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L-Band Radiative Properties of Vine Vegetation at the SMOS 1 

Cal/Val Site MELBEX III 2 

Mike Schwank1, Jean-Pierre Wigneron2, Ernesto Lopez-Baeza3, Ingo Völksch4, 3 

Christian Mätzler5, Yann Kerr2 4 

Abstract 5 

Radiative properties at 1.4 GHz of vine vegetation were investigated by measuring brightness 6 

temperatures with the L-band radiometer ELBARA II operated on a tower at the MELBEX III field 7 

site in Spain. A reflecting foil was placed under the vines in their winter and summer states to 8 

measure brightness temperatures at horizontal and vertical polarization, which provide 9 

prevailingly information on vegetation transmissivities. The latter were retrieved from dual-10 

polarized brightness temperatures measured at observation angles between 30° and 60° using a 11 

multiple scattering radiative transfer model. The analysis revealed practical parameter values 12 

that could be used to account for the impact of vine vegetation. The values are representative for 13 

the Mediterranean SMOS anchor station, and therefore valuable for the corresponding calibration 14 

and validation activities. Likewise, quantifying the uncertainties of the brightness temperatures 15 

measured was also important, especially as several equivalent ELBARA II instruments are 16 

currently operative in ongoing SMOS-related field campaigns. 17 

1. Introduction 18 

The terrestrial surface layer is an important boundary that controls energy and mass fluxes 19 

between the earth´s surface and the atmosphere. Techniques for monitoring the surface 20 

moisture are therefore of particular interest. Microwave radiometry at L band (1 – 2 GHz) is a 21 

passive remote sensing technique applicable for soil moisture retrieval at large scales [1-4]. On 22 
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2nd November 2009 the Soil Moisture and Ocean Salinity (SMOS) satellite [5, 6] was launched as 23 

the European Space Agency’s (ESA) second Earth Explorer Opportunity mission. The satellite 24 

carries the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) [7] on board to 25 

provide L-band brightness temperatures TB
p, at horizontal (p = H) and vertical (p = V) 26 

polarization at multiple observation angles , with a spatial resolution of approximately 40  27 

40 km2 and near-global coverage. One of the primary goals of the SMOS mission is to produce 28 

global soil moisture maps with an accuracy better than 4 vol-% and a revisit time of less than 29 

three days [8]. The reliability of these land surface retrievals depends largely on the performance 30 

of the microwave emission models used to retrieve soil surface moisture from the multi-angular 31 

TB
p, measurements. Performing ground-based radiometer campaigns throughout the operative 32 

phase of the SMOS mission is therefore essential to validate and further improve the inversion 33 

algorithms based on radiative transfer modeling. 34 

The Valencia Anchor Station (VAS) in Spain was selected as the Mediterranean validation site 35 

for the SMOS-based retrievals of soil surface moisture and radiative properties of vegetation. 36 

These retrievals are routinely derived from TB
p,, with an inversion scheme based on the - 37 

model that is the zero-order non-coherent solution of the radiative transfer equations [9]. It has 38 

been demonstrated that this model is adequate to reproduce TB
p, at L band (vacuum wavelength 39 

of  21 cm) emitted from vegetated sites [10-14], which makes it suitable for use in a multi-40 

parameter inversion algorithm at feasible computational costs [13, 15, 16]. These findings, 41 

together with continuous refinements of the parameterization based on field experiments and 42 

simulations (e.g. [17-26]), led to the L-band Microwave Emission of the Biosphere (L-MEB) 43 

inversion scheme [27], which is the current level-2 processor used to simultaneously derive soil 44 

moisture and vegetation opacity from multi-angular SMOS observations TB
p,. However, some of 45 

the model parameters involved affect TB
p, rather similarly, which leads to some ambiguity in 46 

retrieving these parameters from L-MEB inversion using SMOS data. To overcome this problem, 47 

one option is to perform ground-based L-band radiometer campaigns under well-controlled 48 
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conditions, which yield TB
p, that are no longer simultaneously affected by some of these 49 

parameters. 50 

Such a setup was used at the Mediterranean Ecosystem L-Band characterisation EXperiment 51 

III (MELBEX III) field site at the Finca El Renegado, Caudete de las Fuentes (Valencia) Spain, 52 

which is fairly homogeneously covered with vineyards. Vineyards constitute approximately 75 % 53 

of the land use at the VAS which includes the MELBEX III site. While measuring the multi-54 

angular TB
p, with the tower-based ETH L-BAnd RAdiometer II (ELBARA II), a reflecting foil was 55 

placed underneath the vines to ensure that the sensitivity of the measurements to the emission 56 

of the soil below was very low. The TB
p, derived from these foil experiments were, therefore, 57 

predominantly affected by the vegetation, which meant it was possible to characterize the 58 

radiative properties of the vines in different development states. Such information is important for 59 

the ongoing SMOS calibration and validation activities at the VAS because: i) vegetation 60 

parameters retrieved with L-MEB from the TB
p, provided by the overflying MIRAS radiometer on 61 

board the SMOS satellite can be validated with the “ground truth” vegetation parameters derived 62 

from the ground-based measurements during foil experiments; ii) the “ground truth” vegetation 63 

parameters determined for the MELBEX III field site can be used in L-MEB to improve (or 64 

investigate) the accuracy of SMOS soil moisture retrievals for the VAS. 65 

A further motivation for this study was to describe the MELBEX III site (Sections 2.1 and 2.2), 66 

and to investigate the long term performance of the ELBARA II radiometer deployed (Section 67 

2.3). Since the MELBEX III site is an important anchor station for the SMOS mission, and since 68 

further identical ELBARA II instruments are currently deployed in other SMOS relevant 69 

campaigns, the analysis of a first long time series of tower-based TB
p, measurements is relevant 70 

because: i) the calibration strategy applied to produce the ground-based TB
p, must be analyzed 71 

and refined according to the findings; ii) uncertainties TB
p, of the calibrated TB

p, must be 72 

quantified so that they can be used for the SMOS validation. A detailed description of the foil 73 

experiments carried out to retrieve vegetation radiative properties was presented in Section 2.4. 74 
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In Section 3.1 the uncertainties TB
p, of TB

p, were estimated so that they could be taken into 75 

account in future SMOS calibration and validation activities based on ELBARA II. These 76 

uncertainties constrain the errors in the vegetation radiative properties derived from the 77 

measurements during the foil experiments (Section 3.2). Section 4 describes the derivation of the 78 

vegetation radiative properties from the multi-angular TB
p, and the air temperatures Tair 79 

measured during foil experiments on the basis of a multiple scattering radiative transfer model. 80 

The resulting retrievals of vegetation transmissivities and optical depths for distinctly different 81 

developmental states of the vines are presented in Section 5, and a summary and conclusions 82 

are given in Section 6. 83 

2. The MELBEX III experiment 84 

Here the MELBEX III field site for the study is described and a sketch of the auxiliary “ground 85 

truth” information available for the site is given. Although these data were not used in this 86 

analysis, they were included to provide a reference for the MELBEX III campaign, since this 87 

campaign plays a cardinal role in the ongoing SMOS calibration and validation activities. For the 88 

same reason the remote sensing system used is described rather extensively in Section 2.3, as 89 

is the setup of the foil experiments (Section 2.4) performed to derive L-band vegetation radiative 90 

properties. 91 

2.1. General set-up 92 

The VAS site is located about 80 km west of the city of Valencia (Spain) on the Utiel-Requena 93 

Plateau at 813 m a.s.l.. It was selected by the SMOS science team for the calibration and 94 

validation of SMOS data for the Mediterranean area as the landscape is relatively homogeneous 95 

over about 50  50 km2, which is large enough to include at least one SMOS pixel. The 96 

predominant land-use types are vineyards (75%) and other Mediterranean ecosystem species 97 

such as shrubs, olive and almond trees, and pine forests. The topography is generally flat (slope 98 

angle < 2%), with some slightly undulating regions (8% - 15%). The surface air temperature 99 
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ranges from -15 ºC in winter to 45 ºC in summer, with an annual mean temperature of 14 ºC. The 100 

mean annual precipitation is about 450 mm, with peaks in spring and autumn. 101 

The passive L-band measurements used in this study were performed at the MELBEX III site, 102 

which is part of the VAS. The data measured allow soil surface moisture and vegetation 103 

parameters to be upscaled for the entire VAS area for comparison with L-MEB retrievals based 104 

on SMOS data. In particular, dedicated short-term experiments were performed in which soil 105 

emission was largely shielded by means of a reflecting foil placed underneath the vine vegetation 106 

(referred to as “foil experiments”) to measure TB
p,, which mainly carries information on 107 

vegetation radiative properties. 108 

Figure 1a shows the ELBARA II radiometer mounted on the tower during a foil experiment, 109 

with a corresponding sketch in a bird´s eye view in panel b). The distances between the vines 110 

within a row were 2.00 – 2.10 m, and between rows 2.90 – 3.00 m. The MELBEX III vineyard 111 

studied belongs to the typical Spanish “tempranillo” variety and is representative of the entire 112 

VAS area. Panel c) is a photo of the site during the foil experiment in winter and panel d) in 113 

summer when the vegetation was fully developed. In the winter state, the vines are heavily 114 

trimmed to keep just the stocks with main branches fixed to wires along the rows. Typically, the 115 

first leaves start appearing at the beginning of May, and grape harvesting begins in the last week 116 

of September. Several field campaigns were performed to measure the Leaf Area Index (LAI) of 117 

the developed vines and to determine the effective column densities of the Volumetric Water 118 

Contents (VWC) of different vegetation elements (stocks, grapes, stems, leaves). These values 119 

are given and used in Section 5.2 to derive estimates of effective vegetation radiative properties, 120 

which were compared with corresponding remotely sensed values. 121 

Since the installation of the L-band radiometer ELBARA II [28] in September 2009 at the 122 

MELBEX III site, brightness temperatures TB
p, at polarization p = H, V and incidence angles 30° 123 

   70° have been measured automatically in steps of 5° every 30 minutes. In contrast, at  = 124 

45°, TB
p, are recorded every 10 minutes. Simultaneously with each TB

p, measurement, air 125 

temperature Tair is recorded right next to the radiometer to provide the only physical temperature 126 
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used in our analysis. Furthermore, every day around midnight sky radiances Tsky are measured 127 

at the nadir angle sky = 150° to recalibrate the ELBARA II Active Cold noise Source (ACS) used 128 

for internal calibration. 129 

Figure 1: a) Picture of the MELBEX III site during a foil experiment with the L-band radiometer ELBARA II 
mounted on the tower. b) Bird´s eye view of the configuration used in the foil experiments. Bold dots 
indicate the locations of the in-situ soil measurements, crosses the individual vines, and dashed 
ellipses the footprints observed at the different elevation angles . c) and d) Photos of the sites 
prepared to investigate the winter state of the vegetation and its fully developed summer state on the 
basis of the TB

p, measured. 

2.2. Auxiliary data 130 

The following auxiliary “ground truth” information is available for the MELBEX III site and 131 

relevant for the ongoing SMOS calibration and validation activities at the VAS area. 132 

i) Time-series of precipitation measured every 15 minutes are available from the Jucar River 133 

Basin Authority rain gauge approximately 2 km from the MELBEX III site. Complementary 134 

meteorological data with a temporal resolution of 10 minutes are available from the VAS 135 

meteorological station situated at the Finca Cañada Honda, Bodegas Iranzo, about 4 km from 136 

the MELBEX III site. 137 
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ii) Soil moisture within the topmost 6 cm is measured in-situ every 10 minutes within the 138 

ELBARA II footprints using capacitive ThetaProbes (Delta-T Devices Ltd., type ML2x, nominal 139 

accuracy ±1%). To acquire surface soil moisture representative of the ELBARA II footprints, 140 

probes were installed on bare soil between vine rows and underneath the vines, close to the 141 

stumps (black dots in Figure 1b). Site-specific calibration was used to derive volumetric moisture 142 

from raw sensor data. 143 

iii) Next to the tower base, a small network of additional moisture and temperature probes was 144 

installed (ThetaProbes; a Profile Probe, Delta-T Devices Ltd., type PR2) to monitor soil moisture 145 

at 4 depths down to 80 cm, and LI-COR sensors to measure soil temperatures at the depths 5, 146 

10, 20, 30, 50 and 80 cm below the ground. 147 

iv) A compact DAVIS Vantage Pro meteorological station is attached to the ELBARA II tower 148 

2 m above ground to monitor air temperature, atmospheric humidity, pressure, wind speed and 149 

wind direction every 10 minutes. 150 

2.3. Remote sensing system 151 

The L-band radiometer ELBARA II [28] deployed at the MELBEX III site is the successor of the 152 

ETH L-BAnd RAdiometer for soil-moisture research (ELBARA) [29], designed and built by the 153 

Institute of Applied Physics, University of Berne, Switzerland. Since further ground-based 154 

radiometer campaigns during the SMOS commissioning phase and during the operative phase of 155 

the mission appeared to be needed, three identical ELBARA II radiometer systems were 156 

requested by ESA and currently operative in SMOS relevant field campaigns. 157 

ELBARA II was designed to be sensitive within the protected part 1400−1427 MHz of the 158 

microwave L band (1000–2000 MHz). Since the receiver bandwidth B  22 MHz (at -3 dB) was 159 

narrow, the received noise power emitted from a site at the physical temperature T  300 K may 160 

be as low as P = kTB  10-13 W. Low-noise amplifiers and a series of passive components with 161 

the net gain of 69 dB were implemented in the ELBARA II Microwave Assembly (MA). This was 162 

required to amplify the low input power to a level that matches the operational range of the power 163 
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detector used, so that voltages U could be generated at the output of the Power Detector 164 

Assembly (PDA) as linear responses to the input noise power. Furthermore, a sophisticated 165 

thermal system was developed to ensure the thermal stabilization of the electronics was accurate 166 

as this is crucial for long-term applications under widely varying environmental conditions. 167 

Another challenge for the ELBARA II design was the internal calibration to derive TB
p, from 168 

instrumental raw data. This was solved by periodically switching between different reference 169 

noise sources fed to the radiometer MA, while recording the responses U at the output of the 170 

PDA. A Resistive noise Source (RS) stabilized at the temperature TRS > TB
p, was used for the 171 

hot calibration source, yielding the reference response URS at the PDA. The implementation of an 172 

Active Cold Source (ACS) to generate a cold reference noise temperature TACS < TB
p, with the 173 

associated PDA response UACS was another of the innovations implemented in ELBARA II. The 174 

noise temperature Tp
RM, in at the radiometer input ports for H- and V-polarization were derived 175 

from the associated responses Up using the linear interpolation between the reference responses 176 

of the RS and the ACS with known noise temperatures of TACS  37.8 K and TRS  313 K (see 177 

subsection a) below). 178 

  RS ACS
RM, in ACS ACS

RS ACS

p pT T
T U U T

U U


  

  
and

 

 RM, in FC FC,
B

FC

1p
p

T t T
T

t
  
  (1) 179 

However, the experimentally relevant TB
p, entering the antenna aperture was slightly smaller 180 

than Tp
RM, in due to the noise added by the lossy Feed-Cable (FC) with transmissivity tFC < 1. This 181 

was taken into account in the second equation in (1) that corrects Tp
RM, in for the noise added by 182 

the FC at the temperature TFC. To avoid error-prone extrapolation in deriving Tp
RM, in from (1), the 183 

noise levels of the internal calibration sources were designed to fulfill TRS > Tp
RM, in > TACS, which 184 

significantly increased the absolute accuracy of Tp
RM, in. 185 

The technical details for the ELBARA II system are given in [28], but the specific system 186 

performances, which are important from the experimental point of view, are described in the 187 
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following subsections, drawing on experience in the field during the MELBEX III campaign. They 188 

are important for the harmonized operation of the different ELBARA II systems currently in use. 189 

a) Noise reference sources 190 

A 50  RS stabilized at the instrument set-point temperature T0 = 40 °C was used to provide 191 

the reference noise temperature TRS = T0 measured for the RS. For the time period from 19th 192 

February 2010 to 1st February 2011, the mean RS temperature was TRS = 40 °C = 313.15 K, with 193 

a standard deviation of TRS < 0.08 K, and the mean system response was URS = 1.1089 V, with 194 

a standard deviation of URS < 0.0002 V. 195 

Since long-term experience with the novel ACS was lacking, diurnal recalibration at around 196 

midnight was needed using sky measurements where Tsky < TACS and measurements on the RS 197 

where TRS > TACS (Section 3.1.4 in [28]). The ACS reference noise TACS was determined 198 

analogous to (1) (see Section 3.1.4 in [28]) with sky radiance Tsky computed with [30] for the 199 

elevation 750 m a.s.l. of the MELBEX III site and Tair measured. The mean TACS determined for 200 

the experimental time period was TACS = 37.83 K, with a standard deviation of TACS = 0.63 K. 201 

The associated mean system response was UACS = 0.4711 V, with a standard deviation of 202 

UACS < 0.0001 V. These observations indicate that the thermal stabilization of ELBARA II was 203 

excellent when it was operated under environmental conditions with air temperatures ranging 204 

from -3 °C < Tair < 35 °C. They also imply that the ACS is stabil in the long term, which allows 205 

significantly longer cycles to be applied for the recalibration of the ACS with sky measurements. 206 

b) Treatment of radio frequency interferences 207 

Radio Frequency Interference (RFI) can occur even within the protected 1400–1427 MHz 208 

band, which is the sensitive frequency range of ELBARA II. Hence, RFI was reduced by narrow-209 

band filtering at the radiometer input (before amplification). Two strategies were used to detect 210 

RFI: (i) Narrow-band continuous RFI was detected by splitting the protected band into a Lower 211 

Side Band (LSB) and an Upper Side Band (USB). The Frequency-Domain (FD) criterion 212 

B, USB B, LSB
p pFD T T  , with a threshold FD = 0.4 K, was used to detect narrow-band RFI. (ii) Bursts 213 
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of RFI were detected by analyzing the time series of noise power measured at the rate of 214 

800 Hz. It was expected that the inherent Gaussian statistics associated with undisturbed 215 

thermal noise would be altered by RFI bursts, so that these bursts could be detected by checking 216 

kurtosis k [31, 32], which is k = 3 for a perfect Gaussian distribution. Consequently, the Time-217 

Domain (TD) criterion 3TD k   was defined to identify RFI bursts. The corresponding threshold 218 

value was determined on the basis of the responses URS measured at the PDA output, when the 219 

internal RS was switched to the receiver path. As expected, the kurtosis of these undisturbed 220 

measurements was kRS = 3, with a standard deviation kRS < 0.1. This value is considered as the 221 

instrumental limitation, which led us to set the threshold to RS3 0.3TD k    for the antenna 222 

measurements. 223 

c) Antenna and radiometer mount 224 

The ELBARA II system is mounted on a tower 15.3 m above the ground (Figure 1a). The 225 

system is equipped with an elevation tracker that allows the antenna to be oriented automatically 226 

for 30° ≤  ≤ 330° with  = 180° as the zenith direction (Section 2.4. in [28]). After the system 227 

was installed on the tower, the elevation tracker was calibrated with a digital level to achieve 228 

reproducible  with an absolute accuracy better than 1°. In the MELBEX III campaign, 229 

measurements were taken at 30° ≤  ≤ 70° with steps of 5°, whereas only TB
p, measured for 30° 230 

≤  ≤ 60° were used to explore the vegetation radiative properties based on the foil experiments. 231 

At the intermediate angle  = 45° the center of the antenna beam waist is approximately 1.7 m 232 

above the base of the ELBARA II scaffold, leading to the height h = 17 m, which was used to 233 

compute the size (Figure 1b) and the fractional amounts  (Section 2.4) of the footprints for the 234 

different . The latter required knowing the antenna relative sensitivity D() with respect to the 235 

antenna main direction, for which D( = 0°) = 1. While the system was being constructed, D() 236 

was derived experimentally by measuring the sun disk moving through the field of view of the 237 

antenna (Section 3.2.1 in [28]). For   15°, these data were approximated with the following 238 

Gaussian bell curve ( in °): 239 
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    2exp 0.01781D      (2) 240 

In agreement with the rotational symmetry of the Pickett-horn [33] antenna in the ELBARA II 241 

system, D() depends exclusively on the polar angle . This implies that (2) holds for both 242 

polarizations received with the two orthogonal /4-structures implemented in the antenna feed 243 

(see Section 2.3 in [28]). 244 

2.4. Foil experiments 245 

The role of the MELBEX III site as the Mediterranean SMOS ground-truth site required 246 

dedicated short-term experiments to separate the radiances originating from the vegetation from 247 

those emitted by the soil below. To ensure that measured TB
p, predominantly carried information 248 

on vegetation transmissivities p, and optical depths  p,, soil emission was shielded by placing 249 

a reflecting foil below the vegetation (Figure 1). Hence, approximately 600 m2 of metalized foil6 250 

was spread out in the trapezoidal shape depicted in Figure 1b to prevent any soil emission from 251 

this area. 252 

The dashed ellipses in Figure 1b indicate the projection of the 9° beam angles onto the 253 

footprint plane from which the fractional amounts  > 0.93 of the total radiance should originate 254 

for  = 30°, 35°, 40°, 45°, 50°, 55°, 60° for a homogeneous footprint. However, due to the 255 

trapezoidal shape of the foil, values  for given  and the height h = 17 m of the beam waist 256 

were computed numerically for this specific setup, taking into consideration the normalized 257 

antenna sensitivity DN(,h,) derived from (2) and the angle  representing a possible 258 

misalignment of the antenna in azimuth direction: 259 

     , , ,
N

foil area

, , , ,h hD x y d x y dx dy         (3) 260 

                                            
6 The composite foil is made up of a 12-m-thick aluminum film inbetween 12 m of polyester and 75 m of 

polyethylene. The thickness of the electrically conductive and paramagnetic aluminum is significantly larger than the 

skin depth at L band, implying that perfect reflectivity (and hence perfect shielding of the soil emission) can be 

assumed for the area covered with the foil. 
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Omitting the algebraic details along with the coordinate transformations and vector geometry, 261 

,h,(x,y) represents the angle between the antenna main direction at , h,  and the view 262 

direction of a point in the xy-footprint plane. Seen from the perspective of the radiometer, the 263 

solid angle dh,(x,y,dx,dy) covers an infinitesimal area dxdy, located at a position (x, y) in the 264 

footprint plane. The surface integral in (3) was evaluated numerically, yielding the angular 265 

dependency of  shown in Figure 2. The error bars indicate results from evaluations performed 266 

for  = 3°, which is large enough to include the possible misalignment of the radiometer in 267 

azimuth direction. 268 

All configurations considered in the simulations reveal  > 0.93, with a maximum of  = 269 

0.997 at  = 35°. For shallower observations,  decreases and misalignments  become more 270 

relevant, as expected. However, the impact of radiance originating from areas outside the foil-271 

covered part of the footprint on TB
p, was expected to be very small due to the generally high 272 

values  (compare Section 4.1), which implies that uncertainties in the emission of these areas 273 

would not significantly affect the retrieved vegetation radiative properties described in Section 274 

5.1. 275 

 276 

Figure 2: Computed fractional amounts  of radiance 
originating from the foil-covered (trapezoidal) area 
(Figure 1b) on a homogeneous footprint at 
observation angle . Error bars  were 
computed for a misalignment of the antenna in 
azimuth direction of  = 3°. 
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3. Brightness temperatures 277 

An error analysis of measured TB
p, to quantify the absolute uncertainties TB

p,, was 278 

important for two reasons: i) to calibrate and validate SMOS data on the basis of ELBARA II 279 

measurements; ii) to constrain errors in the vegetation transmissivities p, and optical depth  p, 280 

(Section 5) derived from the TB
p, measured during the foil experiments (see Section 3.2). 281 

3.1. Uncertainties associated with the brightness temperatures measured 282 

As described in Section 2.3, the equations (1) were used to derive TB
p, from instrumental raw 283 

data. To achieve conservative estimates for the corresponding uncertainties TB
p, and to take 284 

into account the fact that some of the error-prone parameters involved are not correlated with 285 

any of the other parameters (e.g. TFC), arithmetic error propagation 
 

, ,
B B
p p

X
T X T X        286 

was applied in conjunction with (1). The summation was performed over the individual 287 

parameters involved in (1), and summarized with the symbol {X}  {TRS, TACS, URS, UACS, Up,, 288 

TFC, tfc}, with associated uncertainties {X}  {TRS, TACS, URS, UACS, Up,, TFC}. The values 289 

of {X} and {X} used in the error propagation analysis were derived from the approximately 290 

150103 ELBARA II measurements performed between 19th February 2010 and 1st February 291 

2011 (Section 2).  shows the values {X} and {X} and summarizes their derivations (these are 292 

explained in more detail below). 293 

The statistical uncertainties U = URS, UACS, and Up, of the PDA responses (voltages) U = 294 

URS, UACS, and Up, were computed from the standard deviations U of these measurements 295 

associated with corresponding noise-power levels TRM in = TRS, TACS, and TB
p,, performed with 296 

the shortest possible integration time 2.5 ms of ELBARA II. Equation (12) in [28] was used with 297 

the system parameters (radiometer gain GRM = 1.86 mV K-1, radiometer residual noise TRM, 0 = 298 

153 K, time-bandwidth product B = 15868 Hz s, PDA noise UPDA = 0.649 mV) determined 299 

experimentally during the construction of ELBARA II (Table 2 in [28]). Finally, the three values 300 

U used with the arithmetic error propagation were computed as U = U  (fLPrec)
 -1/2 with fLP = 301 
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400 Hz as the cut-off frequency of the PDA, and the integration time rec = 3 s applied to our 302 

measurements (corresponding to 1200 independent measurements with 2.5 ms integration time 303 

each). 304 

The mean physical temperature TFC of the Feed Cable (FC) was approximated with Tair 305 

measured next to the FC simultaneously with the TB
p,. The assumed uncertainty, TFC = 5 K, 306 

accounts for the temperature variations along the FC connecting the receiver with the antenna 307 

ports, which are not of course, taken into account in the simple model (1) used to correct for FC 308 

noise. The value of the FC transmission tFC = 0.977 results from its specified loss LFC = 0.1 dB 309 

(Section 2.2.1 in [28]). As this value can be considered constant, at least for the period between 310 

two sky calibrations, the uncertainty tFC = 0 is assumed. 311 

 312 

Table 1: Values and comments on the parameters {X}  
{TRS, TACS, URS, UACS, Up,, TFC, tfc} with 
uncertainties {X}  {TRS, TACS, URS, UACS, 
Up,, TFC} used to compute TB

p, shown in 
Figure 3 

{X} {X} Comments 

TRS = 
313 K 

TRS = 
TRS = 
71 mK 

Mean internal physical temperature, 
measured with associated standard 
deviation (Section 2.3a) 

URS = 
1.11 V 

URS =  
URS = 
199 V 

Mean PDA response (voltage) for 
the RS with associated statistical 
uncertainty URS (Section 2.3a) 

TACS = 
37.8 K 

TACS =  
TACS = 
631 mK 

Mean ACS temperature, derived 
from sky calibrations with 
associated standard deviation 
(Section 2.3a) 

UACS = 
0.471 V 

UACS = 
UACS = 
83 V 

Mean PDA response (voltage) for 
the ACS with associated standard 
deviation UACS (Section 2.3a)y 

Up, = 
0.75 V 
– 
1.21 V 

Up, = 

Up, 

Mean PDA response (voltage) for 
antenna measurements with 
associated statistical uncertainty 
Up, (Section 2.3a) 

TFC = 
14.5°C 

TFC = 
5 K 

Mean Tair measured with estimated 
temperature difference at along the 
FC 

tFC = 
0.977 

tFC = 
0 

Specified FC transmissivity 

 313 

The absolute uncertainties TB
p, computed with arithmetic error propagation applied to (1) 314 

also depend on the values of TB
p, measured. Hence, TB

p, (Figure 3) are estimated for the 315 
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range 0 K  TB
p,  370 K to represent all the situations at horizontal and vertical polarization 316 

observed during the foil experiments, as well as during the measurements performed on the 317 

undisturbed vineyard. Considering the corresponding ranges of TB
p, (large arrows in Figure 3), 318 

the range of uncertainty expected for TB
p,  measured with the reflecting foil below the vine 319 

vegetation was 0.69 K < TB
p, < 0.94 K, and 0.57 K < TB

p, < 0.74 K for the measurements on 320 

the undisturbed vineyard. 321 

 322 

Figure 3: Uncertainties TB
p, of TB

p, measured with 
ELBARA II. The noise temperatures, TASC and 
TRS, of internal reference sources, and ranges of 
TB

p, measured during the foil experiments and on 
the undisturbed vineyard are indicated. 

 323 

3.2. Brightness temperatures measured during the foil experiments 324 

Since ELBARA II was commissioned in September 2009, it has provided calibrated TB
p, for 325 

p = H, V and 30°    70° that are currently being analyzed within the framework of the ongoing 326 

SMOS calibration and validation activities. While the reflecting foil has been laid out, sequences 327 

of TB
p, were measured for 30°    60° to derive transmissivities p, and optical depths  p, 328 

with different vegetation states (Section 5). Comparable measurements of TB
p, at the vineyard 329 

with similar vegetation states and without any foil below the vines were used to comprise the 330 

combined emissions of vegetation and soil (Section 4.1, equation (7)). Figure 4 shows the data 331 

sequences Tws_f, Tws_nf and Tss_f, Tss_nf, where “ws” refers to the winter state of the 332 
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vineyard and “ss” indicates the summer state. The index “f” indicates the periods when the foil 333 

was under the vines and “nf” refers to the periods when no foil was under the vines with the 334 

same developmental states. The bottom rows in Figure 4 show air temperatures Tair measured 335 

next to the radiometer at the same time as the TB
p,. 336 

Figure 4: Time series of TB
p, measured for p = H, V and  = 30° (bold black), 35° 40°, 45°, 50°,55° (gray), 60° 

(black). Arrows indicate trends of angular dependencies of TB
p,. Gray shaded boxes indicate RFI 

distorted TB
V,. The data used to derive the radiative properties of the vegetation´s winter state and its 

fully developed state are constrained to time periods between 1100 and 1300 indicated in a) and b), 
respectively. TB

p, measured with the foil on the soil are shown in the left columns of a) and b). The 
right columns show TB

p, of the vineyard without the foil below the vines with the same vegetation 
states. The bottom rows show Tair measured on the tower at the same time as TB

p,. 

 337 

During the period Tws_f, distinct RFI was observed exclusively at V-polarization every day 338 

between 1900 and 730 (indicated by the gray shaded boxes). The data from the four two-day 339 

periods Tws_f (26. – 27. February 2010), Tws_nf (29. – 30. January 2011) and Tss_f (7. – 8. 340 

September 2010), Tss_nf (10. – 11. September 2010) were further constrained to the hours 1100 341 

– 1300 for analysis because this measure improves the comparability between p, and  p, 342 

retrieved for different vegetation states. Moreover, the RFI-distorted periods had to be excluded 343 

from the analysis. 344 

The TB
p, shown in Figure 4 differ significantly for all time periods Tws_f, Tws_nf and Tss_f, 345 

Tss_nf. Qualitatively, the angular dependence of the TB,
p, measured for the winter state of the 346 

vineyard with no foil (Tws_nf) corresponds to the emission expected for a specular (Fresnel) 347 
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surface (TB
V, > TB

H, and decreasing TB
H, with increasing , while TB

V, increases with ). In 348 

contrast, the sensitivity of TB
p, with respect to  is generally less pronounced during the 349 

undisturbed vegetation summer state (Tss_nf) and some of the TB
p, even respond in the 350 

opposite way. The TB
p, measured for the vegetation winter state with the foil (Tws_f) were rather 351 

small (35 K < TB
p, < 100 K) and no clear trend with  can be identified. Again, with the summer 352 

vegetation state and the foil (Tss_f), the behavior was significantly different. Here the TB
p, 353 

increased with  at both polarizations, and the sensitivity with respect to  distinctly increased in 354 

comparison with the period Tws_f during the vegetation winter state with the foil. In summary, the 355 

state of the vegetation became primarily apparent in the angular dependencies of the TB
p, 356 

measured, as well as in the overall magnitudes. 357 

4. Modeling approach 358 

The following sub-sections describe the models used to quantify transmissivities p, and 359 

optical depths  p, of the vegetation at different developmental stages for H- and V- polarization 360 

on the basis of the TB
p, and Tair shown in Figure 4. 361 

4.1. Microwave radiative transfer 362 

The thermal L-band emissions TB
p, of the vineyards during the periods with no foil (periods 363 

Tws_nf and Tss_nf in Figure 4) are modeled with the very simple radiative transfer approach (4). 364 

It uses the merged reflectivity Rp,
vine of the vine vegetation and soil and the effective 365 

temperature Tvine of the vineyard, and assumes that the temperature is the same all over the site: 366 

  , , ,
B vine vine vine sky1p p pT R T R T      (4) 367 

Modeling TB
p, of areas with the highly reflective foil underneath the vines requires a more 368 

sophisticated approach. With increasing ground reflection, multiple reflections across the 369 

vegetation become increasingly relevant, and the zero-order scattering model [34], also called 370 

the  -  model [9, 35, 36], is therefore not an appropriate choice. To account for multiple 371 
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reflections, we use the multiple-scattering approach (5) described in [37, Section 4.2.5.1] to 372 

model TB
p, emitted from areas with the reflecting foil. In (5), TG and TV are the effective 373 

temperatures of the ground and the vegetation, and RG
p, is the ground reflectivity: 374 

 

 ,
B G G V V sky G V

,
G

G V ,
G V

,
G V V

V V V ,
G V

1 with

1

1

1 ( )
(1 )

1

p

p

p

p

p

T T a T a T a a

R
a t

R r

R t r
a r t

R r











    






 
  



 (5) 375 

The equations (4.13) and (4.14) in [37] define the reflectivity rV and the transmissivity tV of the 376 

scattering vegetation layer. For moderate scattering, these can be approximated with: 377 

  ,
V

21 pr r 
   and  , 2

V 1pt r
    with 

,

2

p

r


   (6) 378 

Where the reflectivity r of the vegetation at infinite thickness is given by equation (4.16) in [37]. 379 

Considering that scattering in the backward hemisphere is much smaller than absorption, (4.17) 380 

[37] can be approximated with a corresponding first-order Taylor expansion. Using this 381 

approximation in (4.16) and considering the definitions (4.2) relates r to the effective scattering 382 

albedo p,, as it is expressed by the third relation in (6). 383 

The denominators (1 - RG
p,  rV) in (5) express the infinite reflections within the vegetation 384 

layer, which obviously become dominant if the ground is perfectly reflecting (RG
p, = 1) because 385 

of the metalized foil. Furthermore, it can easily be shown that this multiple-scattering emission 386 

model becomes equivalent to the zero-order  -  model for p, = 0, which then represents non-387 

scattering vegetation. Although the assumption  p, = 0 is often made for low growing vegetation 388 

types, this is not necessarily adequate for vineyards since grapevines have a significant amount 389 

of woody matter with dimensions comparable with the L-band wavelengths ( 21 cm). This is why 390 

we considered the range 0   p,  0.1 in the analysis presented in Section 5. 391 

The sky radiance Tsky used in (4) and (5) was computed with [30] for the elevation 750 m a.s.l. 392 

of the MELBEX III site, the Tair measured, and the direction of the downwelling Tsky received by 393 

Page 18 of 31Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

page 19 of 31 ManuscriptSubmitted 

the radiometer after its forward reflection at the ground. For -3 °C < Tair < 40 °C and 394 

30°    60°, the associated sky brightness temperatures are in the range of 4.45 K  Tsky  395 

5.54 K. Furthermore, Tair measured was used for all the effective temperatures involved in (4) 396 

and (5), and the resulting errors are analyzed. 397 

During the periods Tws_f and Tss_f, the TB
p, measured comprise contributions of radiances 398 

TB,f 
p, and TB,vine 

p, originating from the area with the reflecting foil, and from the adjacent 399 

undisturbed vineyard, respectively. The radiances, TB,f 
p, and TB,vine 

p,, emitted from within the 400 

antenna´s field of view were weighted with the fractional amounts  and (1 - ), respectively, 401 

shown in Figure 2: 402 

  , , ,
B B,f B,vine1p p pT T T         (7) 403 

Where, (4) is used to represent TB,vine 
p,, and (5) and (6) is used to express TB,f 

p, with RG
p, = 1 404 

to represent the perfect reflection of the metallized foil. 405 

4.2. Vegetation transmissivities and uncertainties 406 

Vegetation transmissivities p, were derived for the vegetation winter state (ws) and the 407 

summer state (ss) from the TB
p, shown in Figure 4. The weighting approach (7), with the 408 

radiative transfer models (4), (5), and (6) is solved numerically for p, with inserted TB
p, 409 

measured during the periods Tws_f and Tss_f. The effective physical temperatures, Tvine of the 410 

vineyard and TV of the vegetation were both approximated with air temperatures Tair measured at 411 

the radiometer. Of course, the assumption, Tvine = TV = Tair introduces certain errors that are 412 

estimated as Tvine = TV = 5 K to represent upper limits. The uncertainties {Y}  {, TB
p,, 413 

TV, Tvinyard, Rp,
vine, Tsky,  p,} of the parameters {Y}  {, TB

p,, TV, Tvine, R
p,

vine, Tsky,  p,} 414 

involved in (7) (with (4), (5), and (6) substituted) were used with arithmetic error propagation to 415 

achieve conservative estimates of absolute uncertainties 
 

, ,p p

Y
Y Y        of the 416 

transmissivities p, (summation was performed over the parameters). 417 
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 418 

Figure 5: Mean values of reflectivities Rp,
vine of the vineyard 

for the winter and summer states derived from 
measurements performed during the periods 
Tws_nf und Tss_nf (Figure 4). 

 419 

The reflectivities of the vineyard outside the foil-covered area used in (4) were estimated as 420 

the mean values Rp,
vine derived from the time-series of vineyard reflectivities deduced from 421 

measurements during the time periods Tws_nf and Tss_nf shown in the right columns in Figure 4 422 

a) and b). The resulting Rp,
vine for the winter- (solid symbols) and the summer state (empty 423 

symbols) at H-(up triangles) and V-polarization (down triangles) are depicted in . The angular 424 

dependency of Rp,
vine observed for the winter state behaved similarly to what could be expected 425 

for a Fresnelian reflector, i.e. increasing RH,
vine with increasing , and RV,

vine reaches a 426 

minimum when  approaches the Brewster angle. The Rp,
vine of the vineyard during summer is 427 

clearly less sensitive to , which is rather typical for a diffuse reflector. Hence, the Rp,
vine 428 

demonstrate the marked effect of the vegetation state on the angular dependency of the L-band 429 

signatures even more distinctly than the measured TB
p, presented in Section 3.2. The error bars 430 

in  represent standard deviations Rp,
vine deduced for the time series of the vineyard reflectivities 431 

measured for the periods Tws_nf and Tss_nf (right columns in Figure 4 a) and b)), and were 432 

used to estimate the uncertainties Rp,
vine of Rp,

vine. 433 

As an upper limit for the uncertainty of the model-based sky radiance Tsky, we assumed Tsky 435 

= 1 K. For , the values shown in Figure 2 were used together with the uncertainties  436 
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computed for a misalignment  =  3° between the radiometer plane of incidence and the 437 

symmetry axes of the trapezoidal foil. The uncertainties TB
p, of the measured TB

p, used to 438 

derive p, were taken into account by the relation TB
p,(TB

p,) shown in Figure 3. The sensitivity 439 

of the p, to the effective single-scattering albedo  p, was analyzed by considering the two 440 

values  p, = 0 and  p, = 0.1, which are believed to include the existing range of uncertainty. 441 

Brief comments on the origin of the parameters values {Y} and the associated uncertainties {Y} 442 

are given in Table 2. 443 

 444 

Table 2: Values and comments on the parameters 
{Y}  {, TB

p,, TV, Tvine, R
p,

vine, Tsky,  p,} 
with uncertainties {Y}  {, TB

p,, TV, 
Tvine, Rp,

vine, Tsky,  p,} used to derive 
p, and p,. 

{Y} {Y} Comments 

  Computed values shown in 
Figure 2  

TB
p, TB

p, 
Measured values (Figure 4) 
with uncertainties computed 
(Figure 3)  

TV 
= Tair 

TV 

= 5 K 
Measured values (Figure 4) 
with assumed uncertainty 

Tvine 
= Tair 

Tvine 
= 5 K 

Measured values (Figure 4) 
with assumed uncertainty 

Rp,
vine 

Rp,
vine =  

Rp,
vine  

Values measured during 
Tss_nf and Tws_nf () with 
standard deviations indicated 

Tsky 
Tsky 

= 1 K 
Computed with [30] and 
uncertainty assumed 

 p, = 
0 and 0.1 

 p, 
= 0 

Feasible range for the 
MELBEX III vineyard 

4.3. Vegetation optical depth 445 

Vegetation optical depths p, along the view in the direction of the observation angle  and 446 

the optical depths 0
p, in the nadir direction, can be deduced from the corresponding 447 

transmissivities p, using Beer´s law if isotropy of vegetation absorption can be assumed: 448 

  , , , ,
0ln cosp p p p            (8) 449 
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However, we have to take into account the fact that vegetation often shows bi-axial anisotropy 450 

[10, 13, 14, 38] 7. In the L-MEB model [27], vegetation anisotropy is accounted for by using the 451 

following empirical approach: 452 

   2 2
0 NAD sin cosp ptt          (9) 453 

The parameters NAD and ttp (p = H, V) were determined simultaneously in L-MEB retrievals by 454 

applying an optimization approach to multi-angular TB
p,-data measured, e.g., with SMOS. In 455 

Section 5.2, NAD and ttp are quantified according to ground-based measurements that can be 456 

compared with the corresponding L-MEB retrievals from SMOS measurements over the VAS 457 

site. These “ground truth” values of the parameters NAD, ttH, ttV involved in 0
p() given by (9) are 458 

determined by minimizing the objective function OF (summation is over the observation angles  459 

measured): 460 

      2 2H H, V V,
0 0 0 0OF  



             (10) 461 

5. Results and Discussion 462 

5.1. Vegetation transmissivities and optical depth 463 

Transmissivities p, and uncertainties p, of the vineyard vegetation in the winter state and 464 

the fully developed summer state were derived from TB
p, and Tair measured during the two-hour 465 

periods (1100 - 1300) indicated in Figure 4. The radiative transfer approaches given in Section 4 466 

solved for p, were used with the parameter values {Y} and {Y} explained in Table 2. The 467 

resulting p, for 30°    60°, at horizontal (p = H, up triangles) and vertical (p = V, down 468 

triangles) polarization are depicted in Figure 6a for the assumptions  p, = 0 (large symbols) and 469 

 p, = 0.1 (small symbols). The error bars to the right of the large symbols (large caps) are the 470 

                                            
7 Predominant orientation of vegetation components (branches, stems, leafs) can lead to different propagation of 

horizontal and vertical field modes. 
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mean uncertainties p, of single p, (for  p, = 0) estimated from the uncertainties {Y} using 471 

arithmetic error propagation (Section 4.2). The error bars to the left (smaller caps) of the large 472 

symbols represent the standard deviations p, of the single p, (for  p, = 0) derived from TB
p, 473 

and Tair measured for a given . Panel b of Figure 6 shows optical depth  p, (again for the 474 

assumptions  p, = 0 and  p, = 0.1) diagonally through the vegetation computed from p, using 475 

(8). The error bars to the right of the large symbols (large caps) are the mean uncertainties 476 

 p, = p, / p, of the single  p, (for  p, = 0), while the error bars to the left of the large 477 

symbols (smaller caps) are standard deviations  p, of the  p, (for  p, = 0) derived for specific 478 

. 479 

 480 

Figure 6: a) Transmissivities p, at horizontal (up triangles) and vertical (down triangles) polarization as 
functions of the observation angle  retrieved for the winter state and the summer state of the 
vegetation as functions of the observation angle , and for horizontal (up triangles) and vertical (down 
triangles) polarization. p, are derived assuming  p, = 0 (large symbols) and  p, = 0.1 (small 
symbols).The error bars to the right of the large symbols (large caps) are the mean uncertainties p, 
of single p,. The error bars to the left of the large symbols (smaller caps) are the standard deviations 
p, of the p, measured for a given . b) Vegetation optical depth  p, diagonally through the 
vegetation with errors bars corresponding to those in panel a). 

The angular dependency of the transmissivity p, of the vegetation in the summer state 481 

(empty triangles) shows a clear decreasing trend with increasing  at H- and V-polarization. In 482 

the winter state, p, is generally larger than in the summer state, and the angular dependence is 483 

less pronounced with a small decreasing trend for increasing  with   35°. Furthermore, H, is 484 

persistently larger than V, for both vegetation states. The standard deviations p, (error bars 485 

to the left of the large symbols) of the  160 samples p, considered are smaller than the mean 486 
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uncertainties p, (error bars to the right of the large symbols) estimated for the individual p, 487 

with  p, = 0. This indicates that the assumptions made for the parameter uncertainties {Y} 488 

used to compute p, by arithmetic error propagation (Section 4.2) are conservative enough to 489 

interpret p, as upper boundaries of the uncertainties. To address concerns about the 490 

somewhat critical assumption  p, = 0 made in L-MEB retrievals applied to vineyards at VAS, the 491 

sensitivity of the p, shown in Figure 6a with respect to the single scattering albedo  p, was 492 

analyzed. To this end, p, were derived from the multiple-scattering emission model described in 493 

Section 4 assuming  p, = 0.1 (small triangles in Figure 6a), which is possible with specific types 494 

of low growing vegetation [38]. This accounts for vegetation volume scattering and results in an 495 

overall decrease in the estimated p, (small symbols) in comparison with the p, (large symbols) 496 

derived for the non-scattering vegetation ( p, = 0.0). Of course, all of the findings also apply to 497 

optical depth  p, shown in Figure 6b) if the definition (8) relating p, to  p, is considered. 498 

5.2. Comparison of vegetation parameters 499 

As outlined in Section 4.3 the effects of vegetation anisotropy on the angular and polarization 500 

dependence of  p, were considered in the L-MEB retrievals by using (8) and the empirical 501 

approach (9) comprising the parameters NAD and ttH, ttV. These values were quantified on the 502 

basis of the  p,, shown in Figure 6b, by first applying (8) to correct the  p, for the elongation of 503 

the path through the vegetation layer. The resulting 0
p,, shown in Figure 7 (the symbols are 504 

explained in Figure 6), were then used to minimize the objective function (10), yielding the values 505 

NAD, and ttH, ttV. These values can be considered as “ground-truth”, and are therefore valuable 506 

for the SMOS calibration and validation activities taking place at the VAS site. 507 

The 0
p, shown in Figure 7 reveal a decent decreasing trend with increasing  for the 508 

vegetation winter state. In contrast, a slightly increasing trend of 0
p, is evident for the summer 509 

state. This is qualitatively different from the angular dependency of  p, (Figure 6b), which still 510 

includes the effect of the increasing path length through the vegetation with increasing . The 511 
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opposite angular trends of 0
p, observed for the two vegetation states indicate changing 512 

vegetation anisotropies in the course of vegetation development. 513 

The bold solid and dashed lines in Figure 7 represent the empirical model 0
p() given by (9), 514 

fitted to the 0
p, for the non-scattering vegetation ( p, = 0.0). The corresponding fine lines show 515 

0
p() fitted to 0

p, for  p, = 0.1. The best-fit values of the parameters NAD, ttH, ttV to represent 516 

the angular dependency of 0
p, for the vegetation states considered with  p, = 0.0 and  p, = 517 

0.1, respectively, are shown in Table 3. As can be seen, 0 retrieved for  p, = 0.0 and 0.1 of the 518 

vegetation in its fully developed summer state is increased by approximately 60% compared with 519 

0 of the vegetation in the winter state. As a consequence of the still observable angular 520 

dependence of 0
p, (Figure 7), the values ttp deviate from zero. Values ttp < 1 represent 521 

increasing 0
p, with increasing  in accordance with the trend observed for the vegetation winter 522 

state. The values ttp > 1 represent the opposite trend of 0
p,, observed for the fully developed 523 

summer state of the vegetation. Furthermore, NAD retrieved with the assumption  p, = 0.1 are 524 

slightly increased compared with NAD retrieved without considering volume scattering ( p, = 525 

0.0). 526 

 527 

Figure 7: Optical depths 0
p, derived from p, shown in 

Figure 6b using (8). The symbols are in 
correspondance with those in Figure 6. The lines 
represent 0

p() given by (9) with the best-fit 
values for NAD, ttH, ttV shown in Table 3. 

 528 
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Table 3: Values of best fit-parameters NAD, ttH, 
ttV derived with (10) to reproduce the 
0

p, shown in Figure 7. 

Vegetation state:  p, NAD ttH ttV 
Winter  0.0 0.101 0.116 0.804 
Summer 0.0 0.160 1.093 1.401 
Winter  0.1 0.112 0.116 0.805 
Summer 0.1 0.177 1.108 1.423 

 529 

The retrieved “ground-truth” values of NAD (Table 3) obtained for the MELBEX III vineyard 530 

agree well with preliminary L-MEB retrievals applied to SMOS observation over the VAS area. 531 

During the winter state, the effective optical depth of the vine stocks NAD_STOCK can be estimated 532 

as NAD_STOCK = b  VWCSTOCK, where b is a vegetation parameter and VWCSTOCK is the 533 

vegetation water content of the vine stocks. In the literature, the values of b are in the range 0.10 534 

- 0.12 [11, 13, 39]. Values of VWCSTOCK were estimated by considering the stem density of 1/6 535 

stocks m-2, the moisture content of 0.5 m3m-3, and the average weight of vine stocks varying 536 

between 4 kg and 6 kg. With these assumptions, the VWCSTOCK is between 0.33 kg m-2 and 537 

0.5 kg m-2, and the resulting range of the effective optical depth of stocks is 0.033  NAD_STOCK  538 

0.06. These values are approximately half the optical depth NAD retrieved for the vegetation 539 

winter state based on the L-band measurements. If the range 0.101  NAD  0.112 given in Table 540 

3 is treated as the actual optical depth, the corresponding “ground truth” value of the b-parameter 541 

for the vineyard in its winter state would be in the range of 0.20  b  0.34. 542 

During the summer state, the water content of the fully developed vegetation was estimated to 543 

be 1.63 kg m-2  VWC  1.8 kg m-2, to account for the different elements of the vine vegetation: 544 

stocks (0.33 kg m-2 - 0.5 kg m-2), grapes ( 0.8 kg m-2), stems ( 0.15  kg m-2) and leaves 545 

( 0.35 kg m-2). If 0.10  b  0.12, the estimated range of optical depth NAD = b  VWC for the 546 

vegetation summer state is 0.163  NAD  0.216. These values agree well with the corresponding 547 

“ground-truth” values of NAD for the fully developed vegetation state given in Table 3. 548 

Another approach to estimate NAD of the fully developed vine vegetation follows from an 549 

approximate relation used in the L-MEB model: NAD  b'  LAI, where b' is a vegetation 550 
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parameter (the default value used in L-MEB is b' = 0.06) and LAI is the Leaf Area Index. Two 551 

experiments carried out at the MELBEX III vineyard in 2009 and 2010 using destructive and non–552 

destructive measurements (indirect optical estimations) converged to LAI yielded 2 m2 m−2  LAI 553 

 2.5 m2 m−2 for several representative vines. Based on these estimates, the vegetation optical 554 

depth of the fully developed vegetation is in the range 0.120  NAD  0.150. However, the 555 

empirical relation NAD  b'  LAI used was developed for crop fields, and thus does not include 556 

any contributions from woody vine stocks. Nevertheless, the estimated range agrees well with 557 

the measurement based NAD shown in Table 3, and also with the range 0.130  NAD  0.156 558 

estimated from the vegetation water content excluding vine stocks. 559 

Considering the “ground-truth” values of the ttp parameters (Table 3), ttV exceeds ttH for both 560 

vegetation states. These values indicate significant anisotropy of the vegetation, especially 561 

during the winter state (isotropy would correspond to ttV = ttH =1). It is likely that these anisotropic 562 

effects can be related to the preferential orientation of the vine stocks in the vertical direction [13] 563 

as the other vegetation elements (stems, grapes, leaves) having no evident preferential 564 

orientation. 565 

6. Summary and Conclusions 566 

This study is the first to use data measured with one of the three identical ELBARA II 567 

radiometer systems required by ESA and developed by Gamma Remote Sensing (Gümligen, 568 

Switzerland, http://www.gamma-rs.ch/) within the framework of the ESTEC contract 569 

21013/07/NL/FF "L-band Radiometer Systems to be deployed for SMOS Cal/Val Purposes". The 570 

corresponding multi-angular brightness temperatures were measured at the MELBEX III field 571 

site, which is situated in a vineyard. This land-use type is typical of about 75% of the VAS area, 572 

which is the Mediterranean validation and calibration site for SMOS retrievals. The study 573 

presented general aspects of ELBARA II for field applications, as well as the retrieval of radiative 574 

properties of vines based on ground-based L-band measurements in direct support of the 575 

ongoing SMOS calibration and validation activities at the VAS. 576 
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One major outcome of our study was the quantification of the absolute accuracy of ELBARA II 577 

measurements, which was shown to be better than 1 K for a wide range of the scene brightness 578 

temperatures measured. The short-term measurements (foil experiments), for which radiative 579 

contributions of the soil were largely eliminated, revealed radiative properties of the vines at 580 

different development states that compared well with estimates based on vegetation parameters 581 

observed directly in the vineyard. For the trimmed vines during the winter state, the retrieved b-582 

parameter was in the range of 0.20  b  0.34. This is at least twice as much as the range 0.10  583 

b  0.12 often found in the literature for low growing vegetation. This discrepancy has to do with 584 

the fact that vines in their winter state consist mainly of woody components, which is not the case 585 

for most of low growing vegetation types investigated so far. Hence, we recommend using the 586 

higher values of the b-parameter found in this study for comparisons with SMOS retrievals over 587 

the VAS area. The multiple scattering radiative transfer model applied in our analysis also 588 

improves the physical base of the L-MEB retrieval scheme. In the case of very moist soils below 589 

scattering vegetation, this model potentially improves SMOS level-2 retrievals, while including the 590 

same set of parameters as the zero-order non-coherent solution of the radiative transfer 591 

equations currently implemented in L-MEB. 592 
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