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A Combined OpticaMicrowave Method to
Retrieve S0 Moisture over Vegetatedkas

Cristian Mattar, JeaRierre Wigneron, José A. Sobrino, Nathalie Novello, Jean Christophe Cal
Clément Albergel, Philippe Richaume, Arnaud Mialon, Dominique Guyon, Juan C. Jiviérfiez

Abstract? A simple approach for correcting the effect of Despite the multidisciplinary importance of surface soil
vegetation in the estimation of the surface soil moisturens) from  moisture, reliable regional and regular determination of this
L-band passive microwave observations is presented in this study. \,5riaple s very difficult through conventional point

The approach is based on serg@npirical relationships between . .

soil moisture and the polarized reflectance including the effect of measure'ments [13]. Thus, re'mote' sensing tgchnlques appear as
the vegetation optical depth which is parameterized here as a @ potentialtool to assess soil moisture at different scales. In
function of the Normalized Vegetation Difference Index (NDVI). this context, previous research has shown that passive
In a first step, the method was ested against iprsitu  microwave measurements are the most relevant remote sensing
measurements collected over a grass site from years 2004 to 200%echnique to monitor soil moisture over land surface at global
(SMOSREX experiment) Two polarizations (horizontal/vertical) scale 14-18]. In partialar, microwave observations atdand

and five incidence angles (20°, 30° 40° 50° and 60°) wer . 1.4 GH int fi thev h hiah
considered in the analysis. The bests estimations were obtained requencies (1. z), are very interesting as they have a hig

when using both polarizations at the angle of 40°. The average S€Nsitivity to soil moisture gnd a low sensitivity to the cloud
accuracy in the soil moisture retrievals was found to be about cover and to the atmospheric effects.

0.06 m3/m3, improving the estimations by about 0.02 m3/m3 in  Recently, the Soil Moisture and Ocean Salinity (SB)O
comparison with the case when the vegetation effeds not mjssion has been launched. The baseline SMOS payload is an
considered. In a second step, the proposed method was applied 0 _band (1.4 GHz) two dimensional (2D) interferometric

the microwave observations acquired from the Soil Moisture . . . - )
Ocean Satellite (SMOS) and optical observations acquired from radiometer that aims at providing global maps of soil moisture

the Moderate Resolution Imaging Spectroradiometer(MODIS) ~ With an accuracy better than 4 % (irff/nv’) every 3 days and
over Australia for 2010 in order to evaluate its applicability to ~ with a resolutia better than 50 km [19]. In the near future, the
spaceborne remote sensing observations. The results showed theSoil Moisture Active Passive (SMAP) mission will be the
potential interest of using information on vegetation (through a second spacecraft platform estimating the surface soil moisture
vegetation index such as NDVI), in the semémpirical regressions o | pand [20]. These dband passive microwave technologies
which were calibrated over the Australian site. . . . e .
generate an important chalge in developing efficient soil
Index Terms? Soil moisture, L-band, NDVI, surface moisture retrieval algorithms. The main difficulty in the
temperature. estimation of soil moisture by usingdand radiometry arises
from the presence of the overlying vegetatithre vegetation
I. INTRODUCTION layer attenuates the soil emission aamdbls its own emission to
Son moisture (SM) plays a key role in the hydrologicalthe land surf_ace emission. Nevertheless, several authors h_ave
cycle and laneitmosphere interactions. Several studie@€veloped simple approaches to account for the vegetation
documented the imptance of soil moisture in a wide range oféffects [16, 21]. These approaches are generally based on the
scientific areas, for instance,climate simulations and weathefcalled "tavomega” model, which is based oretbptical
forecast [6], crop growth simulation models ], rainfal  depth (Yyaccounting for vegetation attenuation effects, and the
runoff transformation models [9], soil evaporation and plaringlescattering albedo 2, accounting for vegetation

transpiration [1612], amomy others. scattering effects. The -band Microwave Emission of the
Biosphere (EMEB) model used in the SMOS level
Manuscript will submitted on May, 2011. algorithms [2223] is also based on the "tawmega" model.
hC- Mattar ,J. A. ISObfing and J.C. ihineZMUﬁQZ ar_eWit?\}hle Gl(_)baI/ As an alternative to the use of retrieval algorithms based on
Carethaico Agustin Escarding NP6080 Patorna, valencispain(emai 1orWard model inversion [18], vegetation effects abdnd
cristian.matta@uv.es). have beertaken into accounin several works using semi

J.#. Wignerorn, N. Novello, and D. Guyon are WitEcologie empirical regressions based on-abigular [24] or bi

JRQFWLRQQHOOH HW 3K\VLTXH GH Oﬂ(QYLURoggqﬁ%fgqgﬁNOGbégrv%ﬁg%s [g—n;H é\)’ér,]tﬁé/géﬁﬁ?p%%\ches

de la 5SHFKHUFKH $JURQRPLTXH ,15$% 9L : :

France Q were~based solell)J/ on ‘microwave observations and did not
J-C. Calvet iswith the MétéeFrance Centre National de Recherchesattempt to use additional information on the vegetation

Meteorologiques, 31057 Toulee, France. development, as provided by optical indexes in the optical

C. Albergel is with theEuropean Centre for MediuRange Weather . . . .
Forecast§ECMWF), Shinfield Park, Reading, RG2 9AX, United Kingdom. domain,such as the Normalized Difference Vegetation Index

3 5LFKDXPH $ OLDORQ DQG < .HUU DUH (NDWlx orkthewknharced wiegetatiqw kelepy (EVI) [28].
Spatiales de la Biosph&f€ESBIO) 31401Toulouse Cedex 09, France.
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Therefore, the aim of this paper is to evaluate a simpfellow area will be considered in thstudy.
regression method to estimate the surface soil moisture usingsoil moisture and temperature profiles are automatically
combined microwave and optical daiccounting for the measured with a 3fin time step by, respectively, impedance
vegetation effects. The method is based on the-eemirical sensors (ML2 Thetprobesl) and thermistor probes installed
regressions derived from [24], but including the vegetatioat several soil depths. In this study, data measured at the first
effects through the use of the Normalized Differenceéop soil layers (86 cm for soil moisture and 1 cm for surface
Vegetation Index (NDVI). Irsitu measurements obtainedtemperature) were used. A detailed description of soil moisture
during the long term SMOSREX experiment [29] were uged and temperature profiles measurements can be found in [29].
evaluate the proposed regression approach. An applicationAsf an illustration of these measurements, the LEWIS
the method to spaceborne remote sensing observations is &lsghtness temperate, soil temperature and soil moisture data
presented using data acquired from SMOS and the Moderateasured during the study period (2BD7) over the
Resolution Imaging Speciradiometer (MODIS) sensors. SMOSREX site are presented in Figure 1.

This paper is structured as follows: Sectiopr2sentghe
material and describes the proposed method. Section sw -
presents the calibration and validation strategy. Section = "li‘

ture (K

shows the results obtained in the calibration aniitiation =
study over the SMOREX site and also a simple application 1[ 260 ii k
combined SMOS/MODIS observations over eastern Australi:i A
Finally, section 5 provides a brief discussion and thi **%
conclusion of thistudy. 5 ok
t
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In-situ measurements of soil moisture, surface temperatui &
radiometric passive microwave temperature and visible/ne% '
infrared reflectance acquired in the framework of the Surfac” o
Monitoring of the Soil Reservoir Experiment (SMOSREX)
field campaign 29] were used in this study. SMOSREX is a
part of the Interdisciplinary Field Experiment on Radiometry
(PIRRENE) program and is located at the National Office a_ *"°
Aerospace Study and Research (ONERA) test site near t:
town of Mauzac in France (43°23'8.74"W°17'32.63"E; 188
m. a. s. I.). SMOSREX integrates a number of studies in tt
field of passive microwaves athand, from the development
of emission models at-bhand to the assimilation of-hand 270
data to estimate soil moisture in the root zone. Therarpat
started in 2001 but is in full operation since January 2003. T%. 1. Time series between 2004 and 2007 measured over the SMO¢
current study is based on the data acquired betw&aanliary site, (a) brightness temperature at 20d a40° vertical and horizonte
2004 to 31 December 2007These years are representative ofolarization which are represented by black, red, green and blue respec
large variety in terms of meteorological conditions. |n(P) volumetric soil moisture (Am®) between 0+5 cm depth and (c) surfac
paticular, precipitations ranged from 474mm in 2005 goemperature (K) at o1 cm depth.
766mm in 2004 alues for 2006 and 2007 are 624 mm and
589 mm, respectively).

L-band radiometric observations are obtained by the LEW
radiometer (Eband radiometer for Estimating Water in Soils)
with an accuracy of 0.2 K and a field of view of 13.5°at 3 d
[30]. LEWIS is installed at the top of a 13.7 m vertica
structure over a fallow were natural grasses grows. : .

: S T 3 e year, two clear vegetation growth periods can be generally
automatic scanning is made at five incidence angles (20, 30, ~ . .
. Seen in spring and at the end of summer.
40, 50, and 60 degreesyer two adjacent areas: a fallow and a
bare soil field, eight times per day. In routine mode, LEWIS
monitors the brightness temperature of the fallow field at an
incidence angle of 40°. Only observations made over the
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Vegetation indices (NDVI) were dged from red and near
|igfrared reflectance measurements carried out at the incidence
angle of 40° using two CIMEL optical radiometers from July
5003 to December 2007. More details about the reflectance
easurements can be obtained in [31]. Figure 2 ptegthe

DVI values measured over the SMOSREX fallow site. Over
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Fig. 2. Daily NDVI values computed from the optical radiometers over ~and Thy P is the downwards atmospheric and galactic
fallow of the SMOSREX site from 2004 to 2007 brightness teperature. To simplify (1) without introducing
_ significant errors in the result [16], it was assumed that the

B. Australian data set effective soil and vegetation temperatures were equal

E E .
The proposed algorithm was evaluated over easteqs__ T, Tc effective surface t?mper_a“_”'
Australia from optical and microwave data acquired‘ﬁdd't'ona"y! the upwards atmospheric emission can be
respectively, by MODIS and SMOS in 2010. Passive remof¢glecéd for grounebased measurements atband. The

sensing data are provided by the Gl Level2 products. downwards brightness temperatf&:""* is also very small

These products _include the passive_ microwave b_rightneéﬁer reflection on the ground and the attenuation through the
temperature available at both vertical and horizontalyegetation [34] and will be neglected in this study.
polarizations at 42.5° incidence angle. The temperature values

are arranged in a global matrix identified by a single ufit ®&. WigneroQ fV VWDWLVWLFDO UHODWLRQVKL
the Discrete Global Grid (DGG). Additionally, the lexzl

products contain information on the retrieved soil moisture antksuming that scattering effects can be neglected, which is
optical depth, surface temperature, etc, and quality flags [23Jenerally a good approximation atbiand [35], Zcan be set

Optical information from the MODIS sensor was also use@qual to zero £=0) and theWZmodel can be written as:
This information concerns the NDVI products available in the

MOD13A land product, at a 0.05°x0.05° global spatial

resolution available and from 4y composite time series

[32]. The studied time period covers September to December

2010. The measumd surface emissivity e( 7Jp) defined as
Global soil moisture data #acted from the ERAnterim  €( 7p)=Th( 7p)/Tccan be written as

(ERA-int) was also used. The ERAt was developed by the

European Centre for MediuRange Weather Forecasts e p 1 * Tp J ,P (4)

(ECMWF) and presents several meteorological and climate

information from 1988 to present at 1.5° x 1.5° latitud

longitude global spatial resolution [33]. The daily averag:g

volumetric soil moisture in the top soil layer (=76m) was

used in this study between September to December 2010 over 2
eastern Australia. *Tp *(7Tp) VP (5)

Tb Zp T 1 *s 7Tp V ,® 3)

enoting the measured surface reflectivity agp)=1- e( 1p),
quation (4) can be rewritten as

I1l. ALGORITHM DESCRIPTION Using equatin (2) and taking the logarithm function of both
terms, equation (5) can be rewritten as

A. Theoretical basis: the radiae transfer equations

The development of the regression equations is based on 8 7 109 % 7p 2 w.pr
tavromega model applied to vegetation covers [14]. Phe
polarized brightness temperatdre( 7p) was simply written as
a function of the single scattering albed® 7p), the optical
depth WD), the soil reflectivity % 7p), and the soil and Since soil reflectivity %( 7p) is often considered as close to a

vegetation effective temperatsieT £ and T.F , respectively): linear function ofsurfacesoil moisture(ws) and it is rather low
9 P s v+ €SP Y\ for very dry soils [15], we assumed that soil reflectivity is

proportional tosurfacesoil moisture according to

cos log™ 7 .p (6)
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MODIS products. Thus, we considered here that:

s P* ApT wg (7)
Wp) f(NDVI) #h NDVI (10)

where Ap( T is a coefficient depending on the sensor _ . _
configuration. The valudp( Tis site dependent arnahplicitly ~ Whereb; is a constant which accounts mainly for the effect of

accounts for all the soil characteristics that determine sdile vVegetation structure. Using equatiofi0) and (8), soil

emission: mainly soil texture and structure, surface roughne8ioisture can be expressed as a function of the microwave

etc. Many studies in the field of passive microwave remo{gﬂectlwty and the NDVI as:

sensing are based on soil moisture relatiorsstigrived fran

single configuration measurements of the surface emission 109 W & Tog * 7,p R NDVI ¢ (13
[36-38]. These latter approaches are appropriate in areas with

a low contribution from the vegetation to the surface emissiagherea, andc, are regression coefficients.

and low roughness effects [25]. It is important to note that the

linear approximation in ) is a crude approximation of the The above equation was initially developed for one
reflectivity curve, which is more typicall$g-shaped and does polarization and one incidence angle. However, it is valid for

not go through the origin, especiallythpolarization [24]. both Horizontal and Vertical polarizations and for all
incidence angles. So, equations obtained at different
Using (7), equation (6) can be rewritten as: polarizations and incidence angles can be summed. It is likely

that the statistical regressiarill be more "efficient” if several
angles and both polarizations are accounted for in the retrieval
@8) approach.For instance, considering eq. 11 at two different
cos  “log A, T ,p angles(denoted by indexes '"1' and '2hd bothH and V
polarizations, and replacing the refliwity by the ratio
between the brightness and surface temperattirel{Tbh/TQ,
the retrieved soil moisture can be expressed as:

cos 7 “log wg 2W ., cos Tlog * pT

C. The new combined approach

Reordering Equation (8), soil moisture can be expressed as a
. . Lo . § § Tb,, -- 8 Th,,
function of the microwaves reflectivities and the optical depthjogw. ) a b-og-1 —2 ¢ fog £ e
s © © Tc *1q © © Tc >
* ~ § Thb -8 T .
log w, a’og 7. p b™w ,p ¢ (9 d Jog § LI $ Thow t-NDVI
© © Tc Ty © © Tc g

(12)

wherea, b andc are regression coefficients. Optical depth _ o
can be generally assumed as independent of incidence angié/herea, b, ¢, d, eandf are regression coefficients for the

like W ,P) # (pYas described in [24]. Additionally, equation. Several prelimamy tests (not shown in this study)
several studies showed that the optical depth can often ere made and it was found that retrieval results could not be

improved significantly if more than two angles were used.

_re(ljated If\la ;/he ge’ilatlon I'.nd'dca[t;_;; for mst\e;nce,t tthe Iela; a9Rese tests also showed that best retrieval results were
index (LAI), the Normalize terence vegetation IndeX ,iained for a single angle configuratidat the incidence

'(:ND\./I)’t the En?arllc;,-dl Vegletgtlohn In(cjiex (E\{l) t[zdz,t-lfgt].th angle of 40°) and for a {aingle configuration combining
or instance, at global scal0] has demonstrated tha €observations made at the incidence angles of 20 and 40

vegetation optical depth is statistically related with th(aegreeS' these two configurations includingpblarization

aforementioned optical vegetat 'T‘dex?s in_several Iapd bservationsOnly these two angles will be considered in the
cover types. [39] computed relationships between optica ollowing

depth, the vegetation water content (VWC) and vegetation
indices derived from Landsat. Over the SMOSREX site, [26]
computed a statistical relationship between opticattdepd

LAl using 2 years of measurements. Linear relationships
between optical depth, LAl and the vegetation water content .
(VWC) where also obtained over several crop types [27] aﬁod SMOSREX situ data
considered in the AMEB model for the SMOS level
processor level [23]. Aerefore, based on these studies
assumed here that the optical depth can be sim
parameterized as a function of a vegetation index (NDVI, E

I\V. DATA PROCESSING AND @LIBRATION /VALIDATION
STRATEGY

In order to calibrate the regression coefficients used in eq.
Jr2, the SMOSREX data were processed in order filter and
R¥order the whole dataset. Only observationssuea over
he fallow were used here, as the focus of this study was on the

LAl etc.). In this study we selected the NDVI, which is a Ve¥ orrection of vegetationeffects. Anomalous data or outliers

common optical vegetation index and whiabuldl be easily . . . ;
derived from the SMOSREX reflectance data set and tr\]/\éere filtered out. Also, to avoid pondings effects, days which
present rainfall greater than 0 and the day after vedent off
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from the data set. Another filter based on the polarization ratio

index defined asPR=(Tbv-Tbh)/(Tbv+Tbh), where Tbv and

Tbh are the vertical and horizontal brightness temperature V. RESULTS

respectively, was applied to the data. This index allows the

identffication of soil frozen effects [29], and negative PRA. Equation calibration from the SMOSREX data set

values indicate an inversion in magnitude of Tha over Thy,

which is an anomalous pattern. Therefore, days with negativeTable 1 shows the results obtained in the calibration of the

or very low PR (i.e. lower than the threshold equal to 0.02) asgression equations (12) from the SMOSRE>sitn data. As

used by [26] wre also filtered out expected, better results in terms Gfviere obtained for the bi

Based on the filtered data, a statistical calibration procegsgular configurédn ( 7= 20° & 7= 40°) than for the monro

was carried out to obtain the best statistical correlatiomsgular configuration (at7= 40°), the latter being a specific

between soil moisture, brightness temperature (at 40 add 20case of the bangular configuration. For both angular

40 degreeys and NDVI. These results were comphre the configurations (mono and btangular), better results were

same statistical results obtained when NDVI was set equal@Btained in terms of Rwhen the NIVI index was included in

zero. In this way, the potential improvements obtained whdfi€ regression equation. The improvement in the results

NDV! is included in the retrieval processudd be evaluated.  OPtainedusng the NDVI index was larger for the mono
From the four years of available data (2004 to 2007), Oﬁ@gular conﬂgurz_;\tlon.. This can be partially explamed by jthe

year vas used for the calibration of the sesmipirical fact the NDVI brings information on the vegetation dynamics

regressions, and the other three years were used to evaluati it regression equation. In the soil moisture retrieval
validation. Different combinations of years for theProcess, the vegetation effect can be better corrected from bi
calibration/validation processes were used to better assessalﬂgu:ar and bF’,OlT‘”,Zat'F’” observations than from mheno
robustness of the propabeetrieval approach. The retrieval@ngular and bpolarization observations [21]From the

results were evaluated using several statistical indexes: ffgained results, itseems thatthe information on the
coefficient of determination R?), as an estimate of the Vegetation dynamics "brought” by the NDVI index is more
yuseful” in the moneangular than in the fangular regression

statistical fit (p<0.05*) and the Root Mean Square Erro X
equations.
(RMSE) which was expressed aqégias2 V¥ wherebias The calibration results are generally relatively similar
and Vare the average and the standard deviation of tméatever the years used for thelilmation and validation
difference between the estimated and the observed valgEecesses. However, larger differences in terms ofvie
respectively. obtained for the monangular configuration without using
NDVI (NDVI set equal to zero): the Rvaried from 0.861
using year 2004 for the calibration to 0.584, using y&&72
B. SMOS and MODIS remotely sensed data More generally, slightly better results in the calibration were
] ] . o obtained for years 2004 and 2006, but no clear explanations
As an illustration of the potential application of thecqyig pe found for this result. Howevershould be noted that
regression equations on actual spaceborne observations, 4§85 \vas avery dry year (precipitations over the site were

statistical retrieval approach was applied to the SMoélen lower than those of 2003, the year of a big drought over
brightness temperatures available in the level 2 products o rrope)

the eastern part of Australia. In this region of Australia, severa
mtgrnaﬂoral pro_Jects have been carried in the domain of §0|_g)_ Validation from the SMOSREX data
moisture mapping over the last decade, as the International

Soil Moisture  Network (ISMN) [41] or SMOS .

FDOLEUDWLRQ YDOLGDWLRQ ILHOG EDWESHES Q/eq}'%ﬁﬁ 5'G C%'ggﬁj Usmrghk?e?egear (see

. the ‘above section) an en eva sing the three other
campaign [42].

! . . years. The RMSE between easured and retrieved soil
dat';"?\; gggl’N%nvfgabfngitgl r;iﬁgi(ufes;?gmsgmojs ri[r)nGG moisture obtained using the calibrated regression equatiens

. . resented in Table 2. Conversely to the previous section, better
was created. The time matching process between all these data :
. ; results were generally obtained for the mamgular
covered the time period from I&eptember to 31December ) . ) L
. : : configuration, which seent® bemore robust wan it is used
2010 with a 2 or 3 day time step dependowgthe SMOS in a "retrieval” mode

overpass time. The statistical calibration was computed using . . .
. S o As for the previous section, in most cases (except for the
the whole time period: no validation step as done for the

T monacangular configuration using year 2005 for calibration),
SMOSREX data set was attempted, considering the raﬂ}ﬁre RMSE between observed and estimated soil moisture is

short time period available for this Australian data set. As wer when the NDVI index is used ind rearession equations
the @se of the SMOSREX data set, we also calibrated the g q

regression equations using the NDVI index or not using it, in
order to analyze to potential interest of using this index to
account for the vegetation effects in the retrieval equations.
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TABLE 1.- COEFFICIENTS OF DETERMINATION R (P<0,05%) OBTAINED IN THE CALIBRATION OF THE REGRESSION EQUATIONS
ACCOUNTING FOR OR NOT ACCOUNTING FOR THE NDVI INDEX FOR EACH YEAR. FOR THE MONOANGULAR CONFIGURATION (AT 40°)
AND BI-ANGULAR (AT 20° AND 40°).

mono-angular configuration 40- VH- NDVI =0

calibration year N a b(TbV20) c(TbV40) d(TbH20) e(TbhH40) f(NDVI) R?
2004 516  1.559 1.811 -0.763 0.861
2005 979 0.733 1.719 -1.157 0.654
2006 800 1.337 1.815 -0.956 0.794
2007 1243 1.035 1.424 -0.607 0.584
mono-angular configuration 40 - VH - accounting for NDVI
calibration year N a b(TbV20) c(TbV40) d(TbH20) e(TbH40) f(NDVI) R?
2004 516 1.144 1.814 -0.795 0.642 0.888
2005 979 0.126 2.028 -1.302 1.810 0.869
2006 800 1.345 2.176 -1.162 0.870 0.875
2007 1243 0.474 1.292 -0.392 1.162 0.788
Bi-angular configuration 20-40- VH- NDVI =0
calibration year N a b(TbV20) c¢(TbV40) d(TbH20) ¢e(ThH40) f(NDVI) R2
2004 516 -0.730 -6.456 3.356 5.8 -2.826 0.901
2005 979  1.323 0.687 0.447 1.510 -1.893 0.798
2006 800 0.423 -4.641 2.144 4.941 -1.888 0.883
2007 1243 0.572 -0.829 0.925 2.348 -1.844 0.771
Bi-angular configuration 20-40 - VH - accounting for NDVI
calibration year N a b(TbV20) c(TbV40) d(TbH20) e(ThH40) f(NDVI) R2
2004 516 -0.538 -5.152 3.064 4.616 -2.396 0.382  0.909
2005 979  0.529 0.046 1.412 1.107 -1.797 1432 0.899
2006 800 0.473 -4.076 2.624 3.771 -1.582 0.776  0.920
2007 1243 0.319 -1.271 1.359 1.869 -1.235 0.806 0.811

in comparison to the case where NDVI is set equal to zefthe RMSE (0.091 & 0.0® nt/m®) were obtained for the bi
The minimum values of the RMSE (0.051 & 0.053/mi) angular configuration (NDVI = 0) and the calibration years
were obtained for the morangular configuration and the 2004 and 2005.

calibration years 2005 and 20While the maximum values of

TABLE 2.- ROOT MEAN SQUARE ERROR (RMSE) VALUES BETWEEN MEASURED AND RETRIEVED SOIL MOISTURE FOR EACH VALIDATION
YEAR FOR THE MONO AND Bl ANGULAR CONFIGURATIONS (BOTH V & H POLARIZATIONS) ACCOUNTING FOR NDVI OR SETTING NDVI
EQUAL TO ZERQ THE RMSE VALUES WERE COMPUTED OVER THE VALIDATION PERIOD EXCLUDING THE YEAR USED FOR CALIBRATION
(THIS LATTER IS GIVEN IN THE FIRST COLUMN). N REPRESENTS THE NUMHR OF OBSERVATION PHASES USED FOR THE RETRIEVALS.

40° VH 20 and 40° VH
NDVI NDVI=0 NDVI NDVI=0
N Bias RMSE Bias RMSE Bias RMSE Bias RMSE
2004 3022 0.0415 0.064 0.0445 0.075 -0.0105 0.0642 -0.032 0.0912
2005 2559 -0.0068 0.0677 -0.0199 0.0518 -0.018 0.0831 -0.0405 0.0955
2006 2738 -0.0015 0.0577 0.0053 0.0638 -0.0073 0.0617 -0.0064 0.0652
2007 2295 -0.0009 0.0531 0.006 0.0571 0.0231 0.0538 0.0504 0.0782
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lllustratiors of the retrieval results are given in Figurest3a calibration proceséfigure 4a). However, results were strongly
which present th retrieved soil moisture for the year 2005 tdmproved using using the NDVI index in the regression
2007 using 2004 as the calibration year. The soil moistuggitation (figure 4b).In particular, he R coefficient of the
estimations using the moramgular approach are given in calibration increased significantly in that case.
Figure 3a. We could note there are some periods where the ‘ ‘ ‘
observed soil moisture presents @sifive bias in comparison
to the estimated soil moisture (i.én spring or autumn s
seasons). Improved results using the NDVI index (RMSE =
0.064 mi/m® versus 0.075 Am’) could generally be obtained 1
during these periods. In comparison with the above tesal
lower bias was obtained in the retrieved soil moisture using the [&
bi-angular approach (figure 3b), especially when the NDVI,,
index was used (bias =0.015 n¥m® and 0.041 rfim’,

respectively, for the bangular and monrangular regression - H : 02 10 03
equations usig the NDVI index). Conversely, soil moisture . ® 04005
tends to be oveestimated in winter ("wet" season). Also, " e Eg E §Z
outliers (i.e. large discrepancies between retrieved and o & g0 B e e 1 i 08 10 1

measured soil moisture) were obtained for wet soil conditions (a)
mainly when NDVIwas set equalat zero.

1.0 T T
0.8E-
obs
osg Renthon-o)
07E-

<14 3 Ay
o ﬁ a‘ﬁi qk\ l\% 'ii l‘l‘iw ‘.h 552085

00E L ) ) @ 031004
400 500 800 700 P o0 T o0 a0 300 s @ 041005
Dof (2005 — 2007) ® 051006
06 to0 0.7
(a) 0.7 t0 0.8
08 to 1
1.0 T T T
08g éSMahs ) E (b)
SMINDYI . . . . . .
asE Rsuiioio) E Fig. 4. Coefficient of determination R p<0.05*) of the regressiot

0.7E

- equations computed from the SMOS and MODIS data for theregsart of
e Australia during to the period covering September to December (a) st
NDVI=0 and (b) accounting for the NDVI index in the regression equat

%ZE L %; & ‘ % Hiﬁi Mﬁ HE (Sept-Dec., 2010)
oE H I% g . Figure 5 shows the values of Rrger than 0.6 obtained in a

B R e N RN SR E TR T R R T the pixels ower the studies regiomgpresentingal 0% ofall the

DoE (2005 — 2007} .

(b) pixels)
Fig. 3 Retrieved soil moisture estimations for the validation years 200
2007 using the monangular configuration (a) and the -&mgular
configuration at 20 & 40 degrees (b) over the SMOSREX site. Measurer
of SM are represéed by red triangle, the estimated soil moisture from
proposed regression equations are represented by green squares (whel
is accounted for in the equation) and blue crosses (when NDVI is set eq
zero).

C. Calibration from SMOS and MODIS t@a application to
Australia

The regression equations (12) were applied to the actual

Level2 SMOS brightness temperatures available over the

eastern part of Australia. The coefficient of determinatio® (R

resulting from the calibration of these equas is given in  Fig. 5. Number of pixels for each coefficient of determination inten
Figure 4. Low R values (0 +£0.1) were obtained in a high estimated from the SMOS and MODIS observations over the eastern f
proportion of the pixelsvshenNDVI wasset equal zerin the — Autralia.
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Figure 6a presents the sgditied coefficient for the NDVI As is shown in Figure 6a, the center part of Australia can be
variable calibrated in the regression equatioe the f distinguished in blue colours (large and positive values of the
coefficient in equation1(2)). The map of this coefficient value regression coefficient for NDVI) and this area is characterized
was compared to the map of the GLC2000 global land covéday bare soil, and serairid areas in the GLC2000 land cover
(figure 6b). The regression coefficients dfet NDVI are type. An opposite case is obtained along the cost of the study
generally well related to the land cover type present in tlaea, where negative values of the regression coefficient for
eastern part of Australia. This result could be explained by tiNDVI where obtained, while the land cover types correspond
fact that this coefficient mainly depends on the vegetatidn more vegetated areas (forest and grassland and/or croplands
structure which is largely determined by the land covpety with higherNDVI values).

@) (b)
Fig. 6. (a) Regression coefficient of the NDVI variable for DGG points and (b) GLC2000 vegetation classification for theggamgblack points
represents the DGG points, the scale bar represents the vegetation cower dfaegich class from the highest vegetation fraction (1) to bare soil (12)

rainfalls or hails. Despite this issue of representativeness of the

VI. SUMMARY AND CONCLUSIONS in situ soil moisture values, the proposed regression algorithm
showed good performances in soil moisture retrievals over the
The algorithm presented in this paper attempted to improva1OSREX site.

the semiempirical regression approach proposed by [24] to At large spatial sc_:ale, a preli_minary study was carried out_ to
retrieve soil moisture rbm L-band passive microwaves |IIustr_ate the potential application of th_e proposed regression
observations. We evaluated whether the information on tRg0rithm to ~ spacebormne observations. The algorithm
vegetation dynamics provided by vegetation indexes measufedieration using SMOS and MODIS information over the

in the optical domain (such as NDVI) could be useful tgasern Australla has shown thqt improved performanc_es of the
correct for the vegetation effects and improve tiersoisture  '€9ression model where obtained when the NDVI index is
retrievals. For both the calibration and the validation steps fcluded in theregressiorequations. As over the SMOSREX

this study, it was necessary to have an estimate of soil moist§fig: the issue of the representativeness of the soil moisture

which could be considered as a reference. However, obtainl‘ﬁ%(rived from the ECMWHnodel simulations should also be

such a "reference” soil moisture value is veryicift in most ta en into account in the _evaluation of the_ obtai_ned results. In
studies. Over SMOSREX, we used measurements from TeR@rticular, the ERAnterim surface soil moisture also
probes. However these probes provide an estimate of (ff¥responds to a larger top soil layer than the one actually
volumetric soil moisture over the -Bcm top soil layer which  S€€N" by SMOS. As for the NDV! coefficiés, clear patterns

is significantly larger than the surface soil moisture "seen” b‘éPUId_ t_)e identified in the spfitial distribution of the regression
the L-band radiometer over the ~3cm top soil layer [43]. oefficients for the NDVI variable and they could be related to

Also, these estimates are point measurements, located int 1and cover types. However, the data time series was not
area whichwas not actually observed by LEWIS, while ONg enough (approximately 4 months from Sepier to

LEWIS provided an estimate of the soil moisture over larg@ecember) to validate the algorithm.
footprints that varied foeach incidence angle. Inconclusion, the proposed seempirical approach
Therefore, the soil moisture data used in the calibration aG§MPining microwave and optical observations provided
validation phases of this study are only indicative of the actugfomising results from the SMOSREX data set over the fallow
soil moisture conditions in the fallow field monitored byfield, even though, soil moisture retriesahave generally
LEWIS and do not correspond to referencel sobisture found to be very difficult over this very complex vegetation,
values. This effect could explain some discrepancies betwed@ue to the combined effects of the presence of litter, senescent
measured and retrieved soil moisture obtained in this studsegetation, spatial heterogeneity in the vegetation type,
For instance, in many cases, the point measurements of stilicture and cover fraction [2Z5, 44]. Analysis shdd be
moisture by the in situ probes outside the LEWIS footprintsarried out to better evaluate the potential application of the
did not represent correctly the effects of ponding due to stropgoposed approach to long term spaceborne observations
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(which were only briefly illustrated over the eastern Australiai2] 7 &DUOVRQ 3$Q RYHUYLHZ Rl WKH 37ULDQJO|

- L ; C VXUIDFH HYDSRWUDQVSLUDWLRQ DQG VRLO PF
regions in this study). Also, the NDVI index was used in this Sensors?, 16124629, 2007.

study as an estimate of the vegetation optical depth, althouglg] K. Mallick, B.K. BhattacharyaDQG 1. 3DWHO 3(VWLPDWLGQ.
other indices such as the LAI, the Enhanced Vegetation Index surface moisture content for cropped soils using a soil wetness index

(EVI) or the Normalized Difference Water Index (NDWI) are (g)Dl\L/’,;ElSiS 2c\>/o>§§ UIDFH WHPSHUDWXUH DQG 1'9, * $
also interesting options to evaluate instead of NDVI. The U$f1] ) 80DE\ 5 ORRUH DQG $ )XQJnst@B@iWERZDYH L

of these othewegetation indices will be evaluated in a future DQG SDVVLYH ~ 1RUZRRG 0$ $UWHFK +RXVH

work at a large spatial scale and over a longer time perifg! 7 6FKPXJJH DQG 7 - -DFNVRQ 20DSSLQJ
N PLFURZDYH U D\GteBrP Ativad.LPHySvol. 54, 213 +233.

(more than one year at least to carry out both calibration and g9,

validation steps) from both SMOS and MODIS observationge] T.J. Jackson, D.M. Le Vine, C.T. Swift, T. Schmugged aF.R.

as made here over easterrsialia. 6FKLHEH 3/DUJH DUHD PDSSLQJ RI VRLO PRLVW
PLFURZDYH UDGLRPHWRemUSdnQ Emvixol3, a7337,
1995.
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