaign [29] were used in this study. SMOSREX is a 
part of the Interdisciplinary Field Experiment on Radiometry 
(PIRRENE) program and is located at the National Office of 
Aerospace Study and Research (ONERA) test site near the 
town of Mauzac in France (43°23'8.74"N; 1°17'32.63"E; 188 
m. a. s. l.). SMOSREX integrates a number of studies in the 
field of passive microwaves at L-band, from the development 
of emission models at L-band to the assimilation of L-band 
data to estimate soil moisture in the root zone. The experiment 
started in 2001 but is in full operation since January 2003. The 
current study is based on the data acquired between 1st January 
2004 to 31st December 2007. These years are representative of 
large variety in terms of meteorological conditions. In 
particular, precipitations ranged from 474mm in 2005 to 
766mm in 2004 (values for 2006 and 2007 are 624 mm and 
589 mm, respectively). 

L-band radiometric observations are obtained by the LEWIS 
radiometer (L-band radiometer for Estimating Water in Soils), 
with an accuracy of 0.2 K and a field of view of 13.5º at 3 dB 
[30]. LEWIS is installed at the top of a 13.7 m vertical 
structure over a fallow were natural grasses grows. An 
automatic scanning is made at five incidence angles (20, 30, 
40, 50, and 60 degrees) over two adjacent areas: a fallow and a 
bare soil field, eight times per day. In routine mode, LEWIS 
monitors the brightness temperature of the fallow field at an 
incidence angle of 40°. Only observations made over the 

fallow area will be considered in this study. 
Soil moisture and temperature profiles are automatically 

measured with a 30-min time step by, respectively, impedance 
sensors (ML2 Theta-probes1) and thermistor probes installed 
at several soil depths. In this study, data measured at the first 
top soil layers (0-6 cm for soil moisture and 1 cm for surface 
temperature) were used. A detailed description of soil moisture 
and temperature profiles measurements can be found in [29]. 
As an illustration of these measurements, the LEWIS 
brightness temperature, soil temperature and soil moisture data 
measured during the study period (2004-2007) over the 
SMOSREX site are presented in Figure 1. 
 

 

 

 
Fig. 1. Time series between 2004 and 2007 measured over the SMOSREX 
site, (a) brightness temperature at 20 and 40º vertical and horizontal 
polarization which are represented by black, red, green and blue respectively, 
(b) volumetric soil moisture (m3/m3) between 0 �± 5 cm depth and (c) surface 
temperature (K) at 0 - 1 cm depth. 

 
Vegetation indices (NDVI) were derived from red and near-

infrared reflectance measurements carried out at the incidence 
angle of 40° using two CIMEL optical radiometers from July 
2003 to December 2007. More details about the reflectance 
measurements can be obtained in [31]. Figure 2 presents the 
NDVI values measured over the SMOSREX fallow site. Over 
the year, two clear vegetation growth periods can be generally 
seen in spring and at the end of summer. 
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Fig. 2. Daily NDVI values computed from the optical radiometers over the 
fallow of the SMOSREX site from 2004 to 2007 
 
B. Australian data set 
 

The proposed algorithm was evaluated over eastern 
Australia from optical and microwave data acquired, 
respectively, by MODIS and SMOS in 2010. Passive remote 
sensing data are provided by the SMOS Level-2 products. 
These products include the passive microwave brightness 
temperatures available at both vertical and horizontal 
polarizations at 42.5º incidence angle. The temperature values 
are arranged in a global matrix identified by a single unit of 
the Discrete Global Grid (DGG). Additionally, the level-2 
products contain information on the retrieved soil moisture and 
optical depth, surface temperature, etc, and quality flags [23]. 
Optical information from the MODIS sensor was also used. 
This information concerns the NDVI products available in the 
MOD13A land product, at a 0.05º×0.05º global spatial 
resolution available and from 16-day composite time series 
[32]. The studied time period covers September to December 
2010. 

Global soil moisture data extracted from the ERA-Interim 
(ERA-int) was also used. The ERA-int was developed by the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF) and presents several meteorological and climate 
information from 1988 to present at 1.5º x 1.5º latitude-
longitude global spatial resolution [33]. The daily averaged 
volumetric soil moisture in the top soil layer (~ 0-7cm) was 
used in this study between September to December 2010 over 
eastern Australia. 

III.  ALGORITHM DESCRIPTION  

 
A. Theoretical basis: the radiative transfer equations 

 
The development of the regression equations is based on the 
tau-omega model applied to vegetation covers [14]. The p-
polarized brightness temperature Tb(�T,p) was simply written as 
a function of the single scattering albedo �Z(�T,p), the optical 
depth �W(�T,p), the soil reflectivity �*S(�T,p), and the soil and 

vegetation effective temperatures ( E

ST and E

VT , respectively): 

 

2

( , ) (1 )(1 )(1 )

(1 ) ( , ) ( , )

E

V

E SKY

s S

Tb p s T

s T Tb p p�T

�T �Z �J �J

�T �J �T�p

� �� �� �� �* ��

�� �* �� �*
 (1) 

 
where �J=�J(�T,p) is the p-polarized transmissivity of the 
vegetation layer, which can be expressed as a function of the 
optical thickness �W(�T,p), and the incidence angle �T. 
 
 ( , )

( , ) exp
cos

p
p

� W � T
� J � T

�T

� § � ·
�  � �� ¨ � ¸

� © � ¹
 (2) 

 

and SKYTb�T
�p  is the downwards atmospheric and galactic 

brightness temperature. To simplify (1) without introducing 
significant errors in the result [16], it was assumed that the 
effective soil and vegetation temperatures were equal 

( E E

S V CT T T effective surface temperature� � � ). 

Additionally, the upwards atmospheric emission can be 
neglected for ground-based measurements at L-band. The 

downwards brightness temperature SKYTB�T
�p  is also very small 

after reflection on the ground and the attenuation through the 
vegetation [34] and will be neglected in this study. 
 
B.  Wignero�Q�¶�V���V�W�D�W�L�V�W�L�F�D�O���U�H�O�D�W�L�R�Q�V�K�L�S�V 

 
Assuming that scattering effects can be neglected, which is 
generally a good approximation at L-band [35], �Z can be set 
equal to zero (�Z =0) and the �W-�Z model can be written as: 
 
 �� �� �� �� �� ���� ��2, 1 , ,CTb p T s p p�T �T �J �T� �� �*  (3) 

 
The measured surface emissivity e(�T,p) defined as 
e(�T,p)=Tb(�T,p)/Tc can be written as 
 
 �� �� �� �� �� ��2, 1 , ,Se p p p�T �T �J �T� �� �*  (4) 

 
Denoting the measured surface reflectivity as �*(�T,p)=1- e(�T,p), 
equation (4) can be rewritten as 
 
 �� �� �� ��2, ( , ) ,Sp p p�T �T �J �T�* � �*  (5) 

 
Using equation (2) and taking the logarithm function of both 
terms, equation (5) can be rewritten as 
 
 

�� �� �� ���� �� �� ��

�� �� �� ���� ��

cos log , 2 ,

cos log ,

S p p

p

�T �T �W �T

� T � T

�˜ �* �� � 

� ˜ � *

 

(6) 

Since soil reflectivity �*S(�T,p) is often considered as close to a 
linear function of surface soil moisture (wS) and it is rather low 
for very dry soils [15], we assumed that soil reflectivity is 
proportional to surface soil moisture according to 
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 �� �� �� ��,S Sp Ap w� T � T� * � # (7) 

 
where Ap(�T) is a coefficient depending on the sensor 

configuration. The value Ap(�T) is site dependent and implicitly 
accounts for all the soil characteristics that determine soil 
emission: mainly soil texture and structure, surface roughness, 
etc. Many studies in the field of passive microwave remote 
sensing are based on soil moisture relationships derived from 
single configuration measurements of the surface emission 
[36-38]. These latter approaches are appropriate in areas with 
a low contribution from the vegetation to the surface emission 
and low roughness effects [25]. It is important to note that the 
linear approximation in (7) is a crude approximation of the 
reflectivity curve, which is more typically S-shaped and does 
not go through the origin, especially at H polarization [24]. 
 
Using (7), equation (6) can be rewritten as: 
 

�� �� �� �� �� �� �� �� �� ���� ��
�� �� �� ���� ��

cos log 2 , cos log ,

cos log ,

S

p

w p p

A p

�T �W �T �T �T

� T � T

�˜ �� � �˜ �* ��

�˜

 (8) 

 
C. The new combined approach 
 
Reordering Equation (8), soil moisture can be expressed as a 
function of the microwaves reflectivities and the optical depth. 
 
 �� �� �� ���� �� �� ��log log , ,Sw a p b p c�T �W �T� �˜ �* �� �˜ ��  (9) 

 
where a, b and c are regression coefficients. Optical depth 

can be generally assumed as independent of incidence angle 
like ( , ) ( )p p�W �T �W�# as described in [24]. Additionally, 

several studies showed that the optical depth can often be 
related to a vegetation indicator, for instance, the leaf area 
index (LAI), the Normalized Difference Vegetation Index 
(NDVI), the Enhanced Vegetation Index (EVI) [22, 39-40]. 
For instance, at global scale, [40] has demonstrated that the 
vegetation optical depth is statistically related with the 
aforementioned optical vegetation indexes in several land 
cover types.  [39] computed relationships between optical 
depth, the vegetation water content (VWC) and vegetation 
indices derived from Landsat. Over the SMOSREX site, [26] 
computed a statistical relationship between optical depth and 
LAI using 2 years of measurements. Linear relationships 
between optical depth, LAI and the vegetation water content 
(VWC) where also obtained over several crop types [27] and 
considered in the L-MEB model for the SMOS level-2 
processor level [23]. Therefore, based on these studies, we 
assumed here that the optical depth can be simply 
parameterized as a function of a vegetation index (NDVI, EVI, 
LAI, etc.). In this study we selected the NDVI, which is a very 
common optical vegetation index and which could be easily 
derived from the SMOSREX reflectance data set and the 

MODIS products. Thus, we considered here that: 
 
 

1( ) ( )p f NDVI b NDVI�W � �# �˜  (10) 

 
where b1 is a constant which accounts mainly for the effect of 
the vegetation structure. Using equations (10) and (8), soil 
moisture can be expressed as a function of the microwave 
reflectivity and the NDVI as: 
 
 �� �� �� ���� ��1 1 1log log ,Sw a p b NDVI c�T� �˜ �* �� �˜ ��  (11) 

 
where a1 and c1 are regression coefficients.  
 
  The above equation was initially developed for one 
polarization and one incidence angle. However, it is valid for 
both Horizontal and Vertical polarizations and for all 
incidence angles. So, equations obtained at different 
polarizations and incidence angles can be summed. It is likely 
that the statistical regression will be more "efficient" if several 
angles and both polarizations are accounted for in the retrieval 
approach. For instance, considering eq. 11 at two different 
angles (denoted by indexes '1' and '2') and both H and V 
polarizations, and replacing the reflectivity by the ratio 
between the brightness and surface temperature (�* =1-Tb/Tc), 
the retrieved soil moisture can be expressed as: 
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(12) 
 

Where a, b, c, d, e and f are regression coefficients for the 
equation. Several preliminary tests (not shown in this study) 
were made and it was found that retrieval results could not be 
improved significantly if more than two angles were used. 
These tests also showed that best retrieval results were 
obtained for a single angle configuration (at the incidence 
angle of  40º) and for a bi-angle configuration combining 
observations made at the incidence angles of 20 and 40 
degrees; these two configurations including bi-polarization 
observations. Only these two angles will be considered in the 
following 

IV.  DATA PROCESSING AND CALIBRATION /VALIDATION 

STRATEGY  

 
A. SMOSREX in-situ data 
 

In order to calibrate the regression coefficients used in eq. 
12, the SMOSREX data were processed in order filter and 
reorder the whole dataset. Only observations measured over 
the fallow were used here, as the focus of this study was on the 
correction of vegetation effects. Anomalous data or outliers 
were filtered out. Also, to avoid pondings effects, days which 
present rainfall greater than 0 and the day after were taken off 
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from the data set. Another filter based on the polarization ratio 
index defined as PR=(Tbv-Tbh)/(Tbv+Tbh), where Tbv and 
Tbh are the vertical and horizontal brightness temperature 
respectively, was applied to the data. This index allows the 
identification of soil frozen effects [29], and negative PR 
values indicate an inversion in magnitude of the Tbh over Tbv, 
which is an anomalous pattern. Therefore, days with negative 
or very low PR (i.e. lower than the threshold equal to 0.02) as 
used by [26] were also filtered out. 

 Based on the filtered data, a statistical calibration process 
was carried out to obtain the best statistical correlations 
between soil moisture, brightness temperature (at 40 and 20 & 
40 degrees) and NDVI. These results were compared to the 
same statistical results obtained when NDVI was set equal to 
zero. In this way, the potential improvements obtained when 
NDVI is included in the retrieval process could be evaluated. 

From the four years of available data (2004 to 2007), one 
year was used for the calibration of the semi-empirical 
regressions, and the other three years were used to evaluate its 
validation. Different combinations of years for the 
calibration/validation processes were used to better assess the 
robustness of the proposed retrieval approach. The retrieval 
results were evaluated using several statistical indexes: the 
coefficient of determination (R2), as an estimate of the 
statistical fit (p<0.05*) and the Root Mean Square Error 

(RMSE) which was expressed as 2 2bias �V��  where bias 
and �V are the average and the standard deviation of the 
difference between the estimated and the observed values 
respectively.  
 
 
B. SMOS and MODIS remotely sensed data 
 
     As an illustration of the potential application of the 
regression equations on actual spaceborne observations, the 
statistical retrieval approach was applied to the SMOS 
brightness temperatures available in the level 2 products over 
the eastern part of Australia. In this region of Australia, several 
international projects have been carried in the domain of soil 
moisture mapping over the last decade, as the International 
Soil Moisture Network (ISMN) [41] or SMOS 
�F�D�O�L�E�U�D�W�L�R�Q���Y�D�O�L�G�D�W�L�R�Q�� �I�L�H�O�G�� �F�D�P�S�D�L�J�Q�V�� �V�X�F�K�� �D�V�� �1�$�)�(�¶������ �I�L�H�O�G��
campaign [42].  
     First of all, an ensemble data matrix using SMOS DGG 
data, MODIS NDVI data and soil moisture from ERA-interim 
was created. The time matching process between all these data 
covered the time period from 16st September to 31th December 
2010 with a 2 or 3 day time step depending on the SMOS 
overpass time. The statistical calibration was computed using 
the whole time period: no validation step as done for the 
SMOSREX data set was attempted, considering the rather 
short time period available for this Australian data set. As in 
the case of the SMOSREX data set, we also calibrated the 
regression equations using the NDVI index or not using it, in 
order to analyze to potential interest of using this index to 
account for the vegetation effects in the retrieval equations. 

 

V. RESULTS  

 
A. Equation calibration from the SMOSREX data set 
 
    Table 1 shows the results obtained in the calibration of the 
regression equations (12) from the SMOSREX in-situ data. As 
expected, better results in terms of R2 were obtained for the bi-
angular configuration (�T = 20º & �T = 40º) than for the mono-
angular configuration (at �T = 40º), the latter being a specific 
case of the bi-angular configuration. For both angular 
configurations (mono- and bi-angular), better results were 
obtained in terms of R2, when the NDVI index was included in 
the regression equation. The improvement in the results 
obtained using the NDVI index was larger for the mono-
angular configuration. This can be partially explained by the 
fact the NDVI brings information on the vegetation dynamics 
in the regression equation. In the soil moisture retrieval 
process, the vegetation effect can be better corrected from bi-
angular and bi-polarization observations than from mono-
angular and bi-polarization observations [21]. From the 
obtained results, it seems that the information on the 
vegetation dynamics "brought" by the NDVI index is more 
"useful" in the mono-angular than in the bi-angular regression 
equations. 

 The calibration results are generally relatively similar 
whatever the years used for the calibration and validation 
processes. However, larger differences in terms of R2 were 
obtained for the mono-angular configuration without using 
NDVI (NDVI set equal to zero): the R2 varied from 0.861 
using year 2004 for the calibration to 0.584, using year 2007. 
More generally, slightly better results in the calibration were 
obtained for years 2004 and 2006, but no clear explanations 
could be found for this result. However, it should be noted that 
2005 was a very dry year (precipitations over the site were 
even lower than those of 2003, the year of a big drought over 
Europe). 
 
B. Validation from the SMOSREX data 
 
   The regression equations were calibrated using one year (see 
the above section) and then evaluated using the three other 
years. The RMSE between measured and retrieved soil 
moisture obtained using the calibrated regression equations are 
presented in Table 2. Conversely to the previous section, better 
results were generally obtained for the mono-angular 
configuration, which seems to be more robust when it is used 
in a "retrieval" mode. 
    As for the previous section, in most cases (except for the 
mono-angular configuration using year 2005 for calibration), 
the RMSE between observed and estimated soil moisture is 
lower when the NDVI index is used in the regression equations  
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TABLE 1.- COEFFICIENTS OF DETERMINATION R2 (P<0,05*) OBTAINED IN THE CALIBRATION OF THE REGRESSION EQUATIONS 
ACCOUNTING FOR OR NOT ACCOUNTING FOR THE NDVI INDEX FOR EACH YEAR. FOR THE MONOANGULAR CONFIGURATION (AT 40º) 
AND BI-ANGULAR (AT 20º AND 40º). 

 
 

               mono-angular configuration 40 - VH- NDVI = 0 

calibration year N a b(TbV20) c(TbV40) d(TbH20) e(TbH40) f(NDVI)  R2 

2004 516 1.559  1.811  -0.763  0.861 

2005 979 0.733  1.719  -1.157  0.654 

2006 800 1.337  1.815  -0.956  0.794 

2007 1243 1.035  1.424  -0.607  0.584 
 
mono-angular configuration 40 - VH- accounting for NDVI       

calibration year N a b(TbV20) c(TbV40) d(TbH20) e(TbH40) f(NDVI)  R2 

2004 516 1.144  1.814  -0.795 0.642 0.888 

2005 979 0.126  2.028  -1.302 1.810 0.869 

2006 800 1.345  2.176  -1.162 0.870 0.875 

2007 1243 0.474  1.292  -0.392 1.162 0.788 
 

Bi-angular configuration 20-40 - VH- NDVI = 0      

calibration year N a b(TbV20) c(TbV40) d(TbH20) e(TbH40) f(NDVI)  R2 

2004 516 -0.730 -6.456 3.356 5.850 -2.826  0.901 

2005 979 1.323 0.687 0.447 1.510 -1.893  0.798 

2006 800 0.423 -4.641 2.144 4.941 -1.888  0.883 

2007 1243 0.572 -0.829 0.925 2.348 -1.844  0.771 
 
Bi-angular configuration 20-40 - VH- accounting for NDVI       

calibration year N a b(TbV20) c(TbV40) d(TbH20) e(TbH40) f(NDVI)  R2 

2004 516 -0.538 -5.152 3.064 4.616 -2.396 0.382 0.909 

2005 979 0.529 0.046 1.412 1.107 -1.797 1.432 0.899 

2006 800 0.473 -4.076 2.624 3.771 -1.582 0.776 0.920 

2007 1243 0.319 -1.271 1.359 1.869 -1.235 0.806 0.811 

 
in comparison to the case where NDVI is set equal to zero.  
The minimum values of the RMSE (0.051 & 0.053 m3/m3) 
were obtained for the mono-angular configuration and the 
calibration years 2005 and 2007 while the maximum values of 

the RMSE (0.091 & 0.095 m3/m3) were obtained for the bi-
angular configuration (NDVI = 0) and the calibration years 
2004 and 2005. 
 

 
 
TABLE 2.- ROOT MEAN SQUARE ERROR (RMSE) VALUES BETWEEN MEASURED AND RETRIEVED SOIL MOISTURE FOR EACH VALIDATION 
YEAR FOR THE MONO AND BI ANGULAR CONFIGURATIONS (BOTH V & H POLARIZATIONS) ACCOUNTING FOR NDVI OR SETTING NDVI 
EQUAL TO ZERO. THE RMSE VALUES WERE COMPUTED OVER THE VALIDATION PERIOD EXCLUDING THE YEAR USED FOR CALIBRATION 
(THIS LATTER IS GIVEN IN THE FIRST COLUMN). N REPRESENTS THE NUMBER OF OBSERVATION PHASES USED FOR THE RETRIEVALS.  
 

  40º VH 20 and 40º VH 

  NDVI  NDVI=0 NDVI  NDVI=0 

 N Bias RMSE Bias RMSE Bias RMSE Bias RMSE 
2004 3022 0.0415 0.064 0.0445 0.075 -0.0105 0.0642 -0.032 0.0912 
2005 2559 -0.0068 0.0677 -0.0199 0.0518 -0.018 0.0831 -0.0405 0.0955 
2006 2738 -0.0015 0.0577 0.0053 0.0638 -0.0073 0.0617 -0.0064 0.0652 
2007 2295 -0.0009 0.0531 0.006 0.0571 0.0231 0.0538 0.0504 0.0782 
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    Illustrations of the retrieval results are given in Figures 3a-b 
which present the retrieved soil moisture for the year 2005 to 
2007 using 2004 as the calibration year. The soil moisture 
estimations using the mono-angular approach are given in 
Figure 3a. We could note there are some periods where the 
observed soil moisture presents a positive bias in comparison 
to the estimated soil moisture (i.e. in spring or autumn 
seasons). Improved results using the NDVI index (RMSE = 
0.064 m3/m3 versus 0.075 m3/m3) could generally be obtained 
during these periods. In comparison with the above results, a 
lower bias was obtained in the retrieved soil moisture using the 
bi-angular approach (figure 3b), especially when the NDVI 
index was used (bias = -0.015 m3/m3 and 0.041 m3/m3, 
respectively, for the bi-angular and mono-angular regression 
equations using the NDVI index). Conversely, soil moisture 
tends to be over-estimated in winter ("wet" season). Also, 
outliers (i.e. large discrepancies between retrieved and 
measured soil moisture) were obtained for wet soil conditions 
mainly when NDVI was set equal to zero. 

 

 
(a) 

 
(b) 

Fig. 3. Retrieved soil moisture estimations for the validation years 2005 to 
2007 using the mono-angular configuration (a) and the bi-angular 
configuration at 20 & 40 degrees (b) over the SMOSREX site. Measurements 
of SM are represented by red triangle, the estimated soil moisture from the 
proposed regression equations are represented by green squares (when NDVI 
is accounted for in the equation) and blue crosses (when NDVI is set equal to 
zero). 
 
C. Calibration from SMOS and MODIS data: application to 
Australia 
 
  The regression equations (12) were applied to the actual 
Level-2 SMOS brightness temperatures available over the 
eastern part of Australia. The coefficient of determination (R2) 
resulting from the calibration of these equations is given in 
Figure 4. Low R2 values (0 �± 0.1) were obtained in a high 
proportion of the pixels when NDVI was set equal zero in the 

calibration process (figure 4a). However, results were strongly 
improved using using the NDVI index in the regression 
equation (figure 4b). In particular, the R2 coefficient of the 
calibration increased significantly in that case.  
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(b) 
Fig. 4. Coefficient of determination (R2, p<0.05*) of the regression 
equations computed from the SMOS and MODIS data for the eastern part of 
Australia during to the period covering September to December (a) setting 
NDVI=0 and (b) accounting for the NDVI index in the regression equation. 
(Sept.-Dec., 2010) 
 
Figure 5 shows the values of R2 larger than 0.6 obtained in a 
the pixels over the studies region (representing �a10% of all the 
pixels)     
 

 
Fig. 5. Number of pixels for each coefficient of determination intervals 
estimated from the SMOS and MODIS observations over the eastern part of 
Autralia. 
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    Figure 6a presents the spatialized coefficient for the NDVI 
variable calibrated in the regression equation (ie the f 
coefficient in equation (12)). The map of this coefficient value 
was compared to the map of the GLC2000 global land cover 
(figure 6b). The regression coefficients of the NDVI are 
generally well related to the land cover type present in the 
eastern part of Australia. This result could be explained by the 
fact that this coefficient mainly depends on the vegetation 
structure which is largely determined by the land cover type. 

As is shown in Figure 6a, the center part of Australia can be 
distinguished in blue colours (large and positive values of the 
regression coefficient for NDVI) and this area is characterized 
by bare soil, and semi-arid areas in the GLC2000 land cover 
type. An opposite case is obtained along the cost of the study 
area, where negative values of the regression coefficient for 
NDVI where obtained, while the land cover types correspond 
to more vegetated areas (forest and grassland and/or croplands 
with higher NDVI values). 

 

 
(a) 

 
(b) 

Fig. 6. (a) Regression coefficient of the NDVI variable for DGG points and (b) GLC2000 vegetation classification for the same region (black points 
represents the DGG points, the scale bar represents the vegetation cover fraction of each class from the highest vegetation fraction (1) to bare soil (12). 

 

VI.  SUMMARY AND CONCLUSIONS  

 
    The algorithm presented in this paper attempted to improve 
the semi-empirical regression approach proposed by [24] to 
retrieve soil moisture from L-band passive microwaves 
observations. We evaluated whether the information on the 
vegetation dynamics provided by vegetation indexes measured 
in the optical domain (such as NDVI) could be useful to 
correct for the vegetation effects and improve the soil moisture 
retrievals. For both the calibration and the validation steps of 
this study, it was necessary to have an estimate of soil moisture 
which could be considered as a reference. However, obtaining 
such a "reference" soil moisture value is very difficult in most 
studies. Over SMOSREX, we used measurements from Teta-
probes. However these probes provide an estimate of the 
volumetric soil moisture over the ~0-5 cm top soil layer which 
is significantly larger than the surface soil moisture "seen" by 
the L-band radiometer over the ~ 0-3 cm top soil layer [43]. 
Also, these estimates are point measurements, located in an 
area which was not actually observed by LEWIS, while 
LEWIS provided an estimate of the soil moisture over large 
footprints that varied for each incidence angle. 
    Therefore, the soil moisture data used in the calibration and 
validation phases of this study are only indicative of the actual 
soil moisture conditions in the fallow field monitored by 
LEWIS and do not correspond to reference soil moisture 
values. This effect could explain some discrepancies between 
measured and retrieved soil moisture obtained in this study. 
For instance, in many cases, the point measurements of soil 
moisture by the in situ probes outside the LEWIS footprints 
did not represent correctly the effects of ponding due to strong 

rainfalls or hails. Despite this issue of representativeness of the 
in situ soil moisture values, the proposed regression algorithm 
showed good performances in soil moisture retrievals over the 
SMOSREX site.  
    At large spatial scale, a preliminary study was carried out to 
illustrate the potential application of the proposed regression 
algorithm to spaceborne observations. The algorithm 
calibration using SMOS and MODIS information over the 
eastern Australia has shown that improved performances of the 
regression model where obtained when the NDVI index is 
included in the regression equations. As over the SMOSREX 
site, the issue of the representativeness of the soil moisture 
derived from the ECMWF model simulations should also be 
taken into account in the evaluation of the obtained results. In 
particular, the ERA-Interim surface soil moisture also 
corresponds to a larger top soil layer than the one actually 
"seen" by SMOS. As for the NDVI coefficients, clear patterns 
could be identified in the spatial distribution of the regression 
coefficients for the NDVI variable and they could be related to 
the land cover types. However, the data time series was not 
long enough (approximately 4 months from September to 
December) to validate the algorithm.  

 In conclusion, the proposed semi-empirical approach 
combining microwave and optical observations provided 
promising results from the SMOSREX data set over the fallow 
field, even though, soil moisture retrievals have generally 
found to be very difficult over this very complex vegetation, 
due to the combined effects of the presence of litter, senescent 
vegetation, spatial heterogeneity in the vegetation type, 
structure and cover fraction [25-26, 44]. Analysis should be 
carried out to better evaluate the potential application of the 
proposed approach to long term spaceborne observations 
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(which were only briefly illustrated over the eastern Australian 
regions in this study). Also, the NDVI index was used in this 
study as an estimate of the vegetation optical depth, although 
other indices such as the LAI, the Enhanced Vegetation Index 
(EVI) or the Normalized Difference Water Index (NDWI) are 
also interesting options to evaluate instead of NDVI. The use 
of these other vegetation indices will be evaluated in a future 
work at a large spatial scale and over a longer time period 
(more than one year at least to carry out both calibration and 
validation steps) from both SMOS and MODIS observations 
as made here over eastern Australia. 
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