
HAL Id: ird-01715147
https://ird.hal.science/ird-01715147

Submitted on 22 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimating babassu palm density using automatic palm
tree detection with very high spatial resolution satellite

images
Alessio Moreira dos Santos, Danielle Mitja, Eric Delaître, Laurent Demagistri,

Izildinha de Souza Miranda, Thérèse Libourel Rouge, Michel Petit

To cite this version:
Alessio Moreira dos Santos, Danielle Mitja, Eric Delaître, Laurent Demagistri, Izildinha de Souza
Miranda, et al.. Estimating babassu palm density using automatic palm tree detection with very
high spatial resolution satellite images. Journal of Environmental Management, 2017, 193, pp.40 - 51.
�10.1016/j.jenvman.2017.02.004�. �ird-01715147�

https://ird.hal.science/ird-01715147
https://hal.archives-ouvertes.fr


1 

 

Estimating babassu palm density using automatic palm tree detection with very high 1 

spatial resolution satellite images  2 

Alessio Moreira dos Santos 
ab*

, Danielle Mitja
c
, Eric Delaître

c
,  Laurent Demagistri

c
,  Izildinha de 3 

Souza Miranda
a
,  Thérèse Libourel

c
, Michel Petit

d
. 4 

 5 

a. Universidade Federal Rural da Amazonia (UFRA), CP.917, Belém, Pará, 66077-530, Belém,  6 

Brazil. alessiomsag@gmail.com, izildinha.miranda@ufra.edu.br 7 

b. Universidade Federal do Sul e Sudeste do Pará (UNIFESSPA), Folha 31, Quadra 07, Lote 8 

Especial, Nova Marabá,  68507-590, Marabá, Brazil. 9 

c. Institut de Recherche pour le Développement (IRD), UMR 228 ESPACE DEV, 500, Rue Jean 10 

François Breton 34093 Montpellier, France. danielle.mitja@ird.fr, eric.delaitre@ird.fr, 11 

laurent.demagistri@ird.fr, therese.libourel@univ-montp2.fr   12 

d. Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis BP64501, 34394 13 

Montpellier Cedex 05, France.  michel.petit@ird.fr   14 

 15 

*Corresponding author : 16 

 17 

Alessio Moreira dos Santos : alessiomsag@gmail.com 18 

19 

mailto:alessiomsag@gmail.com
mailto:danielle.mitja@ird.fr
mailto:eric.delaitre@ird.fr
mailto:laurent.demagistri@ird.fr
mailto:therese.libourel@univ-montp2.fr


2 

 

Abstract 20 

High spatial resolution images as well as image processing and object detection algorithms 21 

are recent technologies that aid the study of biodiversity and commercial plantations of forest 22 

species. This paper seeks to contribute knowledge regarding the use of these technologies by 23 

studying randomly dispersed native palm tree. Here, we analyze the automatic detection of 24 

large circular crown (LCC) palm tree using a high spatial resolution panchromatic GeoEye 25 

image (0.50 m) taken on the area of a community of small agricultural farms in the Brazilian 26 

Amazon. We also propose auxiliary methods to estimate the density of the LCC palm tree 27 

Attalea speciosa (babassu) based on the detection results. We used the “Compt-palm” 28 

algorithm based on the detection of palm tree shadows in open areas via mathematical 29 

morphology techniques and the spatial information was validated using field methods (i.e. 30 

structural census and georeferencing). The algorithm recognized individuals in life stages 5 31 

and 6, and the extraction percentage, branching factor and quality percentage factors were 32 

used to evaluate its performance. A principal components analysis showed that the structure 33 

of the studied species differs from other species. Approximately 96% of the babassu 34 

individuals in stage 6 were detected. These individuals had significantly smaller stipes than 35 

the undetected ones. In turn, 60% of the stage 5 babassu individuals were detected, showing 36 

significantly a different total height and a different number of leaves from the undetected 37 

ones. Our calculations regarding resource availability indicate that 6,870 ha contained 25,015 38 

adult babassu palm tree, with an annual potential productivity of 27.4 t of almond oil. The 39 

detection of LCC palm tree and the implementation of auxiliary field methods to estimate 40 

babassu density is an important first step to monitor this industry resource that is extremely 41 

important to the Brazilian economy and thousands of families over a large scale. 42 
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 45 

1. Introduction 46 

The babassu (Attalea speciosa Mart. ex Spreng.) is a palm tree species native to dense 47 

and humid forests that is distributed across approximately 200,000 km
2
 of forests and 48 

savannas in Brazil, with optimal development in secondary environments (Anderson and 49 

Anderson, 1985; May et al., 1985; Barot et al., 2005; Santos and Mitja, 2011; Coelho et al., 50 

2012). Recent research emphasized the importance of this palm tree to industry, given its 51 

potential for biodiesel production (Da Rós et al., 2014) and bioenergy (Protásio et al., 2014); 52 

to ethnobotany, given its use diversity (Araujo and Lopes, 2012; Martins et al., 2014); to 53 

anthropology, given its economic and social importance for small farmers (Porro and Porro, 54 

2014); and to medicine because babassu palm trees can become infested with triatomines, 55 

which transmit Chagas disease (Dias et al., 2014). Recently, babassu oleaginous almonds 56 

were considered as the third most important non-wood product of plant extractivism in Brazil 57 

(89,739 t/$56.7 million in 2013; IBGE, 2013). Nevertheless, a gap exists between the 58 

knowledge of this species and use of technologies that might aid in its management and 59 

sustainable exploitation. 60 

In forest plantations, information on tree or palm tree density is obtained using remote-61 

sensing techniques that aid in productivity monitoring, planning and management of African 62 

oil palm tree (Shafri et al., 2011; Srestasathiern and Rakwatin, 2014) and eucalypt (Whiteside 63 

et al., 2011; Zhou et al., 2013) plantations. The spatial information provided regarding the 64 

number of trees or palm trees enables (among other things) the identification of excessive 65 

mortality areas (Zhou et al., 2013) and the prediction of production dates (Malek et al., 2014), 66 

which are essential for resource management and conservation (Engler et al., 2013). 67 
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As an alternative to time-demanding tasks of individually counting trees or palm trees 68 

in the field, automatic-detection methods were developed using high spatial resolution 69 

images. The primary objective of this detection is to determine the location of the tree or palm 70 

tree crowns in an image (Srestasathiern and Rakwatin, 2014). Studies apply different 71 

techniques to delimit tree and palm tree crowns based on the value of each pixel in the image 72 

(Erikson and Olofsson, 2005). Some of the techniques used include the marked-point process 73 

(MPP) via Worldview 1 and Worldview 2 multispectral images (Zhou et al., 2013), the 74 

maximum local detection method using Kodak DCS 460 CIR and UltracamD digital camera 75 

images (Pouliot et al., 2002; Hirschmugl et al., 2007), and a technique based on the structure 76 

of the elements using an airborne AISA hyperspectral image (Shafri et al., 2011). These 77 

techniques are generally used for homogeneous forest plantations disposed along a line; not 78 

having other species within the plantation avoids confusion when analyzing the images. 79 

The mapping of tree crowns in non-planted areas (i.e., those dispersed in cultivated 80 

areas or in homogeneous or heterogeneous natural forests) can be based on the detection of 81 

crowns via object-oriented classification using IKONOS and GeoEye images (Aouragh et al., 82 

2013), the wavelet-transform technique (Zhang et al., 2006; Ghiyamat and Shafri, 2010), or 83 

via supervised classification techniques such as spectral angle mapper, a linear discriminant 84 

analysis, and the maximum likelihood method (Clark et al., 2005), both techniques use an 85 

airborne HYDICE hyperspectral image. 86 

Few studies have used image-based palm tree detection directed toward regular 87 

African oil palm tree plantations. Currently, babassu plantations are not found in Brazil, 88 

which might explain why this species has not yet been evaluated using automatic detection 89 

via images from recent satellites such as GeoEye, Ikonos, Worldview or Quickbird (which 90 

offer a spatial resolution of less than 1 m). The development of images with a resolution of 91 

less than 1 m enabled the more precise detection of small objects such as tree crowns in 92 
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agricultural areas and their different shapes (Aouragh et al., 2013) using canopy delineation 93 

algorithms (Culvenor, 2002). 94 

Although the classic algorithms developed for crown delineation fundamentally 95 

assume that the center of a crown appears radiometrically brighter than its edge (Culvenor, 96 

2002), the algorithm developed by Demagistri et al. (2014), adapted for open environments, 97 

extracts the image pixels that correspond to shadows using the mathematical morphology 98 

technique (Serra, 1982; Haralick et al., 1987). This algorithm permits the detection of palm 99 

trees in pastures and agricultural plantations with low-to-average palm tree density. This 100 

image analysis technique is important (Soille and Pesaresi, 2002; Giada et al., 2003) for the 101 

detection of individual trees (Jiang and Lin, 2013) and other objectives. This technique is 102 

known as “morphology” because it analyses the content and shape of the object and called 103 

“mathematical” because it is based on set theory, integral geometry, and algebraic structure 104 

(Giada et al., 2003). Therefore, this algorithm has been used to detect the babassu palm tree in 105 

open agricultural environments. 106 

Studies on tree and palm tree-crown detection do not usually employ field methods to 107 

validate the spatial information (Clark et al., 2005; Zhang et al., 2006; Hirschmugl et al., 108 

2007; Ghiyamat and Shari, 2010; Shafri et al., 2011; Aouragh et al., 2013; Malek et al., 2014; 109 

Srestasathiern and Rakwatin, 2014). When used, these methods are typically restricted to 110 

measure crown diameter and individual density (Pouliot et al., 2002, Zhou et al., 2013), 111 

although other structural characteristics of the individuals might affect their detection using 112 

the algorithm. Therefore, understanding these characteristics is an important step to improve 113 

the reliability of spatial information. 114 

A large diversity of palm trees exists in the Amazon region, including 195 species and 115 

35 genera. The most important genera include Attalea and Astrocaryum, each with 28 species 116 

(Pintaud et al., 2008). In addition to Attalea speciosa (babassu), other large circular crown 117 
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(LCC) species such as Attalea maripa (inajá), Astrocaryum aculeatum (tucumã), Oenocarpus 118 

bacaba (bacaba) and Mauricia flexuosa (buriti) are distributed in an isolated and random 119 

manner (D. Mitja, Personal communication). Because no methods are described in the 120 

literature that enable differentiation among LCC palm tree types using a high-resolution 121 

image, estimating the density of a species of interest (e.g., the babassu) using automatic 122 

detection is a real challenge. 123 

In the present study, we analyzed the automatic detection of LCC palm trees using a 124 

high spatial resolution panchromatic image (GeoEye1 sensor, 0.50-m resolution, July/2013) 125 

taken on a community of small farms in the Brazilian Amazon after validating the remote-126 

sensing data using photo-interpretation and field methods. Based on the automatic detection 127 

results, we implemented auxiliary field methods to estimate babassu density. 128 

 129 

2. Material and Methods 130 

2.1. Characterization of the study area 131 

This study was conducted in small farmlands in Benfica (S 05°16’20”, W 49°50’25”), 132 

(Itupiranga State of Pará (PA), southeast of the Brazilian Amazon) (Fig. 1). This site has 133 

9,501 ha, and its occupation started in 1986 successively by farmers and settlers. Its land 134 

regularization was consolidated by the National Institute of Colonization and Agrarian 135 

Reform (Instituto Nacional de Colonização e Reforma Agrária; INCRA) in 1996 (Arnauld de 136 

Sartre, 2004). The latest estimate indicated 183 agricultural establishments and approximately 137 

1,000 people in the community (Ritter et al., 2009). 138 
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 139 

Fig. 1. The study area (Benfica, PA), located southeast of the Brazilian Amazon, shown by a 140 

Landsat 8-OLI 2013 image (RGB: B6, B5, B4).  141 

*Two transects were near but outside the limit of Benfica community. 142 

 143 

The vegetation in this area is upland tropical forest, characterized by the presence of 144 

lianas and palm trees (Mitja and Miranda, 2010). The dense forest has a canopy between 25 145 

and 30 m in height, although some trees (e.g., Bertholletia excelsa H.B.K) reach a height of 146 

over 50 m (Bertrand, 2009). Landsat 8-OLI images taken in 2013 (Fig. 1) showed that 147 

primary and old secondary forests (in dark green colors) covered 34% of the area in Benfica, 148 

whereas degraded pastures or pastures with little cover (in purple and pink colors) represented 149 

31%; pastures in good states and young secondary forests (in light green colors) accounted for 150 

31% of the area (Eric Delaître, Personal communication). 151 

When forests are converted into pastures, some palm trees and timber species are 152 

maintained (Mitja et al., 2008; Santos and Mitja, 2011), thereby contributing to the 153 
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composition of the local landscape that includes pastures containing woody species (15%) and 154 

pastures with babassu (12%; Sampaio, 2008). The high reproductive plasticity of babassu 155 

favors its development in agricultural areas (Barot et al., 2005) because the use of fire for 156 

agricultural management contributes to the germination and regeneration of babassu 157 

individuals (Mitja and Ferraz, 2001). Thus, the different densities of the babassu in the study 158 

area are partially a result of its resilience to natural and anthropogenic disturbances, insofar as 159 

(similar to some other species) it has particular morphological characteristics and reproductive 160 

strategies that influence its phenology and gene flow (Montúfar et al., 2011). 161 

The climate is tropical humid with average temperature of 26°C. The average annual 162 

rainfall is 1,700 mm, distributed irregularly throughout the year. The region’s two seasons are 163 

defined by the movements of the intertropical convergence zone: the rainy season, which 164 

typically lasts approximately 8 months (October to May); and the dry season, which typically 165 

lasts 4 months (June to September; Bertrand, 2009). 166 

A variety of soils exists along the toposequences: (i) oxisol, with a thick B horizon 167 

rich in ferruginous nodules; (ii) cambisol, with an incipient B horizon and a C horizon located 168 

close to the surface; and (iii) gleysol, with an A horizon rich in organic matter, A and B 169 

horizons with little clay, and hydromorphy along the entire profile (Ritter et al., 2009). As is 170 

the norm for most arable lands in the Amazon, the soil fertility of the study area is low (Ritter 171 

et al., 2009). 172 

 173 

2.2. Field data 174 

The information obtained in the field enabled the definition of the proportion of 175 

babassu in the set of LCC palm trees. There are five LCC palm tree species in Benfica, three 176 

are more frequent, babassu, inajá and tucumã, and two rare species, bacaba and buriti (Santos 177 
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and Mitja, 2011; Danielle Mitja, Personal communication). In a 487 ha pasture area of the 178 

study site (=62-plots), we observed that 93.6% of the LCC palm trees found were babassu. 179 

This result was used to estimate the babassu density based on the automatic LCC palm tree 180 

detection results. 181 

A total of 17 transects were sampled in pastures of different ages (1, 3, 5, 7 and 9 182 

years), with a total sampling area of 1.3 ha (Fig. 1). In these transects, we noted that 46.51% 183 

of the detected palm trees belonged to stage 5, whereas 53.49% belonged to stage 6. 184 

A total of 150 babassu across three development stages were inventoried in the pasture 185 

areas. Out of these babassu, 105 were in stage 6 (adults with an aerial stipe and signs of male 186 

and/or female reproductive organs), 30 were in stage 5 (juvenile with an aerial stipe, 187 

regardless of sheath coverage, and without the signs of male or female reproductive organs), 188 

and 15 were in stage 4 (juvenile with a terminal bud at the soil surface level, with well-visible 189 

leaf sheaths).  190 

The structural information obtained in the field included circumference at breast 191 

height, circumference at the base of the stipe, number of leaves, total height, stipe height, and 192 

crown circumference (Fig. 2). This structural information was also obtained for two other 193 

LCC palm trees species, inajá (31 individuals) and tucumã (30 individuals).  194 

All these palm trees were georeferenced using the global positioning system (GPS; 195 

model: GARMIN 62stc) to be located in the GeoEye 2013 image and identify the individuals 196 

that had been detected using the detection algorithm. 197 

 198 
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Crown 

Circumference (m)

Stipe

Height (m)

Total Height (m)

Number of 

Leaves

Circumference at Breast 

Height at 1.30m (m)

Circumference at the Base of 

the Stipe at 0.30m (m)

Stage 4                           Stage 5                                             Stage 6  199 

Fig. 2. Life-cycle stages of the babassu palm trees studied in Benfica and the 200 

structural information obtained 201 

 202 

2.3. Remote sensing image  203 

The present study used a GeoEye-1 satellite image in panchromatic mode (intrinsic 204 

spatial resolution of 0.41 m resampled to 0.50 m, acquired on July 12, 2013 and 205 

orthorectified. The image has 15 x 15 km of dimension, and the following angles: 56.09
o
 of 206 

sensor azimuth, 79.03
o
 of sensor elevation, 42.575

o
 of sun azimuth, and 56.09

o
 of sun 207 

elevation. The image encompasses the entire surface of Benfica (9,501 ha). To comply with 208 

the requirements of the LCC palm tree detection algorithm, a radiometric correction was 209 

applied to the 2013 image so as to get the same dynamic range as the 2009 one (spatial 210 

resolution of 0.50 m), which was used to obtain the palm tree detection algorithm. 211 

 212 

2.4. LCC palm tree detection algorithm development and evaluation 213 
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An “Compt-palm” algorithm adapted to open environments was developed to detect 214 

the following LCC palm trees: babassu, inajá, tucumã, bacaba and buriti (Demagistri et al., 215 

2014). A panchromatic GeoEye 2009 image of Benfica was used in the algorithm-216 

development process. At first, shadows palm trees are extracted using mathematical 217 

morphology techniques; then each shadow object (which corresponds to a potential palm tree) 218 

undergoes a supervised classification by calculating a decision coefficient used to assign that 219 

object a particular class label between “palm tree shadow” and “other shadow”. 220 

The shadow extraction protocol proceeds as follows: 221 

i) Smoothing of the panchromatic image: this first filter removes the noise from the 222 

image; 223 

ii) Local adaptive filtering based on the mean and standard deviation of a moving 224 

window: zones with a strong local contrast (i.e. the shadows) are extracted; 225 

iii)  Morphological closing: the first step in cleaning the shadow extraction results; 226 

iv)  Connected components extraction: labeling of independent shadow objects;  227 

v) Object size thresholding: the second step in cleaning the shadow extraction results. 228 

Afterwards, shadow objects are classified using a supervised classification based on a 229 

distance criterion and a decision rule process. These steps are detailed below: 230 

i) Classifier training with two sets of shadow images: 75 cropped images of “palm 231 

tree shadows” and 75 cropped images of “other shadows”; 25 normalized shape 232 

characteristics and invariants are computed on the whole set of the cropped images 233 

(see below for some details). 234 

ii) Calculation of classifier entry parameters for each potential palm tree shadow and 235 

selection of the 5 closest shadow objects (Euclidian distance computation) within 236 

the training set. 237 
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iii) Score calculation, according to the class of the closest shadow objects, enabling 238 

appropriate classification of each shadow.  239 

To characterize the palm tree shadows, we worked with the shape characteristics and 240 

invariant described in Torres-Méndez et al. (2000). For each shadow image, we first compute 241 

its moment of inertia (1 parameter). Then, using 12 concentric circles centered on the shadow 242 

centroid we count for each circle the number of intensity changes that occur (shadow/no-243 

shadow) and the normalized difference of the two largest arcs that are not part of the shadows 244 

(12x2 parameters). 245 

The result is a list of points in image or cartographic coordinates that can be compared 246 

with data obtained using image photo-interpretation. The steps by which the LCC palm tree 247 

detection algorithm proceeds are shown in Fig. 3.  248 

 249 

1.

2.

3.

1. Panchromatic Image GeoEye 2009 (0.50 m)

2. Shadows extraction

Smoothing

Local 

adaptative 

binarization

Morphological 

closing

Connected  

component 

labeling

Component 

size filtering

3. Palm tree shadows template 

matching

Decision rules 

based on training 

sets

Object recognition 

using 25 invariant 

features

4. Validation: photo-

interpretation

5. Automatic  LCC-Palm trees detection

 250 
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Fig. 3. Representation of the steps of the LCC palm trees automatic detection 251 

algorithm (adapted from Demagistri et al., 2014) 252 

 253 

The algorithm was validated using image photo interpretation via a sample of 334 254 

points observed over 16 cells of 1-ha, distributed in pastures of low and average babassu 255 

density in the study area.  256 

To evaluate the precision and quality of the algorithm used, were considered the 257 

factors adopted by Shufelt (1999) and Luo et al. (2014); these factors can be based on image 258 

pixel classifications or on object shape and consider the numbers of true positives (TP), false 259 

positives (FP), and false negatives (FN). The first factor is the extraction percentage, given by 260 

the expression 100*TP/(TP+FN), which can be understood as a measure of shadow extraction 261 

performance. The second factor is the branching factor, given by FP/TP, which measures 262 

delineation performance. The third factor is the quality percentage, given by 263 

100*TP/(TP+FP+FN), a general measure of method performance. According to Shufelt 264 

(1999), the use of these three measures completely evaluates model performance. 265 

 266 

2.5. Density map and calculation of the babassu resource estimate 267 

The palm tree location map produced by applying the algorithm to open environments 268 

on the GeoEye-1 2013 image was processed using ArcGis 10.2.2 with the Point Density tool 269 

to obtain the palm tree density map. The parameters used were the size of the raster cells (30-270 

m) and the size and shape of the point search neighborhood (a 15 m radius circle, Fig. 4). The 271 

number of individuals per ha was used to calculate palm density.  272 
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 273 

Fig. 4. Representation of the parameters used to elaborate the density map 274 

 275 

The number of LCC palms actually present (B) was defined as:  276 

B=A–(A×FP)/100+(A×FN)/100; where: A = number of points indicated by the 277 

algorithm as corresponding to LCC palm trees; FP = False Positive; FN = False Negative. 278 

Then, based on information from Santos and Mitja (2011) was calculated the number of 279 

babassu as 93.6% of the total number of palm trees. 280 

Therefore, we can calculate the number of babassu palm trees (C) from the total LCC 281 

palm trees (B). 282 

C=(B×93.6)/100 283 

To obtain the proportion of stage 5 and 6 individuals in the pastures we use a total 284 

density of palm trees in of 17 transects, with 46.51% of stage 5 and 53.49% of stage 6. 285 

Therefore, we calculated the total numbers of babassu palm trees (detected and undetected) in 286 

stage 5 (V) and stage 6 (W) present in open areas in Benfica. 287 

Adult palm trees (stage 6): 288 

 C=V+W 289 

With V=(46.51% of C), and                     290 

W=(53.49% of C)                                    291 
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Finally, despite the high variation in the amount of oil extracted according to the used 292 

method, we estimated the annual potential productivity of almond oil of Benfica, using (i) the 293 

estimated density of adults at Benfica and (ii) literature data on fruit production (24 kg of 294 

fruits / palm / year on average - Anderson, 1983), seed production (1 kg of seeds from 13 kg 295 

of fruits – Gonsalves, 1955), and oil production (1 kg of crude oil from 1.68 kg of almonds - 296 

Frazão, 2001). 297 

 298 

2.6. Statistical analyses  299 

A principal components analysis (PCA) was used to verify differences in the structural 300 

characteristics of LCC palm trees species. The significance of the PCA was determined using 301 

the Monte Carlo permutation test at p < 0.05.  302 

The structural characteristics of babassu palm trees at stages 5 and 6 were compared 303 

using the non-parametric Wilcoxon test, as were the structural characteristics of the 304 

individuals at each stage based on whether they were detected or not, using the algorithm. All 305 

statistical analyses were performed using the software R 3.1.2 (R Core Team, 2014) with the 306 

packages ADE-4 (Dray and Dufour, 2007; Dray et al., 2007).  307 

 308 

3. Results  309 

3.1. Structural characteristics of the LCC palm trees 310 

The use of the shadow-detection algorithm detected the babassu palm trees and also 311 

other palm tree, especially those dominant in Benfica, such as inajá and tucumã.  312 

In contrast, the PCA of the structures of the babassu, inajá and tucumã palm trees (all 313 

belonging to stage 6, i.e., adults) showed that the LCC palm trees differed structurally. The 314 

first two PCA axes explained 75.77% of the variance in the scatterplot. Axis 1 explained 315 
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39.71% of the variance, and the structural variables that contributed the most to this axis were 316 

circumference at breast height, circumference at the base of the stipe, number of leaves. The 317 

second axis explained 36.06% of the variance, and its most important variables were total 318 

height, stipe height (Fig. 5). 319 

Axis 1 (39.71%)

Axis 2 
(36.06%)

H 

SH 

NL 

CBH 
CC 

0
.0

0
.5

1
.0

1
.5

2
.0

Eigenvalues

CBS 

 320 

Fig. 5. The PCA using the structural variables of three palm tree species in Benfica. 321 

Circumference at breast height (CBH), circumference at the base of the stipe (CBS), 322 

number of leaves (NL), total height (H), stipe height (SH), and crown circumference (CC). 323 

 324 

In the PCA formed by the first and second axes, the structural variables were grouped 325 

according to palm tree type: babassu, inajá, and tucumã. According to a Monte Carlo test with 326 

999 permutations, 44% of the data variance was explained by palm tree species, and this value 327 

was significant (p=0.001; Fig. 6). 328 

 329 
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d = 2 

Babassu

Inajá

Tucumã

Observation 44%

p-value = 0.001 

Monte-Carlo test

Axis 1 (39.71%)

Axis 2 
(36.06%)  330 

Fig. 6. The first and second axes of the PCA regarding the structural variables of the species 331 

Attalea speciosa (Babassu), Attalea maripa (Inajá) and Astrocaryum aculeatum (Tucumã) in 332 

Benfica. 333 

 334 

3.2. The structural characteristics of the individuals detected/undetected by the algorithm 335 

The algorithm did not detect any of the stage 4 babassu palm trees identified in the 336 

field. 337 

When comparing the morphological characteristics of the stage 5 and 6 palm trees 338 

using a boxplot (Fig. 7), we observed that the stage 6 palm trees had higher values and 339 

significantly differed from those in stage 5 (Wilcoxon test, p<0.0001) for all the structural 340 

characteristics analyzed. 341 

 342 
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 343 

Fig. 7. A comparison of the morphological characteristics of stage 5 (n=30) and stage 6 344 

(n=105) Attalea speciosa palm trees. Each box of the plot extends from the data of quartiles 1 345 

and 3; the horizontal lines within each box represent the median; and the circles at the 346 

extremities represent the values close to the box. The different letters indicate that the means 347 

are significantly different (Wilcoxon test, p<0.0001). CBH, circumference at breast height; 348 

CBS, circumference at the base of the Stipe. 349 

 350 

Approximately 96% of the stage 6 palm trees identified in the field were detected 351 

using the algorithm based on their shadows; only 4% remained undetected. The comparison 352 

between the mean structural characteristics of the detected and undetected individuals 353 

revealed a significant difference (Wilcoxon test, p<0.05) only for the mean stipe height, 354 

which was greater for detected palm trees than undetected palm trees (Table 1). 355 

Approximately 60% of the stage 5 babassu palm trees identified in the field were 356 

detected using the algorithm, and 40% were not detected (Table 1). The total height and the 357 

number of leaves values of the detected and undetected individuals significantly differed 358 
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(Wilcoxon test, p<0.05), with detected individuals having larger morphological characteristic 359 

values than their undetected counterparts. 360 

 361 

Table 1. The morphological characteristics of stage 5 and 6 babassu palm trees, regardless of 362 

detection using the algorithm in open areas. The means were compared using the non-363 

parametric Wilcoxon test. Ns: not significant; *: p<0.05 364 

Stage 5        

(n=30) 

 % 

Individuals 

Total 

Height 

(m) 

Stipe 

Height 

(m) 

Number 

of Leaves 

Circumference 

at the Base of 

the Stipe (m) 

Circumference 

at Breast 

Height (m)  

Crown 

Circumference 

(m)  

Undetected 40 7.33  0.00 9.33  0.00 0.00 20.37  

Detected 60 8.25  0.38  14.61  1.66  1.21  21.32  

  
* Ns * Ns Ns Ns 

   

Stage 6        

(n=105) 

 % 

Individuals 

Total 

Height 

(m) 

Stipe 

Height 

(m) 

Number 

of Leaves 

Circumference 

at the Base of 

the Stipe (m) 

Circumference 

at Breast 

Height (m)  

Crown 

Circumference 

(m)  

Undetected 4 11.25  0.50  15.75  1.68  1.54  28.63  

Detected 96 12.38  3.94  19.76 1.60  1.26  31.87  

    Ns * Ns Ns Ns Ns 
 365 

 366 

3.2. Algorithm quality and LCC palm tree density 367 

When evaluating the performance of the algorithm used to automatically detect the 368 

LCC palm trees, we considered 334 points, in which 252 (75.45%) had been correctly 369 

identified by the algorithm (true positives), 55 (16.47%) points indicated by the algorithm that 370 

did not correspond to palm trees (false positives), and 27 (8.08%) points corresponding to 371 

palm trees that were not identified by the algorithm (false negatives). This analysis resulted in 372 

90.32% of Extraction, 0.218 of Branching factor, and 75.45% of Quality. 373 
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A palm tree density map (Fig. 8) was created after applying the open area algorithm to 374 

the GeoEye1 2013 image. A total of 54,540 palm trees were detected in open vegetation in 375 

Benfica communities (6,870 ha). In the study area, 65% of the cells had a null density, less 376 

than 35% of the cells had a low LCC palm tree density (1 to 3 palm trees in a circle with a15 377 

m-radius, corresponding to 14 to 42 palm trees per ha), and less than 2% of the cells had an 378 

average LCC palm tree density (4 to 9 palm trees in a circle with a 15 m-radius, 379 

corresponding to 56 to 127 palm trees per ha) (Fig. 9). The average-density areas were 380 

localized and dispersed, whereas the low-density and null-density areas occupied a large 381 

surface characterized by continuous areas. 382 

 383 

Fig. 8. The LCC palm tree density map in Benfica based on the application of automatic 384 

detection using the open areas algorithm with regard to the GeoEye1 2013 image 385 
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 386 

Fig. 9. A histogram of the number of cells as a function of palm tree density per ha in the 387 

density map obtained from the GeoEye1 2013 image 388 

 389 

3.3. Babassu resource density productivity estimate  390 

The 54,540 LCC palm tree points detected using the GeoEye1 2013 image of Benfica 391 

were corrected with regard to the algorithm’s errors, resulting in 49,964 LCC palm trees 392 

actually present. By applying the 93.6% rate, we obtained 46,766 babassu palm tree based on 393 

the total number of LCC palm trees. Based on the field data of the proportion of stage 5 394 

(46.51%) and 6 (53.49%) palm trees in the study areas, we calculated 25,015 of babassu 395 

individuals in stage 6 (adults). Finally, we estimated that the adults in the open areas of 396 

Benfica have an annual potential productivity of 27.4 t of almond oil. 397 

 398 

Discussion 399 

 400 

4.1. The contribution of the field methods to validate the remote-sensing data 401 

The local densities obtained via automatic detection are accurate; however, this 402 

information becomes much more efficient when combined with the data obtained via field 403 
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measurements (Zhou et al., 2013). In the present study, the measurements of the 404 

morphological characteristics of palm trees and their cartographic coordinates were essential 405 

to validate the remote-sensing data obtained using automatic detection. 406 

As expected, it was not possible to differentiate between the LCC palm tree species in 407 

images with a resolution of 0.50 m. However, these species have different structures. As Kahn 408 

(1986) reported, the genera Astrocaryum and Attalea have a variety of forms: the species 409 

Astrocaryum aculeatum has well-developed stipes (15 to 20 cm in diameter and 15 to 25 m in 410 

height), and its leaflets are always placed on different planes (Kahn, 1986). Conversely, 411 

Attalea speciosa has leaflets along the same plane (Kahn, 1986). Attalea speciosa can reach a 412 

height of 10 to 30 m and have a stipe diameter of 30 to 60 cm (May et al., 1985; Lorenzi et 413 

al., 2010), whereas Attalea maripa can reach a height of 7 to 24 m, have a stipe diameter of 20 414 

to 40 cm, and leaves that are disposed in five directions (Lorenzi et al., 2010). 415 

All of these forest palm trees grow in pastures and secondary vegetation (May et al., 416 

1985; Anderson and Anderson, 1985; Kahn, 1986) where they usually reach sexual maturity 417 

earlier and grow to a smaller height than their counterparts in forests (Kahn, 1986). As palm 418 

trees increase in height, their crowns become relatively narrower (Rich et al., 1986). 419 

The PCA of the structure of the LCC palm trees (Attalea speciosa, Attalea maripa and 420 

Astrocaryum aculeatum) present in the study area reinforces the differences in the architecture 421 

among the species and suggests that stipe circumference (axis 1) and height (axis 2) are the 422 

most important variables. Wang and Augspurger (2006) investigated the influence of palm 423 

tree crown architecture on seedling recruitment on Barro Colorado Island in Panama and La 424 

Selva forest in Costa Rica; based on a PCA, they concluded that the four palm tree species 425 

studied at each site had different growth forms and crown architectures, with the number of 426 

leaves and leaf area having the greatest influence on one axis and crown area influencing the 427 

other two axes. 428 
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All of the structural variables analyzed in the present study influenced the shape of the 429 

shadow of each species because different architectures can have more or less impact on the 430 

way light propagates through vegetation (Wang and Augspurger, 2006). Because we used a 431 

shadow-detection algorithm that also considers the shape of the shadow, differentiating 432 

among LCC palm tree species might be possible if an image with a better spatial resolution 433 

(i.e., less than 0.50 m) is used, given that these species have different structures. Moreover, it 434 

might be possible to create a density map specific for the babassu palm tree (Attalea speciosa) 435 

by extracting only the shadows that correspond to this species. 436 

The validation of the information concerning stage 4, 5, and 6 of babassu palm tree, 437 

with the aid of field methods (i.e., structural census and georeferencing) regardless of the 438 

detection algorithm, enabled us to report which structural characteristics have a stronger 439 

influence on their detection using a high spatial resolution image. 440 

Almost all (96%) of the stage 6 babassu palm tree were detected using the high spatial 441 

resolution satellite images, and only 4% did not have visible shadows and were not 442 

automatically detected. The numbers of leaves and the crown widths of these individuals did 443 

not significantly differ from those detected; however, their stipes were significantly smaller. 444 

In turn, the stage 5 babassu palm tree were partially detected (60%). The 40% that 445 

were not detected were shorter and had fewer leaves than those detected. However, it is 446 

difficult to individually characterize the undetectable palm trees that belong to this stage 447 

based on their morphological characteristics, as was done for stage 6. Some individuals with 448 

similar morphological characteristics might not be detected because unmeasured factors might 449 

also influence shadow formation. These factors might include i) the orientation of the palm 450 

trees in relation to the sun when the image was captured by the sensor, ii) the leaf area (i.e., 451 

leaf width by blade length) of each individual (Wang and Augspurger, 2006), and iii) the 452 

average distance between leaflets (Wang and Augspurger, 2006). 453 
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The algorithm most likely failed to detect stage 4 babassu palm trees because of the 454 

spatial resolution of the image used (0.50 m), given that the shadow of these individuals is 455 

nearly imperceptible or nonexistent under this resolution. 456 

The babassu palm trees were divided into developmental stages to monitor the plant 457 

growth over time across different environments (i.e., forests, pastures, and secondary forests). 458 

Although this organization is biologically artificial, a continuum in babassu growth exists 459 

from the seedling to adult stages. The significant difference in the structure of individuals 460 

between stages 5 and 6 indicates that the separation of individuals into these life stages was 461 

well established. Although certain stage 5 individuals were similar to those in stage 6, stage 6 462 

palm tree usually have higher morphological characteristic values that explain their 463 

predominance among the detected plants. Because this species is native, non-cultivated, and 464 

non-domesticated where no selection is yet practiced, significant between-plant variability 465 

exists in the babassu population (Danielle Mitja, Personal communication). 466 

 467 

4.2. Algorithm performance for the automatic detection of LCC palm trees  468 

The result of the detection via the algorithm (75.45% quality) was promising given 469 

that it was applied to natural, non-planted areas. In commercial plantations of the African oil 470 

palm tree, organized along lines and without other species besides the cultivated one, the 471 

detection precision reaches 90% (Srestasathiern and Rakwatin, 2014); when high spatial 472 

resolution satellite images are used, this rate is approximately 95% (Shafri et al., 2011). Even 473 

in homogeneous commercial plantations, however, issues might exist with the methods used 474 

because of the presence of objects other than the cultivated species, which are often detected 475 

as false positives (Srestasathiern and Rakwatin, 2014). Future studies should use texture 476 

information to suppress the presence of objects other than the species of interest 477 

(Srestasathiern and Rakwatin, 2014). 478 
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In the present study, 75.45% of the LCC palm trees were successfully detected. 479 

However, this rate might be improved by decreasing the number of false positives (as reported 480 

above) and that of false negatives (for groups composed of 2 or 3 palm trees, only 1 palm tree 481 

is detected). In the case of a false negatives, the palm tree crowns might overlap, resulting in a  482 

single shape that differs from that of an isolated palm tree. Zhou et al. (2013) also faced the 483 

challenge of crown overlap; these authors were unable to detect the canopies of closely 484 

spaced trees on a Eucalyptus plantation. Moreover, Shari et al. (2011) noted that the crown-485 

detection method applied worked well only for isolated African oil palm trees. All these 486 

studies used a spatial resolution of 0.50 m or greater. Better resolutions (0.10 – 0.30 m) for 487 

example using drones, and the improvement of the algorithm should decrease this error. 488 

Using the LCC palm tree density map, we observed that this algorithm might be used 489 

to estimate the occurrence of palm trees present in the open area of interest using a high 490 

spatial resolution image (0.50 m). One of the major advantages of mapping species of interest 491 

via high-resolution images compared with forest censuses is that this information can be 492 

obtained for large areas (Zhou et al., 2013), as it is the case in the present study, especially 493 

because multispectral and hyperspectral images are becoming more accessible. 494 

 495 

4.3. The potential use of this technique for babassu productivity monitoring, planning, and 496 

management 497 

Automatic mapping in commercial plantations seeks to identify high-mortality points 498 

(Zhou et al., 2013) and the plants affected by disease (Shari et al., 2011; Johansen et al., 2014) 499 

to define management practices. In turn, the density map of the LCC palm trees over large 500 

areas proposed here, provides a wide view of resource distribution along the entire basin and 501 

enables the identification of areas with greater densities, access and productive potential, 502 

favoring the planning of resource exploitation and management based on the interests of land 503 
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owners or producer associations. In addition, given the risk of overexploitation and species 504 

extinction, environmental agencies might use this tool to aid in the inspection of areas where 505 

babassu felling is prohibited by law (Porro et al., 2011) or to monitor the variation in resource 506 

density over time, as suggested by Aouragh et al. (2013) and Zhou et al. (2013) with regard to 507 

tree species. 508 

Remote sensing, very high spatial resolution images, image processing, and object 509 

detection algorithms have become some of the major technologies in geospatial research, 510 

exploitation and monitoring of biodiversity (Bai et al., 2005; Clark et al., 2005; Schmidtlein et 511 

al., 2012; Engler et al., 2013; Garrity et al., 2013; Lin, 2013; Laurin et al., 2014), and 512 

commercial plantations of forest species of interest (Zhou et al., 2013; Srestasathiern and 513 

Rakwatin, 2014). The present paper seeks to contribute to the use of this technology by 514 

studying the native palm trees naturally and randomly dispersed and mixed with numerous 515 

other species. 516 

Because babassu is a native species that is adapted to secondary environments (May et 517 

al., 1985; Anderson and Anderson, 1985), the expansion of the areas occupied by this species 518 

is directly related to the advancement of the agricultural frontier in the Amazon through 519 

deforestation (Teixeira, 2003). For many decades, this species has been the primary source of 520 

income for farmers in North and Northeast Brazil (Teixeira, 2003; Porro et al., 2011; Porro 521 

and Porro, 2014). However, the major hindrances within the production chain of babassu oil 522 

in Brazil are the lack of a regular supply system for quality raw materials and the scarcity of 523 

strategic partnerships with small farmers (Teixeira, 2003). The methods proposed in this study 524 

regarding the density and production capacity estimates based on the results of automatic 525 

detection will provide more precise results that might be used to simulate numerous 526 

exploitation scenarios based on different systems of fruit harvest, adult density management 527 
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and species regeneration time. These systems might provide farmers with better plans of 528 

action for the constant and sustainable use of the production potential of this palm tree. 529 

 530 

5. Conclusions 531 

The result of the automatic detection using the algorithm on a very high spatial 532 

resolution image (75.45% quality) was promising, given that it was applied to natural, non-533 

planted areas. 534 

The validation of the information concerning stage 4, 5, and 6 Attalea speciosa 535 

(babassu) palm trees using field methods (i.e., structural census and georeferencing), 536 

regardless of algorithm detection, provided information regarding which structural 537 

characteristics have a greater influence on their detection in a very high spatial resolution 538 

image. This step is important in the study of automatic detection using remote sensing images 539 

of palm trees. 540 

By itself, the use of the algorithm on very high spatial resolution images does not yet 541 

deliver researchers a density map exclusively for babassu for farmers, associations or public 542 

policies. However, the detection of LCC palm trees and the implementation of auxiliary field 543 

methods to estimate the density of the species of interest is an important first step toward the 544 

large-scale monitoring of this important resource, not only by the Brazilian industry and 545 

economy but also by the thousands of families who depend on babassu extraction for 546 

subsistence. 547 

 548 
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