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a b s t r a c t

This paper presents a technique developed for the retrieval of the orientation of crop rows, over anthropic
lands dedicated to agriculture in order to further improve estimate of crop production and soil erosion
management. Five crop types are considered: wheat, barley, rapeseed, sunflower, corn and hemp. The
study is part of the multi-sensor crop-monitoring experiment, conducted in 2010 throughout the agricul-
tural season (MCM’10) over an area located in southwestern France, near Toulouse. The proposed meth-
odology is based on the use of satellite images acquired by Formosat-2, at high spatial resolution in
panchromatic and multispectral modes (with spatial resolution of 2 and 8 m, respectively). Orientations
are derived and evaluated for each image and for each plot, using directional spatial filters (45� and 135�)
and mathematical morphology algorithms. ‘‘Single-date’’ and ‘‘multi-temporal’’ approaches are consid-
ered. The single-date analyses confirm the good performances of the proposed method, but emphasize
the limitation of the approach for estimating the crop row orientation over the whole landscape with only
one date. The multi-date analyses allow (1) determining the most suitable agricultural period for the
detection of the row orientations, and (2) extending the estimation to the entire footprint of the study
area. For the winter crops (wheat, barley and rapeseed), best results are obtained with images acquired
just after harvest, when surfaces are covered by stubbles or during the period of deep tillage
(0.27 > R2 > 0.99 and 7.15� > RMSE > 43.02�). For the summer crops (sunflower, corn and hemp), results
are strongly crop and date dependents (0 > R2 > 0.96, 10.22� > RMSE > 80�), with a well-marked impact
of flowering, irrigation equipment and/or maximum crop development. Last, the extent of the method
to the whole studied zone allows mapping 90% of the crop row orientations (more than 45,000 ha) with
an error inferior to 40�, associated to a confidence index ranging from 1 to 5 for each agricultural plot.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

0. Introduction

Agricultural land is a significant source of concern, as a conse-
quence of the natural resources it uses (water), and which it pro-
duces (food). Thanks to their broad spatial coverage, their
objectivity and their wide range of acquisition wavelengths, satel-
lite images have been widely used to monitor those continental
surfaces at different scales (from plot to national scales)
(Bastiaanssen et al., 2000; Dabrowska-Zielinska et al., 2002;
Seelan et al., 2003; Duchemin et al., 2006; Hadria et al., 2009; Mc
Nairn et al., 2009; Claverie et al., 2012; Moran et al., 2012;
Fieuzal et al., 2013). It is nevertheless still challenging to estimate
its biophysical parameters, as a result of the complex nature of
agrosystems. This limitation is mainly attributed to the cross con-

tribution of surface properties involved in the satellite reflectance
signal (crop heterogeneity, surface slope, soil type, crop row direc-
tion, etc.) (Baret et al., 2010; Zhao et al., 2010; Agam et al., 2012).
An improvement in the monitoring of crops thus partially relies on
the ability to detect and interpret the properties of an agricultural
surface, in particular the direction in which the plot is worked
(associated either with tillage practices, crop management from
seedling to harvest, swaths, tracks from the agricultural machinery,
etc.). The crop row orientation influence has been demonstrated in
several wavelength domains (ranging from the optical to micro-
waves), through the use of bidirectional reflectance distribution
functions (BRDF), with respect to the viewing angle of the satellite
images (Ulaby and Bare, 1979; Dobson and Ulaby, 1981; Kimes and
Kirchner, 1983; Ulaby et al., 1984; Dobson et al., 1995; Champion
and Faivre, 1996; Andrieu et al., 1997). It is thus important to take
the row orientation into account in the physical or empirical meth-
ods used to improve the estimate of the biophysical parameters of
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the crops (biomass, yield, leaf area index, water content, etc.)
(Loseen et al., 1995; Lobell et al., 2003; Wessels et al., 2006;
Duchemin et al., 2008; Liu et al., 2010; Claverie et al., 2012;
Fieuzal et al., 2012) and of the soil (moisture, runoff, risk of erosion,
etc.), through the use of satellite (Turner, 1989; Gaillard, 2001).

At landscape, the orientation of the tillage or crop present
strong spatial heterogeneities, resulting from the farmer’s prefer-
ences, the topological parameters of the plots (shape, size, or
slope), the variety of cultivated crops and growth patterns, and also
from the management of agricultural practices (soil preparation
and tillage, seedlings, harvesting, irrigation, etc.). On a satellite
image, those orientations (also defined as lineaments) take the
form of lines or curves, which are the visual manifestation of the
orientation of rows of crops or inter-plot heterogeneities. From
the wide range of techniques which could be used to detect the lin-
eaments, mathematical morphology appears a well-adapted
method for the extraction of linear networks because it is both

based on the spectral properties of the images (signature or tex-
ture), and their spatial and contextual characteristics (shape, size,
topological relationship or proximity). Although this technique
has never been applied to agricultural plots, it has been widely
applied for the extraction of urban zones, roads, coastlines and var-
ious different landscape features (Callot et al., 1993; Zheng et al.,
1995; Brunn and Weidner, 1998; Zhang et al., 1999; Laporterie
and Flouzat, 2001; Jishuang and Chao, 2002; Matti-Gallice and
Collet, 2004; Jin and Davis, 2005; Sheeren et al., 2007; Valero
et al., 2010; Maire et al., 2012). The application of the mathemati-
cal morphology to satellite images will allow the detection the row
orientation over the entire swath of the images, today limited to
one-plot approach thanks to the use of vision system installed
onboard of mobile agricultural vehicle in the context of precision
agriculture (Olsen, 1995; Marchant, 1996; Hague and Tillett,
2001; Sogaard and Olsen, 2003; Bobillet et al., 2003; Gée et al.,
2008; Bossu et al., 2009; Jones et al., 2009; Wu et al., 2011;

Fig. 1. (a) Localization of the study site (‘‘super site’’) in the South West of France with the location of the 232 studied plots. (b) Ombrothermic diagram of the year 2010.
Monthly mean air temperatures (in grey) and cumulative precipitations (in black) are derived from the meteorological station of Lamasquère.
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Burgos-Artizzu et al., 2011; Montalvo et al., 2012; Guerrero et al.,
2013).

Among the wide range of available satellite images, it is assume
to explore the capability of high spatial resolution images (HSR),
since they represent a suitable compromise between the remote
sensor’s temporal sampling capabilities (few days), the spatial res-
olution (RSPA < 10 m, compatible with the size of agricultural plots)
and the associated swath widths (>20 km). The use of HSR images
is preferred to very high spatial resolution images (VHSR, RSPA < 1 -
m) for which, its characteristics do not currently allow multi-tem-
poral and medium swath techniques to be implemented. On the
other hand, low-resolution satellite images (several km), like those
provided by SMOS, ASCAT, AMSR, etc., are not used in this study
because of the small size of the surface elements to detect.

In this context, the aim of the present study is to develop and
apply a multi-temporal approach to extract the crop row orienta-
tions over agricultural landscape, through the use of high resolu-
tion images delivered by the satellite Formosat-2. The paper is
structured as follows: main characteristics of the studied site are
first presented (section 1) followed by the description of satellite
images and ground data acquired during the MCM’10 Experiment

(Section 2). Section 3 describes the methodology used to estimate
the crop row orientations. Analyses and results are discussed in
Section 4, by considering single-date and multi-temporal
approaches. This section includes (1) the determination of the peri-
ods which are the most suitable for the row extraction (in link with
the crop phenological cycles and/or the agricultural practices) and
(2) a row orientation map performed over the entire image foot-
print. Conclusions and prospects are provided in Section 5.

1. The study site

The French landscape is strongly dependent on the history of its
society and the techniques which have been used over time. The
morphology of its land plot network can be traced back to a self-
organized network from the Middle Ages (Latouche, 1967). Thus,
agricultural plots throughout the country are very diverse in terms
of their size and shape despite agricultural reparcelling which
began in 1941. The studied site, defined as ‘‘super-site’’, is part of
this heritage (Fig. 1a). It is situated in the South–West of France,
near Toulouse (central coordinates: 43�290360 0N, 1�140140 0E). It is
governed by a temperate climate and includes two meteorological
stations near to the villages of Lamasquère and Auradé. The annual
rainfall amounted to 600 mm in 2010 (with a maximum of
125 mm in May). The average daily air temperature ranges from
a few degrees in winter to 25 �C in summer (Fig. 1b). In this region
of alluvial plains and hills, the steepest slopes are mainly found in
the transition zones, between low (174 m) and medium (319 m)
altitudes. They never exceed 13.4�.

The super site is oriented toward polyculture/livestock, and is
composed of crops (56.8%), forests (7.9%), urban areas (2.4%),

Fig. 2. Panchromatic image acquired on July 19th, 2010.

Table 1
Temporal distribution of the images acquired in the multi-spectral (MS) and
panchromatic (PAN) modes.

Sensor Mode Acquisition dates (year 2010)

2-Mar 21-May 8-Aug 21-Oct
MS 10-Apr (just PAN) 07-Jul (just PAN) 27-Aug
PAN 18-Apr 19-Jul 15-Sep

27-Apr 31-Jul 7-Oct

C. Marais Sicre et al. / ISPRS Journal of Photogrammetry and Remote Sensing 94 (2014) 127–142 129
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grasslands (32.1%) and water bodies (0.8%). The crops are various
and their rotation is typical of temperate regions. They are divided
in two categories: winter (wheat, barley and rapeseed) and sum-
mer crops (corn, sunflower, sorghum, soybean, hemp). Few other
crops are also present in the super-site, but not considered in this
study (peas, beans, etc.). The winter crops of wheat and barley
emerge in autumn, followed by a latency phase in winter and
new growth in spring. Ear emergence occurs in May/June and har-
vesting takes place in summer. Barley is sown at the same time
than wheat, but generally matures earlier. A small number of late
barley varieties emerge in spring, and are harvested at the end of
the summer. Rapeseed has a long vegetation cycle (emergence in
September, flowering in April/May and harvesting in July). Despite
a strong heterogeneity in its development during the growing sea-
son, the vegetation can fully covers soil at the end of flowering
(Boissard et al., 1992; Denoroy et al., 2000).

The sunflower has a short vegetation cycle lasting between 120
and 150 days, depending on its variety and on climatic conditions.
Emergence occurs between April and June, and harvesting begins
at the end of summer and continues throughout the autumn. The
plots are often heterogeneous in term of vegetation development
and density. The emergence of corn, soybean and sorghum begins
at the end of April, with harvesting ranging from October to
November. Approximately 90% of corn and soybean crops in the
monitored zone are irrigated. The emergence of hemp also takes
place at the end of April, and in May the vegetation cover is high
(about 90% three weeks after emergence). Flowering begins in
June, and harvest takes place in September.

2. Satellite and ground data

2.1. Satellite images

The images are provided by the Taiwanese satellite Formosat-2,
which was launched in May 2004 on a sun-synchronous orbit. It

Fig. 3. Spatial distribution of crop types and associated orientations.

Table 2
Number of observed crop type and mean crop spacing.

Crop type Numberof plot Mean crop spacing (cm)

Wheat 115 20
Rapeseed 17 80
Barley 8 20
Corn 36 80
Sunflower 36 80
Hemp 7 80
Sorghum 6 80
Soybean 2 80
Ray grass 4 20
Pea/Soybean 1

Fig. 4. Distribution of crop row orientations on the 232 observed plots.
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produces optical images using barrette sensors (in the visible and
short-wave infrared domains) at HSR (8 m in multi-spectral and
2 m in panchromatic modes), with a constant viewing angle: 45�
lateral and 45� forward–backward looking (Chern et al., 2006).
Each image covers a 24 � 24 km2 area centered on the super-site.
They are processed by the CNES in the framework of the ‘‘Kalidéos’’
program (Rabaute et al., 2012) (Fig. 1a). All the images are ortho-
rectified using CNES ortho-rectification tools. Cloud detection and
atmospheric correction are also applied. The mean location accu-
racy is about one pixel. Images acquired in multispectral mode
are radiometrically corrected to the top of the canopy (TOC),
whereas the panchromatic images are corrected to the top of the
atmosphere (TOA).

The multispectral (MS) mode is used to generate Normalized
Difference Vegetation Index (NDVI) images, in order to monitor
the crop cycle (11 images are available in this mode). The repro-
cessed panchromatic images (PAN) are used to detect the crop
row orientations (Fig. 2). The 13 satellite images are acquired
between March 2nd and October 21st, 2010 (Table 1).

2.2. Ground data

Ground data are collected between February 20th and Novem-
ber 23rd, 2010, within a 252 km2 zone, during the Multispectral
Crop Monitoring’10 experiment (Baup et al., 2012). They concern
the observation of the land and its heterogeneities, the soil tillage
(type and orientation), plot exposure and plot slope (Meier, 2001).
Data are regularly collected along a 70 km itinerary, which allows
sampling the variability of surface parameters as shown in Fig. 3.

The 232 sampled plots are characterized by a wide variety of
geometric shapes (square, rectangular, circular or triangular) and
sizes ranging from 0.14 to 24.6 ha. Mean local slopes range
between 0� and 13.4�. The crops are usually sown in rows at a

constant spacing ranging from approximately 12 cm to 85 cm
(respectively for wheat and rapeseed for example).

In 2010, 60% of the monitored plots are winter crops (610 ha)
and 40% are summer crops (460 ha). The number of plots observed
as a function of the type of crop is summarized in Table 2. The ori-
entation-related information is recorded for 232 plots, of which
227 are sown with one of the principal crops (140 with winter
crops and 87 with summer crops) and 5 others are either tempo-
rary meadows (ray grass, etc.), pea or soya bean crops (Table 2).
Those last 5 plots are integrated into the study of all of the crops,
however as a result of their small number they can not be studied
specifically.

The orientation of the seedling rows is measured with a com-
pass (±5�), just after the emergence, when the low vegetation cover
allows the observation of the lineaments. Fig. 4 shows the histo-
gram of observed orientations, for the full set of 232 plots. The azi-
muths cover the full range of angles between 0 and 180�, with a
bimodal distribution centered on 25� and 105�. No significant rela-
tionship is observed between the plots exposure or slope, and the
orientation (the coefficients of determination between those
parameters are close to 0.1).

2.3. Exogenous data

Since 2007, the French Services and Payment Agency (ASP)
provide a regulated anonymous version of graphical data from
the French Graphical land Plot Register (RPG), associated with the
data declared by the French farmers. This layer of information is
used for the management of European land surface subsidies. The
RPG is a geographical information system, which supplies detailed
information concerning land use and standing structures. It is used
in the present study as a mask layer, in order to restrict the analysis
to cultivated areas only.
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Fig. 5. Description of the method used to estimate the lineament orientations of an agricultural landscape.
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3. Methodology

The applied technique is designed to extract all the plot row ori-
entations from the 13 panchromatic images (Fig. 5). A directional
convolution filter is first applied in order to produce 8 bits gradient
images (using the default weighting coefficients of the ENVI 4.7
software). The filter’s convolution kernel is a 3 � 3 window,
applied in 2 different directions: 45� and 135�. The filtering allows
the extraction of the textural information related to the lineament
grid. The lineaments aligned in the direction of the filter are

highlighted (Fig. 6), thus simplifying the use of mathematical
morphology extraction techniques. The use of a succession of mor-
phological operations (erosion, geodesic reconstruction, opening
and skeletoning) on the gradient image makes it possible to obtain
an image of the lineament grid (Fig. 7). Azimuth extraction is
carried out in Geographic Information Systems (GIS) software
(Fig. 8).

The final step involves the selection of the results produced by
the 2 filters, corresponding to several different dates, in order to
produce a seedling row orientation map of the studied zone.

Fig. 6. Examples of filtering images processed at 45� (b) and 135� (c) estimated from the initial panchromatic image acquired on 19th of July (a). Masked areas are displayed
in black.
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Fig. 7. Image processing is composed of 4 steps (a) Image produced by a 45� directional filter; (b) Binary image obtained by thresholding; (c) Erosion, reconstruction/opening
of 2 pixels on a thresholded image; (d) Skeletoning.

Fig. 8. Example of lineament obtained by: skeletoning (a); after eliminating lines inferior to 15 m (b), and after smoothing the lines (c).
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3.1. Spatial filtering

The panchromatic images reveal a texture characterized by a
repetitive grid on the agricultural plots (Fig. 6). The directional fil-
tering highlights this lineament grid, within a range of orientations
defined by the filter’s sensitivity ±45� (Zall and Russel, 1979;
Amesz and Lausink, 1984; Mavrantza and Argialas, 2003). Fig. 6
shows the images obtained with the 45� and 135� directional
filters, applied on an image acquired on July 19th with a mobile

3 � 3 filtering window (masked areas are displayed in black).
When used together, the 2 filters allow covering an angular distri-
bution varying between 0� and 180�, which corresponds to the full
range of possible orientation of plots at landscape.

3.2. Extraction of lineaments

Lineaments extraction is performed by using algorithm of
mathematical morphology (‘‘set operation’’ as defined by Serra,
1988). This technique requires the application of morphological
operators to binary images, through the use of a mask or a prede-
fined geometrical pattern: the structuring element. This can have
several different shapes (square, rectangle, circle, etc.). Binarization
is performed by thresholding the 8-bits gradient directional images
produced by the spatial filtering. Minimum and maximum thresh-
olds are set for all the images and are respectively equals to 170
and 255. The resulting binary image has only a restricted range
of gradients, representative of the lineaments. The value of the out-
put pixels is thus equal to 1 between the lower and upper limits of
the thresholding, and is equal to zero everywhere else. The basic
binary image is shown in Fig. 7b. This image has been eroded
and the disk (2 pixels) has been selected as a structuring element.
Isolated pixels are then eliminated and a marker image is obtained.
However, the erosion also reduces the size of the objects present in

Fig. 9. Example of lineaments determined by the 45� directional filter (a) and by the 135� directional filter (b) on a panchromatic image recorded on July 19th, 2010.

Fig. 10. Comparison between observed and calculated orientations, for all crops on July 19th, 2010; before and after applying a threshold on the spatial frequency
(respectively (a) and (b)).

Table 3
Evaluation of the technique’s performances to detect the row orientations, as a
function of crop type (July 19th).

n (parcel) R2 RMSE (�) rRMSE (%) FD (%)

All crops 116 on 232 0.90 14.57 19.98 50.00
Winter crops 92 on 140 0.91 14.66 20.98 65.71
Wheat 77 on 115 0.90 14.8 21.19 66.96
Barley 5 on 8 0.99 8.41 10.64 62.50
Rapeseed 10 on 17 0.87 15.99 24.42 58.82
Summer crops 20 on 87 0.90 1.30 15.97 19.23
Corn 8 on 37 0.95 11.11 12.51 22.22
Sunflower 4 on 36 0.92 18.52 31.52 11.11
Hemp 5 on 7 0.96 12.53 13.77 71.43
Sorghum 3 on 6 0.99 11.73 8.99 50.00
Soybean 0 on 2 – – – 0.00
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the image. Geodesic reconstruction is thus applied (followed by
opening operation), with the aim of eliminating small connected
lineaments while maintaining the original shape of objects.
(Fig. 7c).

These various operations are completed by skeleton calcula-
tions based on thinning. The skeletoning allow the shape of part
of a binary image to be reduced to a ‘‘line’’, while preserving its
topological characteristics (Fig. 7d).

3.3. Orientation extraction and calculation

This GIS processing is carried out both with tools embedded in
ESRI’s ArcGIS (version 10) software, for the calculation of geometric
attributes, and with a free application developed for ArcGIS by
Jenness Entreprises (Jenness, 2011).

The skeletons obtained from mathematical morphology
(Fig. 8a) are refined and the elements perturbing the orientation
determinations are eliminated. Only the skeletons greater than
15 m in length are kept, in order to eliminate various islands and
outcrops (Fig. 8b). The skeletons are then smoothed using the PEAK
(Polynomial Approximation with Exponential Kernel) method
implemented in the ArcGIS 10 software (a threshold tolerance of
10 is set) (Fig. 8c). The orientation angle is finally defined as the
direction of a lineament with respect to the North (clockwise).

The results are evaluated on the basis of a comparison between
the azimuths estimated for each plot and for each filter (45�, 135�),
and those measured in the plot. The use of satellite images thus
made it possible to extract the following information for each plot:
the quantity of lineaments, length of the lineaments (L), surface
area (S), and median of the estimated orientation.

When the range of orientations covered by the filter includes
that of the observed crop row, the lineament density determined

for the plot is greater (Fig. 9). For a given plot ‘‘i’’, the choice of
the orientation given by the 2 filters is based on the analysis of
the spatial frequency (SF), defined as:

SFi
a ¼

Li
a

Si
;

where L represents the total length of the lineaments inside a plot, S
and i are respectively the surface (provided by RPG data) and the
identifier of the plot. a represents the angle of the filter (45� or
135�). SF is expressed in m�1.

For each plot, when the spatial frequency defined by the 45�
filter is greater than or equal to that given by the 135� filter, the
orientation determined by the 45� filter is retained, and vice versa.

4. Results and discussion

The methodology is applied to the time series of 13 images
through two interconnected approaches: single-date (Section 4.1)
and multi-date (Section 4.2) processing. Single-date approach is
used to validate the method, by estimating the contributions of
each directional filter. Multi-date analysis is used to quantify the
contribution of each date, for each type of culture, to estimate
the crop row orientation. Results produced by the multi-temporal
technique make then it possible to extend the intra-land-plot ori-
entation to the full extent of the scene (Section 4.3).

4.1. Single-date analysis

Single-date analysis is carried out on the image acquired on
19th of July. At this date, all the summer crops are growing, and
are at different phenological stages. Most of the winter crops

Summer Crops

Winter CropsWinter Crops

Fig. 11. Temporal evolution of the coefficient of determination and the mean square error, associated with the estimation of land plot orientation (for all types of crop).
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(70%) have already been harvested (inter-crop phase with or with-
out the presence of stubble). For some winter crops, tilling is car-
ried out with partial burying of the stubble.

4.1.1. Importance of the spatial frequency
For each plot, unique azimuth estimation is retained depending

on the spatial frequency. To reduce the false detection of orienta-
tion, related to intra-land-plot heterogeneities, each spatial fre-
quency of each plot is compared to the median of all spatial
frequency observed for the 232 plots. Only the plots for which
the spatial frequency is greater than the value of the median are
retained. This method allow reducing the relative error (from
48% (35�) to 20% (14.5�)) and significantly improves the coefficient
of determination from 0.56 to 0.90), as shown in Fig. 10.

4.1.2. Influence of the crop type
Table 3 displays statistical indexes computed by considering

individual, summer, winter or all crops. In this table, the fre-
quency of distribution (FD) represents the relative number of
plots for which the method is applied. With a coefficient of
determination of 0.90 and a relative error close to 20% (14.6�),
the crop row orientation of all crops can be considered as well
estimated for 50% of plots (FD = 50%). Similar correlations are
obtained for summer (R2 = 0.91 and FD = 66%) and winter crops
(R2 = 0.90 and FD = 19.2%). According to the individual crops,
the values of coefficient of determination are high with values
superior or equal to 0.87, and orientation errors inferior to 19�.
Higher errors are observed for rapeseed (RMSE = 16.0�) and sun-
flower (RMSE = 18.5�), explained by the heterogeneity of these
crops. Although the number of corn and sunflower plots for

Fig. 12. Temporal evolution of frequency distribution (FD) and NDVI of wheat (a) and winter/spring spring barley (b), together with coefficient of determination, root mean
square error (RMSE).
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which the orientations is detected is low (FDcorn = 22.2% and
FDsunflower =11.1%), contrary to the case of hemp (FD = 71.4%),
the threshold on the spatial frequency allows the effect of false
detections to be avoided (0.92 < R2 < 0.99).

4.2. Multi-temporal analysis

In terms of the crop calendar, the use of multi-temporal series
makes it possible to determine the most suitable periods (or date)
for distinguishing row orientations, in accordance with the surface
state. In fact, several factors may lead to a radiometric change

indicative of the orientation (plant’s geometry, vegetation cover,
distance inter-row, tractor wheel marks, overlapping of agricul-
tural tools, swaths, etc.). The aim of the multi-temporal usage is
to take full advantage of all surface changes of the agricultural
plots, in order to improve the accuracy with which the row orien-
tations are estimated.

Fig. 11 shows that the period of active vegetation, between mid-
March and mid-September, is the most suitable for the determina-
tion of the row orientation. For all crops, the coefficient of determi-
nation lies between 0.13 (21st of October) and 0.90 (19th of July),
with quadratic errors equal to 51.01� and 14.56�, respectively. The

Fig. 13. Temporal evolution of frequency distribution (FD), NDVI, RMSE and R2 estimated on rapeseed.

Fig. 14. Temporal evolution of frequency distribution (FD), NDVI, RMSE and R2 estimated on early and late sunflowers.
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weak correlation observed at the beginning of spring or in autumn
(R2 < 0.3) is associated to the land cover type. At this period, the
soil is mainly bare and smooth (about 10% of deep tillage) or cov-
ered by low vegetation, for which the spatial resolution of the
images (2 m) does not allow the good estimation of the row
orientation.

4.2.1. Estimation of row orientation of winter crops
The coefficients of determination for wheat and barley respec-

tively vary between 0.15 and 0.90, and between 0.03 and 0.99
(Fig. 12). The trends are furthermore similar, with minima observed
during the growing period (when the vegetation cover is the high-
est) and maxima at harvest time (Fig. 12). In the case of wheat, this
period extends until July. In the case of barley, it is longer as a result
of the type of barley monitored (winter and spring cultivars). The
best results are obtained on July 19th just after harvest where the
row orientation is determined for 67% of the wheat plots, and 62%
of the barley plots. The relative errors are equal to 21% (15�) for
wheat and 11% (8�) for barley. The coefficients of determination
are greater than or equal to 0.90. The autumn is also a suitable per-
iod for the detection of the row orientations for wheat or barley
(0.42 < R2 < 0.75 in mean), thanks to the deep tillage carried out

before sowing of the winter crops of 2011 (Fig. 12). These tillages
occur on days 238 and 257 for rapeseed and on days 257 and 279
for wheat or barley due to difference in crop calendar.

In the case of rapeseed, the coefficient of determination varies
between 0.15 and 0.99. Fig. 13 shows that the smallest errors occur
over two different periods (RMSE < 20�). The first phase, from the
flowering period until harvesting, lasts from April until July (doy
116 and 140, Fig. 13). During this period, the seedpods are filled
and both the vegetation cover and plant geometry are strongly
modified, inducing a well-marked radiometric change on satellite
image. More than 60% of the plots of rapeseed are well detected
at this period (60% < FD < 80% between doy 116 and 140). The sec-
ond phase appears during tillage (after doy 238), which precedes
the winter crops of 2011.

As for the case of wheat and barley, July 19th is a good date
for rapeseed, in terms of the relative error with 24% (16�),
coefficient of determination (R2 = 0.87) and frequency distribution
(FD = 59%). This result confirms the well-marked effect of harvest
on the capabilities of row orientation detection (due to residues,
swath, etc.). In fact, the width of the cutter bar on the combine
harvesters lies between 5 and 9 m, which correspond to the
estimated lineament spacing, which has a mean value of 7 m.

Fig. 15. Temporal evolution of frequency distribution (FD), NDVI, RMSE and R2 estimated on corn.

Fig. 16. Impact of pivot irrigation on the estimation of crop row orientation on one maize plot. The panchromatic image is taken on July 19th (NDVI = 0.8) (a).Two directional
filters are applied: 45� and 135� (b and c).
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4.2.2. Estimation of row orientation of summer crops
In 2010, the important spring rains delayed the growth of some

summer crop seedlings. The emergence phase was thus spread
over several weeks, and in mid-July the plants were characterized
by contrasted levels of development.

Fig. 14 shows that the technique has a limited ability to deter-
mine the mean sunflower row orientation. However, during the
flowering period, on July 19th (doy 199) for the earliest sunflower
and on August 8th (doy 219) for the latest, the estimations are
more relevant. At these two dates, the coefficients of determination
are respectively equals to 0.92 and 0.52, with a relative error equal
to 31% (18�) and 61% (42�). Less than 20% of sunflower plots are

detected at these dates (FD = 11% on 19th of July and FD = 19% on
8th of August). This outcome confirms the limitations of this tech-
nique (plot approach), in view of the heterogeneity inherent to this
type of crop. An intra-land-plot method should be more relevant
for this type of crop. No significant results are obtained in autumn
since deep tillage events occur later in the year for these plots.

The determination of the row orientation of corn is highly var-
iable (R2 ranged from 0 to 0.95). Two favorable dates can neverthe-
less be distinguished (Fig. 15). On July 19th, during flowering, 22%
of the corn plots are detected and the coefficient of determination
reaches 0.95, with a relative error inferior to 13% (12�). April 10th
(doy 99) also provides good results, with a coefficient of determi-
nation equal to 0.87 (during the tillage prior to the seedlings), asso-
ciated to a low relative error (18%, 16�). On this date, row
orientation is estimated for 39% of the corn plots.

This variability of detection is partly related to the presence of
irrigation equipment, which can present different orientation to
that of the seedlings on the plot. The extent to which the soil
and ruts are compacted, due to the presence of irrigation ramps,
affects the detection process and/or leads to weak estimations
capabilities. Fig. 16 shows that the irrigation equipment, like piv-
ots, tends to adversely affect the detection of the row orientations
of irrigated crops by creating a directional heterogeneity. As for
sunflower, an intra-land-plot method should be more relevant.

The determination of the row orientation for the hemp crops is
particularly interesting, on account of the significant vegetation
cover produced by this crop. Fig. 17 shows that the coefficient of
determination varies between 0.11 and 0.96, and follows the NDVI
cycle. Throughout the period for which the NDVI reaches maxi-
mum values (NDVI > 0.7), the determination of row orientations
is clearly relevant, with a coefficient of determination greater than
or equal to 0.90 and a relative error inferior to 15% (12.6�). During
this period, more than 70% of the plots can be detected
(71% < FD < 86%). At the time of senescence, the coefficient of
determination is low (R2 = 0.13). Then, it increases after harvest
(2 plots are harvested on September 15th (doy 257), and 5 from
the 7th of October (doy 279 and 293 on the Fig. 16), when stubbles
are still present on the plot.

Fig. 17. Temporal evolution of frequency distribution (FD), NDVI, RMSE and R2 estimated on hemp.

Fig. 18. Evolution of statistical parameters resulting from the use of five dates for
all crops (RMSE, R2 and FD) (a). The evolution of the frequency distribution is
plotted, by type of crop, as a function of the number of images used (from 1 to 5).
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4.3. Extrapolation of the row orientation to the full scene

The studied zone, defined as super-site in Fig. 1, comprises
42,320 ha of cultivated lands, including 20% of grasslands. The
extrapolation of the technique to the full scene requires the resto-
ration of a land plot inside the whole study site (Section 4.3.1). Five
images are used to estimate and map the row orientation (Sections
4.3.2 and 4.3.3).

4.3.1. Restoration of plots
The plot restoration technique is based on the radiometric seg-

mentation of the 8 m resolution multispectral images. The ability
to render the outlines of the plots is better using the four spectral
bands of those images (blue, green, red and near infra red), in com-
parison with the panchromatic images, limited to one spectral
information. Initially, the local contour detection technique
involves scanning the image with a window defining the zone of
interest.

The operator proposed by Shen and Castan is applied to the
image in order to detect well-marked radiometric transitions (Shen
and Castan, 1992). Then, the mathematical (watershed) morphol-
ogy algorithm allows extracting closed and skeletoned contours
(Ranwez and Soille, 2002). Thresholding of the catchment dynam-
ics is applied using the contour power map, thus leading to the
production of a hierarchical representation of the different levels
of image segmentation (Fjørtoft and Lopès, 1999).

This technique allows creating several levels of segmentation,
corresponding to a given threshold. Depending on its spatio-tem-
poral heterogeneity, a segment may correspond to one, several,

or even no agricultural plot. In order to minimize the highly heter-
ogeneous zones and the very small segments, the RPG was used to
mask the segmentation. Next, only plots with a surface greater
than 1000 m2 (0.1 ha) are conserved. The resulting segments are
radiometrically homogeneous, allowing intra-plot heterogeneities,
which are a limitation to the plot-by-plot approach described
above, to be overcome.

4.3.2. Image selection
In order to map the full set of orientations for the entire studied

zone, five dates are used. These are classified in terms of the
relevance of the results obtained by the multi-temporal analysis:
10/07/19; 10/08/08; 10/04/10; 10/07/07 and 10/07/31 (Section 4,
Fig. 11). For each date, the crop row orientation of a plot is
retained:

� if the FS of the plot exceed the median of the FS observed for all
the plots on the image,

� and if the crop row orientation of the plot is not previously esti-
mated by another date.

Adding images to determine more row orientation of plots is
performed with the detriment of the coefficient of determination
(R2 decreases from 0.90 to 0.48) and associated errors (RMSE
increases from 14� to 37�) as shown in Fig. 18.

First, the image acquired on July 19th is selected as an
orientation reference for 50% of the land plot (Fig. 18a). When
the image acquired on August 8th is added, in the case of winter
crop, the coefficient of determination for all plots is greater than

Fig. 19. Row orientation map produced using a multi-temporal approach. Each plot is associated with a confidence index ranging between 1 (high confidence) and 5 (low
confidence).
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0.78, for a number of plots greater than 80% (FD = 82%). The coeffi-
cient of determination for sunflowers is 0.59 (RMSE = 38�), but only
25% of the plots are concerned (Fig. 18b). However, the addition of
this image has an adverse effect on corn, since it lowers the coeffi-
cient of determination of this crop and increases the error (from
11� to 47�). The use of three dates considerably degrades the coef-
ficient of determination for rapeseed and sunflower, although that
corresponding to corn increases slightly, from 0.14 to 0.29, and the
mean error changes from 56� to 49�. This outcome is related to the
date of the image (April 10th, 2010), on which the soil is tilled prior
to planting of corn seedlings. Nevertheless, the use of three dates
made it possible to determine the orientation of more than 80%
of the land plots, with a mean error of 31�. The addition of the
fourth and the fifth dates allowed the orientation of more than
89% of the land plot to be determined, to the detriment of the accu-
racy of the results (R2 = 0.48) (Fig. 18a and b).

4.3.3. Mapping the row orientation
In view of the contributions from each date, mapping of the ori-

entations is carried out with a global confidence index ranging
from ‘‘1’’ for one single date, to ‘‘5’’ when the five dates are taken
into account. This confidence index is related to the values of the
coefficient of determination estimated in Fig. 18a (R2 decreases
at landscape with the increase of image number). Fig. 19 provides
a view of the plots detected over the full footprint of the Formosat-
2 image, as well as the orientations of a small number of preferred
plots.

5. Conclusion

The present paper proposes a technique for the extraction of
crop rows orientation based on Formosat-2 panchromatic images
acquired with a spatial resolution of 2 m. The method developed
is based on the use of directional filters and operators taken from
binary mathematical morphology. Validation is performed through
the use of multi-temporal analysis, on 6 types of crop (232 plots).
The quality of the results shows the efficient of the proposed tech-
nique over the studied zone (i.e. in a context of moderate surface
slopes and a wide range of plot shapes and sizes). This study
emphasizes: (i) the importance of the image acquisition dates for
the estimation the crop row orientation, whatever the crop type;
(ii) the limitations of the method in terms of the extraction of
row orientation for plots cultivated with sunflower or corn.

The results obtained for winter crops show that the best estima-
tion period occurs during, or just after the harvesting season. This
outcome is attributed to the passage of agricultural machinery
together with the presence of stubbles and swaths on the plots.
In the case of the determination of summer crop orientations, this
depends on the considered type of crop. Although it is relatively
straightforward for hemp throughout the period when the NDVI
is at a maximum, it remains difficult for the other crops, expected
during flowering. Limiting factors related to irrigation adversely
affect the detection of corn orientation. In the case of sunflower
crops, the limitation arises from the intrinsic heterogeneity of this
crop. In the latter two cases, this type of plot-by-plot approach
appears to be poorly adapted, with respect to the intra-plot tech-
nique, which remains to be evaluated. However, the products gen-
erated by this process and the associated confidence indices can be
used as a basis for the analysis of agricultural landscapes, with
respect to numerous thematic topics such as soil erosion, hydro-
logical approaches, water balances, carbon and energy budget, etc.

This study corresponds to an initiative for the use and the pro-
motion of actual and future high spatial resolution satellite images
(delivered by Spot, Formosat, Sentinel or Venls). The application of
this technique on archive satellite data will provide structural

information concerning the row orientation of crops during the
past years. Future analyses will deal with the use of very high spa-
tial resolution images (delivered by Pleiades, Ikonos or Quickbird)
in order to determine the relative contributions of these images for
the monitoring of agricultural crop row orientations.
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