

Caractérisation des dépôts nickélifères de Nouvelle-Calédonie par imagerie hyperspectrale. Potentiel de l'outil hyperspectral CorescanTM appliqué en Nouvelle-Calédonie

Erick R. Ramanaidou, L. Fonteneau, Brice Sevin

▶ To cite this version:

Erick R. Ramanaidou, L. Fonteneau, Brice Sevin. Caractérisation des dépôts nickélifères de Nouvelle-Calédonie par imagerie hyperspectrale. Potentiel de l'outil hyperspectral Corescan[™] appliqué en Nouvelle-Calédonie. [Rapport de recherche] Programme POC NC. Tome Nickel et Technologie. EP181547 CSIRO, Australie, CNRT Nickel et son environnement. 2018, 86 p. ird-02160793

HAL Id: ird-02160793 https://ird.hal.science/ird-02160793

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

CNRT "Nickel et son environnement"

Tome Nickel et Technologie

Rapport scientifique Edition 2018

Potentiel de l'Outil hyperspectral Corescan™ appliqué en Nouvelle Calédonie (POC NC)

Caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale

Caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale

Potentiel de l'Outil hyperspectral Corescan[™] appliqué en Nouvelle Calédonie (POC NC)

Erick Ramanaidou, Lionel Fonteneau et Brice Sevin EP181547 07 May 2018

Centre National de Recherche Technologique (CNRT) Nickel & son Environnement

Citation

Ramanaidou E, Fonteneau L and Sevin B (2018) Caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale. Potentiel de l'Outil hyperspectral Corescan™ appliqué en Nouvelle Calédonie. EP181547 CSIRO, Australia.

Copyright

© Commonwealth Scientific and Industrial Research Organisation 2018. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

CSIRO is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document, please contact csiroenquiries@csiro.au.

Contents

С	ontents		i										
	Figures		iii										
	Tables		iv										
R	emercie	ements	vi										
R	ésumé_		_ vii										
1	Intro	oduction	1										
2	Etat	de l'art sur l'analyse hyperspectrale des gisements latéritiques de Nickel	3										
	2.1	La spectroscopie en réflectance	3										
	2.2	Principes physiques	4										
	2.3 2.3.1	Instrumentations de spectroscopie en réflectance	5 5										
	2.3.2 2.3.3 2.3.4	Systèmes hyperspectraux automatisés pour carottes, drill chips et poudres Systèmes hyperspectraux pour front de mine Télédétection aéroportée	6 6 6										
	2.4	Applications hyperspectrales en Nouvelle Calédonie	7										
3	Echa	Intillons	8										
4	Mét	hodes	9										
	4.1	Corescan™											
	4.2	Spectrométrie de fluorescence X	9										
	4.3	Minalyze™ XRF	10										
	4.4	Diffraction des rayons X	11										
	4.5	La classification typologique	11										
5	Résu	ıltats	_ 13										
	5.1 5.1.1 Burea 5.1.2	XRF	13 ar 13 lyze™										
	5.2	Diffraction aux Rayons X	17										
	5.3	Imagerie Hyperspectrale	22										
	5.4	Comparaison entre la diffraction des rayons X et la quantification hyperspectrale	29										
	5.5	Classification hyperspectrale	39										
6	Note	e sur le potentiel économique en Nouvelle-Calédonie	_ 59										
7	Con	clusion	_ 61										
	A.1	Liste des échantillons de la NMC(181)	62										
	A.2	Liste des échantillons de la SMT(42)	66										

A.3	Liste des échantillons de la SLN(42)	67					
A.4	Photographie des échantillons de Boulinda	69					
A.5	Photographie des échantillons de N'go PB4	71					
A.6	Photographie des échantillons de N'go PB5	72					
A.7	Photographie des échantillons d'Ouaco Mousquetaire	73					
A.8	Photographie des échantillons de JB2	74					
A.9	Photographie des échantillons de la SLN	75					
Références							

Figures

Figure 1 Spectre électromagnétique définissant les différents types de radiation et la longueur d'onde associée à chaque radiation
Figure 2 Signatures spectrales and localisation des processus électroniques et vibrationnels pour la goethite, le quartz, l'hématite et kaolinite dans le visible, le proche infrarouge et l'infrarouge
Figure 3 Echantillons dans des boites à carottes (ici JB2)
Figure 4 Containeur et instrument Corescan [™] 9
Figure 5 Minalize XRF instrument
Figure 6 Spectre de Rayons pour l'échantillon 152427 (BOULINDA_MONIQUE 20, HV3)
Figure 7 Corrélation entre analyses chimiques de la NMC et de BV pour Ni% et Co% 14
Figure 8 Corrélation entre analyses chimiques par NMC et de BV pour MgO% et Fe%
Figure 9 Corrélation entre analyses chimiques de la NMC et de BV pour SiO ₂ % et Al ₂ O ₃ % 14
Figure 10 Corrélation entre analyses chimiques de la NMC et de BV pour Cr ₂ O ₃ % et MnO% 15
Figure 11 Comparaison entre analyses chimiques de Minalyze™ et de BV pour CaO et Cr ₂ O ₃ 15
Figure 12 Comparaison entre analyses chimiques de Minalyze™ et de BV pour MnO et Fe 15
Figure 13 Comparaison entre analyses chimiques de Minalyze™ et de BV pour Ni et Zn 16
Figure 14 Comparaison entre analyses chimiques de Minalyze™ et de BV pour MgO et Al ₂ O ₃ 16
Figure 15 Comparaison entre analyses chimiques de Minalyze™ et de BV pour SiO₂ et S 16
Figure 16 Comparaison entre analyses chimiques de Minalyze™ et de BV pour Ni Chips et Ni Carottes
Figure 17 Comparaison entre analyses chimiques de Minalyze™ et de BV pour MgO Chips et MgO Carottes
Figure 18 Vue d'une capture d'écran dans « Coreshed » avec (de gauche à droite ou de 1 à 7). 1- la photographie de l'échantillon (ici DI2). 2- la carte en couleur des classes spectrales (la légende est montrée dans la Figure 19) avec l'olivine serpentinisée en vert foncé (RGB Code 0, 175, 80), la népouite en brun vert (RGB Code 155, 187, 89), la Willemseite en vert vif (RGB Code 0, 255, 0), la garniérite smectitisée en pourpre (RGB Code 194, 86, 194) et la goethite en orange (RGB Code 255, 153, 0). 3- la carte de distribution de l'olivine serpentinisée (de rouge % important à bleu % faible). 4- la carte de distribution de la népouite (de rouge % important à bleu % faible). 5- la carte de distribution de la Willemseite (de rouge % important à bleu % faible). 6- la carte de distribution de la garniérite smectitisée (de rouge % important à bleu % faible). 7- la carte de distribution de la goethite (de rouge % important à bleu % faible). 7- la carte de distribution de la goethite (de rouge % important à bleu % faible). 7- la carte de distribution de la goethite (de rouge % important à bleu % faible). 7- la carte de distribution de la goethite (de rouge % important à bleu % faible). 7- la carte de distribution de la goethite (de rouge % important à bleu % faible). 7- la carte de distribution de la goethite (de rouge % important à bleu % faible)
Figure 19 Couleurs de la carte des classes minéralogiques24
Figure 20 Exemple de Cartographie minéralogique hyperspectrale

Figure 21 Cartographie minéralogique hyperspectrale des silicates primaires dans les péridotites
Figure 22 Cartographie minéralogique hyperspectrale des serpentines dans les péridotites 43
Figure 23 Cartographie minéralogique hyperspectrale des minéraux riches en nickel dans la saprolite
Figure 24 Cartographie minéralogique hyperspectrale de la serpentine altérée dans la saprolite45
Figure 25 Cartographie minéralogique hyperspectrale des smectites dans la saprolite grossière
Figure 26 Pourcentage des minéraux dans la latérite de transition
Figure 27 Cartographie minéralogique hyperspectrale des oxydes de fer dans la latérite jaune 48
Figure 28 Cartographie minéralogique hyperspectrale des oxydes de fer dans la latérite rouge 49
Figure 29 Localisation des systèmes Corescan™ dans le monde
Figure 30 Un système Corescan™ a El Indio au Chili60

Tables

Table 1 Pourcentages (poids) des minéraux caractérisés par la diffraction des Rayons X 18
Table 2 Les indices spectraux pour chaque phase hyperspectrale incluent le « feature tracking »,« les matching regions » ou PPC est le coefficient de corrélation de Pearson et le « spectralratio »
Table 3 Pourcentages des classes minérales Olivine et Orthopyroxène caractérisées par les Rayons X (DRX) et par l'imagerie hyperspectrale Corescan™ (C) rangés par ordre décroissant du pourcentage d'olivine (DRX)
Table 4 Pourcentages des classes minérales Serpentine et Smectite caractérisées par les Rayons X (DRX) et par l'imagerie hyperspectrale Corescan™ (C) rangés par ordre décroissant du pourcentage de serpentine (DRX)
Table 5 Pourcentages des classes minérales goethite et hématite caractérisées par les Rayons X (DRX) et par l'imagerie hyperspectrale Corescan™ (C) rangés par ordre décroissant du pourcentage de goethite (DRX)
Table 6 Comparaison de la classification typologique et de la classification hyperspectrale pourBoulinda G, H et I. Minéralogie et pourcentage50
Table 7 Comparaison de la classification typologique et de la classification hyperspectrale pourBoulinda L 890. Minéralogie et pourcentage
Table 8 Comparaison de la classification typologique et de la classification hyperspectrale pourBoulinda M et N. Minéralogie et pourcentage52

Table 9 Comparaison de la classification typologique et de la classification hyperspectrale pourJB2-EF91. Minéralogie et pourcentage53
Table 10 Comparaison de la classification typologique et de la classification hyperspectrale pourN'GO-PB4-H188. Minéralogie et pourcentage54
Table 11 Comparaison de la classification typologique et de la classification hyperspectrale pourN'GO-PB4-H321 et 411. Minéralogie et pourcentage55
Table 12 Comparaison de la classification typologique et de la classification hyperspectrale pourN'GO-PB5-I872. Minéralogie et pourcentage56
Table 13 Comparaison de la classification typologique et de la classification hyperspectrale pourOuaco M-H880. Minéralogie et pourcentage57
Table 14 Comparaison de la classification typologique et de la classification hyperspectrale pour la SLN. Minéralogie et pourcentage
Table 15 La structure de Corescan™ par entités et régions

Remerciements

Nous tenons à remercier les compagnies de nickel de la Nouvelle Calédonie et le CNRT pour leur soutien logistique et financier pour ce projet.

Résumé

En Nouvelle Calédonie, la classification typologique utilisée pour la caractérisation des gisements latéritiques de nickel est effectuée par une reconnaissance visuelle des phases minérales par les géologues miniers. Les compagnies minières de nickel ont souhaité tester un système automatisé et objectif fondé sur l'imagerie hyperspectrale.

Les 265 échantillons sous forme de carottes de sondages ou de drill chips proviennent de trois compagnies minières la Nickel Mining Company ou NMC, la Société des Mines de la Tontouta ou SMT et la Société Le Nickel ou SLN. Tous les échantillons ont été mesurés par le système automatique d'imagerie hyperspectrale basé sur la spectroscopie en réflectance en utilisant le Corescan™ Hyperspectral Core Imager Mark III ou HCI-3. Les résultats hyperspectraux ont été validés par de la chimie à fluorescence X classique (Bureau Veritas ou BV, Perth, Australie Occidentale) mais aussi par le système automatisé à fluorescence X Minalyze™ ainsi que par des analyses minéralogiques par rayons X.

Une comparaison entre les analyses chimiques données par la NMC et celles faites par BV montre une excellente corrélation avec des valeurs pour tous les éléments quasi identiques indiquant la fiabilité des résultats chimiques de la NMC et de BV. De même, les comparaisons entre les analyses chimiques de Minalyze[™] et de BV montrent de bonnes corrélations entre les deux méthodes. Les échantillons analysés par la diffraction des Rayons X montrent qu'ils sont composés d'olivine, de pyroxène, d'amphibole, de chlorite, de serpentine, de talc, de quartz, de goethite, d'hématite, de maghemite ou de magnétite, de brucite, de stevensite, de chromite, de kaolinite, de falcondoite, de pyroaurite et de comblainite.

Les résultats minéralogiques dérivés de l'imagerie hyperspectrale, présentés dans «Coreshed», le système de stockage et de traitement de Corescan[™] montrent une bonne corrélation avec la minéralogie obtenue par la diffraction des Rayons X. Ces données minéralogiques ont permis de générer une classification hyperspectrale et de le comparer à la classification typologique. Une bonne corrélation existe entre les deux classifications mais il y a parfois quelques différences en particulier quand les échantillons sont altérés.

Une implémentation d'un système Corescan[™] en Nouvelle Calédonie permettra aux compagnies minières d'obtenir d'une manière objective et automatisée la classification typologique. Ce système Corescan[™] pourrait aussi être utilisé par le service géologique de nouvelle Calédonie pour établir une base de données des gisements Néo Calédoniens de manière à promouvoir l'exploration sur le territoire.

1 Introduction

Les gisements latéritiques de nickel représentent 60% des réserves de nickel sur la planète, les 40% restant étant contenu dans les gisements sulfurés. La Nouvelle Calédonie possède de très larges dépôts latéritiques de nickel qui correspondent à 11% des réserves mondiales.

Les gisements latéritiques de nickel sont le résultat d'une altération latéritique intense et profonde sur des roches ultrabasiques sous climat tropical humide. L'épais manteau latéritique se compose de 6 horizons d'altération :

- 1. La roche saine qui peut être une dunite (olivine) ou une harzburgite (olivine et pyroxènes) totalement ou partiellement serpentinisée (lizardite, antigorite et chrysotile)
- 2. Une saprolite dure ou terreuse
- 3. Une latérite de transition à asbolane
- 4. Une latérite jaune
- 5. Une latérite rouge
- 6. Une cuirasse ferrugineuse.

En Nouvelle Calédonie, 3 types de minerais nickélifères sont caractérisés :

- Les minerais silicatés, hydratés Mg/Ni aussi appelés par les miniers, minerais silicatés à garniérite (30% Ni au maximum). Ces minerais sont constitués de serpentine, de talc et de sépiolite. En Nouvelle-Calédonie, ces minéraux sont observés dans le réseau de fracturation à la base des profils d'altération à la transition entre la saprolite et la rochemère sous-jacente.
- 2. Les minerais silicatés argileux sont principalement constitués de nontronite, de montmorillonite ferrifère et de beidellites alumineuses. Ces argiles sont présentes à la base de la saprolite. En Nouvelle Calédonie, on les trouve à Tiébaghi et Poum
- Les minerais oxydés à Ni sont constitués principalement de goethite (maximum 2%) et de phyllomanganates de Ni/Co. Ils sont généralement localisés dans la latérite de transition et la latérite jaune.

La caractérisation de tous les minéraux de la roche fraiche à la cuirasse ferrugineuse est très importante pour la connaissance du gisement, le contrôle de la teneur mais aussi pour la planification minière.

Actuellement, la reconnaissance géologique et le logging des phases minérales et de la typologie du minerai sont basés sur des critères uniquement visuels. Dans le cadre d'une stratégie de caractérisation minéralogique et typologique automatisée et objective, un système d'imagerie hyperspectral Corescan™ (Corescan Hyperspectral Core Imager Mark III ou HCI-3) basé sur la spectroscopie en réflectance. Les résultats hyperspectraux seront aussi validés par de la chimie à fluorescence X classique mais aussi par le système automatisé à fluorescence X Minalyze™ ainsi que par des analyses minéralogiques par rayons X.

Le but final de cet exercice est de prédire de manière objective la minéralogie et la typologie des gisements latéritiques de Nouvelle Calédonie.

2 Etat de l'art sur l'analyse hyperspectrale des gisements latéritiques de Nickel

2.1 La spectroscopie en réflectance

La dernière décade a été le témoin d'un développement important des méthodes spectroscopiques dans le domaine minéralogique. La spectroscopie en réflectance, mais aussi la spectroscopie Raman, sont maintenant utilisées pour caractériser la minéralogie de nombreux matériaux géologiques. La spectroscopie en réflectance dans le visible et le proche infrarouge (Figure 1) est une méthode rapide et rentable qui permet d'acquérir une information minéralogique précise et quantifiée et qui peut être automatisée pour permettre la caractérisation minéralogique de gros volume d'échantillons en carottes, en chips ou sous forme de poudres.

Figure 1 Spectre électromagnétique définissant les différents types de radiation et la longueur d'onde associée à chaque radiation

2.2 Principes physiques

La spectroscopie en réflectance est l'étude de l'interaction de la lumière avec une matière solide comme un minéral ou une roche. Les photons de la radiation incidente sont soient réfléchis par la surface, tandis que d'autres pénètrent le minéral et sont finalement absorbés (Clark *et al.*, 1990).

La lumière dans le visible et le proche infrarouge (380 to 1000 nm) est suffisamment énergétique pour redistribuer les électrons dans une molécule (Harris and Bertolucci, 1989), cela s'appelle la spectroscopie électronique. Les processus électroniques impliquent des transferts d'électrons d'un état d'énergie faible à un état d'énergie élevé entre les orbitales (champ cristallin) ou des ligands (groupes OH) aux cations (effet de transfert de charge), cela produit des absorptions larges, en particulier pour les oxydes de fer tels que l'hématite et la goethite (Singer, 1981). Dans l'infrarouge, la partie du spectre électromagnétique de faible énergie, la lumière est absorbée par les modes vibrationnels des molécules ou la fréquence de vibration est largement dépendante de la longueur de la liaison de la molécule active dans l'infrarouge. Ces modes vibrationnels sont utilisés pour caractériser les minéraux par la spectrométrie vibrationnelle (Harris and Bertolucci, 1989). Toutes les liaisons vibrent soit par élongation (stretching) ou par déformation (bending) et généralement une liaison individuelle absorbe à plus d'une fréquence infrarouge (Figure 2). Les vibrations fondamentales de déformation se situent entre 9000-11000 nm tandis que les vibrations fondamentales d'élongation se situent entre 2700 et 3000 nm. Les vibrations fondamentales de déformation et d'élongation produisent des harmoniques à des longueurs d'onde plus basses ou de fréquences plus hautes en particulier dans la région située entre 1000 et 2500 nm dans laquelle les minéraux silicates hydroxylés (smectite, kaolinite, talc, serpentine par exemple) ont des absorptions intenses a 1400 et entre 2100 et 2450 nm.

Figure 2 Signatures spectrales and localisation des processus électroniques et vibrationnels pour la goethite, le quartz, l'hématite et kaolinite dans le visible, le proche infrarouge et l'infrarouge.

La signature spectrale d'un minéral est dépendante d'un certain nombre de paramètres et cela incluse, les processus électroniques et vibrationnels, le coefficient d'absorption, l'indice de réfraction, la réflexion diffuse ou réfléchie, la diffusion simple ou multiple et la diffusion de surface ou de volume. La signature spectrale est aussi influencée par la minéralogie, la composition, la cristallinité, l'eau, la taille des particules, les mélanges et enfin l'orientation de l'échantillon.

2.3 Instrumentations de spectroscopie en réflectance

2.3.1 Spectromètre portable

Les spectromètres portables de la société Analytical Spectral Device (ASD) comme le FieldSpec Pro FR et le FieldSpec 3 and 4 couvrent une longueur d'onde comprise entre 350 et 2500 nm. La résolution spectrale est respectivement, 3 nm à 700 nm ; de 8.5 à 10 nm à 1400 et de 6.5 à 12nm à 2100nm. Le temps d'acquisition est d'environ 0.1 s. L'instrument se compose de 3 détecteurs : une photodiode au silicium avec 512 éléments pour l'intervalle situ entre 350 et 1000 nm et deux photodiodes a refroidissement thermoélectrique, en InGaAs pour l'intervalle entre 1000 et 2500 nm. Une fibre optique est utilisée pour enregistrer les données. La calibration utilise une référence de réflectance standard qui est du polytetrafluoroethylene (PTFE) commercialement nommé Spectralon et la source de lumière est une lampe à quartz halogène.

2.3.2 Systèmes hyperspectraux automatisés pour carottes, drill chips et poudres

En 2018, quatre systèmes hyperspectraux sont utilisés dans l'industrie minière (Ramanaidou *et al.,* 2015) pour mesurer des carottes de sondages, des «drill chips» et des poudres :

- Le HyLogging System[™] du CSIRO qui produit une analyse spectrale ponctuelle ainsi qu'une image visible de haute qualité. Le système utilise le programme développé par CSIRO et appelé le « the Spectral Geologist ou TSG » pour interpréter les données.
- 2. Le système à imagerie hyperspectrale core imager Mark III de Corescan[™] (HCI-3 System[™]) (Figure 3B), qui génère une image hyperspectrale entre 450 et 2500 nm à 0.5 mm pixel de résolution, une image topographique grâce à une ligne de faisceaux laser et une caméra numérique à haute résolution (Ramanaidou et al, 2017a). Corescan[™] a son propre programme d'analyse de données ainsi qu'un site internet ou on peut les consulter interactivement (Coreshed).
- 3. Le système à imagerie hyperspectrale de NEO Hyspex qui génère une image hyperspectrale entre 450 et 2500 nm
- 4. Le système à imagerie hyperspectrale SisuROCK de SpecIm qui génère une image hyperspectrale entre 970 et 2500 nm avec la possibilité d'ajouter le VNIR, un appareil photographique numérique ou un senseur avec une capabilité pour l'infrarouge.

2.3.3 Systèmes hyperspectraux pour front de mine

Les systèmes hyperspectraux pour imager les fronts de mines ont été utilisés pour estimer la minéralogie, les teneurs en métaux associées ainsi que la typologie du minerai. Cette technique a été testée pour la première fois par le CSIRO en utilisant un tripode robotise muni d'un spectromètre ASD FieldSpecPro (Ramanaidou *et al.*, 2002 ; Yang *et al.*, 2004). D'autres systèmes hyperspectraux incluent le système CSIRO OARS (Fraser *et al.*, 2006), le NEO HySpex (Ramanaidou and Wells, 2011) and le système SpecIm de cameras hyperspectrales (Melkumyan and Murphy, 2010 ; Murphy and Monteiro, 2013).

2.3.4 Télédétection aéroportée

La télédétection aéroportée est possible avec le système hyperspectral HyMap (Reston and Cocks, 1998) qui acquiert 128 bandes spectrales dans le VNIR et le SWIR. La résolution spatiale varie entre 3 et 15 m et dépend de l'altitude à laquelle vole l'avion. Dans les 5 prochaines années, des satellites transportant des senseurs hyperspectraux sont prévus d'être lancés (EnMap). Cela permettra une utilisation plus fréquente pour la prospection minière mais aussi pour l'évaluation minière.

2.4 Applications hyperspectrales en Nouvelle Calédonie

Chronologiquement, les premières analyses hyperspectrales utilisées dans l'industrie nickélifère en Nouvelle Calédonie résultent d'une collaboration scientifique entre le CSIRO Australien et la compagnie minière Falconbridge pour la mine de Koniambo en 2000 (Yang et Huntington, 2000 ; Yang et Huntington, 2001 ; Yang *et al.*, 2001 ; Yang *et al.*, 2002 ; Yang *et al.*, 2004). Le but de ces études était de prédire la minéralogie et la chimie sur front de mine, ce qui a été accompli en 2004.

Entre 2010 et 2016, pour le projet CNRT - Nickal, un large nombre d'échantillons comprenant des carottes, des drill chips et des poudres a été mesuré par deux systèmes hyperspectraux respectivement le système HyLogging[™] et le système NEO HySpex. Même si la majorité des échantillons mesurés proviennent de la laterite jaune, des échantillons de roche saine ainsi que des échantillons de saprolite dure et terreuse ont aussi été scannés. Les résultats ont été présentés dans différents rapports (Wells *et al.*, 2013 ; Bailly *et al.*, 2014 ; Bailly *et al.*, 2016) et à des conférences (Ramanaidou and Wells, 2016 ; Wells *et al.*, 2016 ; Ramanaidou *et al.*, 2017a, b). Le principal résultat de cette étude a été la démonstration que l'analyse hyperspectrale permet de calculer la cristallinité des goethites. Cette dernière étant directement liée à la quantité de nickel remplaçant le fer dans la structure de la goethite. Cela permet d'utiliser un spectre hyperspectral pour mesurer le taux de nickel dans les goethites des profils latéritiques de Nouvelle Calédonie (Ramanaidou *et al.*, 2017a, b).

Enfin, le projet CNRT – Cartha (Despinoy *et al.*, 2012, Sevin, 2014) a montré que la télédétection aéroportée hyperspectrale permet de réaliser des cartes minéralogiques, en particulier celle des oxy-hydroxydes de fer ou celle du taux de serpentinisation, pouvant aider à la prospection minière.

3 Echantillons

Sur les 265 échantillons reçus ; 181 proviennent de la Nickel Mining Company ou NMC (une coentreprise entre le coréen Pohang Iron & Steel Co, Ltd ou POSCO et la Société minière du Sud Pacifique ou SMSP), 42 proviennent de la Société des Mines de la Tontouta (SMT) et 42 proviennent de la Société Le Nickel ou SLN. Les échantillons sont issus de carottes de sondages ou de drill chips. Les échantillons de la NMC proviennent de Boulinda Monique, de N'Go et de Ouaco Mousquetaire (Appendix A). Les échantillons de la SMT proviennent de la zone concession JB2 et du sondage JB_EF910 de 0.5 à 59 m de profondeur (Appendix A). Les échantillons ont été reloggé par Willy Foucher de la NMC de manière obtenir un logging consistant (Appendix A). Il faut noter qu'à quelques exceptions près, le logging original et celui de Willy Foucher sont identiques. Après réception, tous les échantillons ont été transférés dans des boites à carottes (Figure 3 et Appendix A).

Figure 3 Echantillons dans des boites à carottes (ici JB2)

4 Méthodes

4.1 Corescan[™]

Tous les échantillons ont été mesurés par le système automatique d'imagerie hyperspectrale basé sur la spectroscopie en réflectance en utilisant le Corescan™ Hyperspectral Core Imager Mark III (HCI-3). Ce système inclue un spectromètre à haute résolution dans le visible et proche infrarouge (450 to 2500 nm) a une résolution de pixel de 0.5 mm, un système d'imagerie dans le visible et un laser 3D pour cartographier la surface des échantillons.

Figure 4 Containeur et instrument Corescan™

« Coreshed » fourni une infrastructure numérique pour entreposer les images hyperspectrales, leur visualisation, la gestion des données des carottes de sondages ainsi que des drill chips. C'est un service sécurisé qui fournit un accès web ou l'on peut accéder aux photographies des échantillons, aux cartes minérales, à l'abondance des minéraux ainsi qu'aux analyses supplémentaires telles que la chimie, la minéralogie, la géophysique, la typologie etc. « Coreshed » est facilement accessible par connexion internet et sera accessible à toutes les compagnies minières de nickel latéritique qui font partie de ce projet.

4.2 Spectrométrie de fluorescence X

Les 50 échantillons soumis au Bureau Veritas à Perth (Australie Occidentale) pour les analyses chimiques par la spectrométrie de fluorescence X (XRF) ont été tout d'abord triés et séchés. Les échantillons ont ensuite été broyés et réduits en poudre avec pour résultats une poudre dont les particules ont un diamètre maximum de 75 µm. Les poudres ont été dissoutes à haute température 66:34 avec 4% de nitrate de lithium avec solvant approprié (du fondant) dans un creuset en platine. Le mélange fondu a été agité avant d'être versé dans un moule pour créer un disque de verre pour l'analyse par XRF. Les éléments analysés sont Ni, Co, Mg, Fe, Mn, Zn, Al, Cr, Ca, Si, Cl, Na, S, P, Ti, K, Cu, As et Ba et ont été déterminés par XRF après séchage dans un four à 105°C. La perte au feu a été déterminée en utilisant un system robotique TGA avec une température du four comprise entre 110° and 1000°C.

4.3 Minalyze[™] XRF

La surface de tous les échantillons a été mesurée par le system automatique XRF de Minalyze[™] avec des conditions d'analyse suivantes; tube Rayon X au Chrome et à l'Argent, un voltage de 30kV et 24mA et un temps d'analyse pour chaque point de 20 secondes avec comme matériel de référence les échantillons OREAS: 24b, 624, 25a, 45d, 45e, 182, 183, 184, 186, 189, 190, 192, 193, 195 et un raffinement de la calibration pour Mg, Si, Fe, Ni. Pour les chips la surface mesurée est de 2 cm² et pour les chips 2 ou 3 mesures (en fonction de la taille) ont été effectuées et une moyenne a été calculée.

Figure 5 Minalize XRF instrument

Il est important de noter que :

- 1. L'analyse est faite sans préparation des échantillons c'est à dire sans pulvériser ni homogénéiser
- 2. Na ne peut être mesuré
- 3. Le Co est difficilement mesurable du a un chevauchement de bande avec Fe en général plus abondant. Cependant ici, il y a peut-être un découplage entre Fe et Co et les valeurs en Co sont parfois supérieures à 1000ppm
- 4. Le Mg est difficile à détecter. On peut le détecter s'il est en fortes concentrations mais il faut alors utiliser une anode au Cr qui améliore grandement la sensitivité pour les éléments légers comme Mg, Al et Si. Avec une anode au Cr, on ne peut pas analyser le Cr et le Mn à cause d'un chevauchement du a la diffusion Rayleigh des rayons X d tube
- 5. Pour analyser le Cr et le Mn, il est nécessaire d'utiliser tube de rayons X a l'Ag mais dans ce cas on ne peut pas analyser le Mg et Al et Si sont moins facilement détectés.

4.4 Diffraction des rayons X

La diffraction des rayons (DRX)X a été effectuée sur un Bruker D4 Endeavor entre 5 et 90° 20 et un pas de 0.02° en utilisant une source Co K α . Les spectres ont été analysés en utilisant XPlot 32 for Windows Version 1.48e. La (semi) quantification des phases minérales a été réalisée en calculant l'intensité du pic à 100% (ou du pic a valeur inférieure si le pic à 100% est commun à plusieurs minéraux) et en soustrayant le bruit de fond. Chaque pic est ensuite normalisé de manière à ce que le total soit égal à 100%.

Figure 6 Spectre de Rayons pour l'échantillon 152427 (BOULINDA_MONIQUE 20, HV3)

4.5 La classification typologique

Les compagnies minières de Nouvelle Calédonie utilise une classification typologique basée sur la lithologie, le facies et degré de serpentinisation et le degré d'altération de surface.

La lithologie est basée sur la proportion d'olivine et de pyroxène. Si la proportion d'olivine est supérieure à 90% on parlera de dunite (D). Si la proportion de pyroxène est comprise entre 10 et 60% on parlera de harzburgite (H). Au-delà on a une pyroxènite (P). Occasionnellement, des gabbros (G) peuvent être observés.

Cinq facies de serpentinisation sont caractérisés :

- 1. Supérieur (S) avec 1 15% de serpentine
- 2. Intermédiaire (I) avec 15 45% de serpentine
- 3. Normal (N) avec 45 70% de serpentine
- 4. Basal (B) avec 70 100% de serpentine

5. Gris (G) avec 45 – 70% de serpentine (Note : dans le facies gris, la serpentinisation des péridotites est interprétée comme antérieure à l'obduction.

Le degré d'altération varie de 0 à 6 en fonction de la dureté de la roche et de la présence d'oxydes de fer.

5 Résultats

5.1 XRF

5.1.1 Comparaison entre les analyses chimiques données par la NMC et celles faites pour cette étude par Bureau Veritas

Seuls les échantillons de la NMC incluent l'analyse chimique pour Ni, Co, Fe, MgO, SiO₂, Cr₂O₃, Al₂O₃ et MnO. Une comparaison entre les analyses chimiques données par la NMC et celles faites par le Bureau Veritas (BV) pour cette étude montre une excellente corrélation, mais également des valeurs pour tous les éléments très proches (Figures 7 à 10). Les petites différences observées sont sans doute dues à une petite variation entre l'échantillon mesuré par NMC et l'échantillon mesuré par BV. Cela nous permet d'être confiants en ce qui concerne la reproductivité et la fiabilité des résultats chimiques que ce soit pour les analyses effectuées par la NMC ou celles effectuées par BV.

5.1.2 Comparaison entre les analyses chimiques faites pour cette étude par Bureau Veritas et par Minalyze™

Les analyses chimiques de Minalyze[™] sont des analyses de surface et se font sans préparation des échantillons. L'heterogénéité naturelle des échantillons est le principal facteur d'erreur et il est bien plus large que l'erreur analytique. Comme décrit dans le chapitre « méthodes », les analyses pour le magnésium, l'aluminium et le silicium ont été effectuées en utilisant l'anode au chrome tandis que celles pour les autres éléments ont été effectuées en utilisant l'anode en argent. Les comparaisons entre les analyses chimiques de Minalyze[™] et de Bureau Veritas (BV) montrent de bonnes corrélations entre les deux méthodes pour l'ensemble des drill chips et des carottes pour CaO et Cr₂O₃ (Figure 11), MnO et Fe (Figure 12), pour Ni et Zn (Figure 13), pour MgO et Al₂O₃ (Figure 14) et pour SiO₂ et S (Figure 15). Une comparaison entre chips et carottes pour Ni (Figure 16) et MgO (Figure 17) montre que les analyses sont plus proches entre les deux méthodes pour les carotte que les drill chips, cela montre l'effet de la granulométrie sur les analyses chimiques de Minalize.

Figure 8 Corrélation entre analyses chimiques par NMC et de BV pour MgO% et Fe%

Figure 9 Corrélation entre analyses chimiques de la NMC et de BV pour SiO_2% et Al_2O_3%

Figure 10 Corrélation entre analyses chimiques de la NMC et de BV pour Cr₂O₃% et MnO%

Figure 11 Comparaison entre analyses chimiques de Minalyze™ et de BV pour CaO et Cr₂O₃

Figure 12 Comparaison entre analyses chimiques de Minalyze™ et de BV pour MnO et Fe

Figure 13 Comparaison entre analyses chimiques de Minalyze™ et de BV pour Ni et Zn

Figure 14 Comparaison entre analyses chimiques de Minalyze™ et de BV pour MgO et Al₂O₃

Figure 15 Comparaison entre analyses chimiques de Minalyze™ et de BV pour SiO₂ et S

Figure 16 Comparaison entre analyses chimiques de Minalyze™ et de BV pour Ni Chips et Ni Carottes

Figure 17 Comparaison entre analyses chimiques de Minalyze™ et de BV pour MgO Chips et MgO Carottes

5.2 Diffraction aux Rayons X

Cinquante-six échantillons ont été analyses par la diffraction aux Rayons X (Table 1). Les minéraux identifiés incluent, olivine, pyroxène, amphibole, chlorite, serpentine, talc, quartz, goethite, hématite, maghemite ou magnétite, brucite, Ni-stevensite, chromite, kaolinite, falcondoite (Ni sépiolite) et 2 Carbonate hydroxylé et hydraté de magnésium et de fer la pyroaurite (Mg₆Fe³⁺₂(OH)₁₆[CO₃] 4H₂O) et de nickel et cobalt la comblainite (Ni₄Co₂(OH)₁₂[CO₃] 3H₂O) souvent associées aux serpentines. Les différentes phases minérales ont aussi été quantifiées (Table 1).

Table 1 Pourcentages (poids) des minéraux caractérisés par la diffraction des Rayons X

Sample	Olivine	Pyroxène	Amphibole	Chlorite	Serpentine	Talc	Quartz	Goethite	Hématite	Maghemite	Brucite	Stevensite	Chromite	Kaolinite	Falcondoite	Pyroaurite	Comblainite
										Magnétite					sépiolite		
152427	19	13	1	0	0	1	66	0	0	0	0	0	0	0	0	0	0
152447	41	27	0	0	24	0	0	3	0	5	0	0	0	0	0	0	0
152574	0	0	0	0	0	22	0	78	0	0	0	0	0	0	0	0	0
152580	0	8	0	0	51	0	0	0	0	0	0	41	0	0	0	0	0
152604	0	10	0	0	59	0	0	0	0	0	0	31	0	0	0	0	0
152606	0	1	0	0	27	0	59	0	0	2	0	11	0	0	0	0	0
152615	17	21	0	0	52	0	1	0	0	0	0	9	0	0	0	0	0
152619	0	0	0	0	68	0	0	0	0	0	0	32	0	0	0	0	0
152931	14	0	0	0	86	0	0	0	0	0	0	0	0	0	0	0	0
153426	0	0	0	0	4	0	0	82	0	14	0	0	0	0	0	0	0
153433	0	0	0	0	89	2	0	8	0	0	0	0	0	0	0	0	0
153435	0	0	0	0	81	5	0	13	0	0	0	0	0	0	0	0	0
153436	0	0	0	0	93	0	0	7	0	0	0	0	0	0	0	0	0
153439	3	4	0	0	93	0	0	0	0	0	0	0	0	0	0	0	0
153834	3	0	0	0	92	5	0	0	0	0	0	0	0	0	0	0	0
153836	20	15	0	0	59	2	0	0	0	0	4	0	0	0	0	0	0

18 | Caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale POC NC

Sample	Olivine	Pyroxène	Amphibole	Chlorite	Serpentine	Talc	Quartz	Goethite	Hématite	Maghemite	Brucite	Stevensite	Chromite	Kaolinite	Falcondoite	Pyroaurite	Comblainite
										Magnétite					sépiolite		
153882	4	4	1	0	25	3	63	0	0	0	0	0	0	0	0	0	0
153885	13	15	0	0	66	1	0	0	0	0	1	0	0	0	0	4	0
153892	21	4	2	0	58	15	0	0	0	0	0	0	0	0	0	0	0
259803	0	0	0	0	1	1	89	10	0	0	0	0	0	0	0	0	0
259806	15	0	0	0	73	0	12	0	0	0	0	0	0	0	0	0	0
259816	0	0	0	0	96	0	0	4	0	0	0	0	0	0	0	0	0
259827	67	27	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0
259859	24	6	0	0	63	2	3	0	0	0	0	0	0	0	0	0	2
260041	41	19	0	0	29	0	0	11	0	0	0	0	0	0	0	0	0
BSERP	0	0	0	0	61	0	0	0	0	0	0	0	0	0	0	39	0
BSI	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0
BSM	0	0	0	0	0	0	81	0	0	0	0	0	0	0	19	0	0
CF	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0
DB0	21	0	0	0	66	0	0	0	0	0	0	0	6	0	0	0	7
DG1	17	0	0	0	75	0	0	0	0	0	0	0	0	0	0	0	8
DG3	0	0	0	0	79	0	20	0	0	0	0	2	0	0	0	0	0
DI2	40	0	0	0	47	3	0	0	0	0	0	0	0	0	0	0	10
DN0	8	0	0	0	88	0	0	0	0	0	0	0	0	0	0	0	4

Sample	Olivine	Pyroxène	Amphibole	Chlorite	Serpentine	Talc	Quartz	Goethite	Hématite	Maghemite Magnétite	Brucite	Stevensite	Chromite	Kaolinite	Falcondoite sépiolite	Pyroaurite	Comblainite
DN2	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0
GR	0	0	0	0	0	0	0	31	47	23	0	0	0	0	0	0	0
HB1	4	1	0	0	94	0	0	0	0	0	0	0	0	0	0	0	0
HB2	0	0	0	0	95	0	5	0	0	0	0	0	0	0	0	0	0
HG1	9	2	1	0	88	0	0	0	0	0	0	0	0	0	0	0	0
HIO	26	0	2	0	70	2	0	0	0	0	0	0	0	0	0	0	0
HI1	29	42	1	0	26	2	0	0	0	0	0	0	0	0	0	0	0
HI2	0	20	0	0	61	1	18	0	0	0	0	0	0	0	0	0	0
HI3	0	6	0	0	65	0	29	0	0	0	0	0	0	0	0	0	0
HI4	0	9	0	0	26	0	50	14	0	0	0	0	0	0	0	0	0
HN2	0	0	2	0	92	6	0	0	0	0	0	0	0	0	0	0	0
HN4	0	0	0	0	28	26	47	0	0	0	0	0	0	0	0	0	0
HV0	69	30	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IJ	0	0	0	0	0	0	0	88	0	12	0	0	0	0	0	0	0
LR	0	0	0	0	0	0	0	87	13	0	0	0	0	0	0	0	0
LRG	0	0	0	0	0	0	0	59	41	0	0	0	0	0	0	0	0
JB2-3	0	0	0	0	0	0	0	88	6	5	0	0	0	0	0	0	0
JB2-4	0	0	0	0	0	0	6	54	0	40	0	0	0	0	0	0	0

20 | Caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale POC NC

Sample	Olivine	Pyroxène	Amphibole	Chlorite	Serpentine	Talc	Quartz	Goethite	Hématite	Maghemite	Brucite	Stevensite	Chromite	Kaolinite	Falcondoite	Pyroaurite	Comblainite
										Magnétite					sépiolite		
JB2-9	0	0	0	0	14	8	46	21	0	0	0	0	0	10	0	0	0
JB2-16	0	14	1	0	75	0	2	0	0	0	0	9	0	0	0	0	0
JB2-26	0	0	24	65	0	12	0	0	0	0	0	0	0	0	0	0	0
JB2-35	0	0	1	0	1	2	96	0	0	0	0	0	0	0	0	0	0

5.3 Imagerie Hyperspectrale

L'imagerie hyperspectrale a été réalisée sur tous échantillons qu'ils soient carottes ou drill chips. Chaque pixel (= picture element) mesuré a une taille de 500 x 500 µm et peut contenir un, deux et même trois minéraux. Le spectre hyperspectral de chaque pixel sera donc soit un minéral pur soit un mélange de minéraux, c'est ce que qu'on appelle une classe minérale. Vingt-huit classes minérales ont été caractérisées (Table 2) par comparaison à une banque de données hyperspectrales et sont : Olivine, Olivine serpentinisée, Olivine serpentinisée altérée, Olivine serpentinisée smectitisée, Orthopyroxène, Orthopyroxène serpentinisé, Orthopyroxène serpentinisé smectitisé, Amphibole, Lizardite, Antigorite, Népouite, Serpentine, Serpentine altérée, Smectite Mg, Smectite Mg-Ni. Garniérite smectitisée, Serpentine smectitisée, Talc, Ni talc-like/Willemseite, Chrysoprase, Gibbsite, Goethite, Goethite-Hématite, Hématite/Goethite, Hématite, Kaolinite, Opale et Sépiolite. Chaque classe minérale a un spectre unique (Table 2). Des indices hyperspectraux spécifiques ou diagnostiques ont été développés pour chaque minéral ou classe minérale, ces indices hyperspectraux consistent en une série de paramètres qui sont uniques à chaque classe minérale. Les indices spectraux pour chaque phase hyperspectrale sont constitués de trois paramètres :

- le « feature tracking » se concentre sur les régions ou des absorptions existent, par exemple Table 2, ligne 1, Amphibole : 1390-1395L (D>0.3%), il y a une absorption entre 1390 et 1395, la longueur d'onde minimale est mesurée (1390-1395L) et si la profondeur de l'absorption est supérieure à 0.3% de réflectance (D>0.3%), la reconnaissance minérale est alors validée. Cela est fait pour toutes ou une partie des absorptions reconnues.
- les « matching regions » se concentrent sur des régions spectrales bien déterminées et compare avec la banque de données en utilisant le coefficient de corrélation de Pearson (PCC). Par exemple pour Table 2, ligne 1, Amphibole : 520-1170 nm, la reconnaissance minérale est alors validée. Cela est fait pour un certain nombre de régions spectrales.
- le « spectral ratio » est un rapport de 2 valeurs de réflectance à des longueurs d'onde bien particulières. Par exemple, pour Table 2, ligne 1, Amphibole : 1010R/1700R<1, cela veut dire que les réflectances à 1010 nm et à 1700 nm sont calculées et le rapport mesuré.

Grace à la combinaison de ces 3 paramètres, l'indice spectral est unique à chaque classe spectrale et peut être ainsi mesuré avec précision.

Tous les paramètres et les spectres de chaque classe spectrale sont présentés dans la Table 2. En fonction de la taille de chaque échantillon, entre 7000 et 40000 pixels ont été mesurés. Un exemple d'un vue de «Coreshed» pour DI2 (16993 pixels) montre la carte de distribution des classes minérales (Figure 18). Cette figure montre de gauche à droite (de 1 à 7) :

- 1- la photographie de l'échantillon (ici DI2)
- 2- la carte en couleur des classes spectrales (la légende est montrée dans la (Figure 19) avec l'olivine serpentinisée en vert foncé, la népouite en brun vert, la Willemseite en vert vif, la garniérite smectitisée en pourpre et la goethite en orange
- 3- la carte de distribution de l'olivine serpentinisée (de rouge % important à bleu % faible)
- 4- la carte de distribution de la népouite (de rouge % important à bleu % faible)
- 5- la carte de distribution de la Willemseite (de rouge % important à bleu % faible)
- 6- la carte de distribution de la garniérite smectitisée (de rouge % important à bleu % faible) et,
- 7- la carte de distribution de la goethite (de rouge % important à bleu % faible).

Figure 18 Vue d'une capture d'écran dans « Coreshed » avec (de gauche à droite ou de 1 à 7). 1- la photographie de l'échantillon (ici DI2). 2- la carte en couleur des classes spectrales (la légende est montrée dans la Figure 19) avec l'olivine serpentinisée en vert foncé (RGB Code 0, 175, 80), la népouite en brun vert (RGB Code 155, 187, 89), la Willemseite en vert vif (RGB Code 0, 255, 0), la garniérite smectitisée en pourpre (RGB Code 194, 86, 194) et la goethite en orange (RGB Code 255, 153, 0). 3- la carte de distribution de l'olivine serpentinisée (de rouge % important à bleu % faible). 4- la carte de distribution de la népouite (de rouge % important à bleu % faible). 5- la carte de distribution de la Willemseite (de rouge % important à bleu % faible). 6- la carte de distribution de la garniérite smectitisée (de rouge % important à bleu % faible). 7- la carte de distribution de la goethite (de rouge % important à bleu % faible).
Mineral	RGB Code	Colour Code
Amphibole	50, 50, 80	
Antigorite	44,109,0	
Chrysoprase	145, 255, 145	
Gibbsite	255, 255, 20	
Goethite	255,153,0	
Goethite-Hématite	255,0,0	
Hématite-Goethite	168, o, o	
Hématite	88,0,0	
Kaolinite	255,229,180	
Lizardite	45,95,45	
Olivine	188,255,55	
Olivine serpentinisée	0, 175, 80	
Olivine serpentinisée altérée	o, 115, 55	
Olivine serpentinisée smectitisée	200,220,115	
Opale	255,237,105	
Orthopyroxène	0,176,172	
Orthopyroxène serpentinisé	0,108,105	
Orthopyroxène serpentinisé smectitisé	0,219,214	
Népouite	155,187,89	
Serpentine	52,82,52	
Serpentine altérée	148,138,83	
Smectite Mg	255, 200, 200	
Smectite Mg-Ni	168, 128, o	
Garniérite smectitisée	194, 86, 194	
Serpentine smectitisée	167,37,255	
Sépiolite	255,255,255	
Talc	209,209,209	
Ni-talc like/Willemseite	0,255,0	

Figure 19 Couleurs de la carte des classes minéralogiques

Une cartographie minéralogique hyperspectrale a été réalisée pour des échantillons sélectionnés dans chaque horizon d'altération, de la roche fraiche jusqu'à la latérite rouge (Figures 20 à 28).

Pour chaque échantillon, une moyenne des classes minérales a été calculée (Table 3) de manière à pouvoir comparer avec la quantification minéralogique des rayons X.

Table 2 Les indices spectraux pour chaque phase hyperspectrale incluent le « feature tracking », « lesmatching regions » ou PPC est le coefficient de corrélation de Pearson et le « spectral ratio »

MINERAL	FEATURE TRACKING	MATCHING REGIONS PCC (nm)	SPECTRAL RATIO	SPECTRE
Amphibole	1390-1395L (D>0.3%) 2310-2320L (D>0.3%) 2375-2405L (D>0.3%)	520-1170 1100-1730 1056-1150 2230-2450 2340-2360	1010R/1700R<1 1720R/2130R>1	
Antigorite	710-990L (D>0.5%) 1385-1400L (D>0.2%) 2320-2340L (D>0.2%) Exclude1020- 1100L (D>0.5%)	480-730 650-1110 950-970 2240-2358	480R/526R<1 770R/820R<1.02	50 45 30 25 20 10 50 450 950 1450 1550 2450
Serpentine	2300-2340L (D>0.2%)	1140-1350 1450-1850 2146-2356	1180R/1650R>1.15 1650R/2060R>1.15	
Chrysoprase	600-770L (D>1%) 1430-1480L (D>0.5%) 1890-1956L (D>0.5%)	552-830 1320-1585	540R/662R>1.1 750R/830R>1	
Gibbsite	1415-1460L (D>0.5%) 2250-2280L (D>0.5%)	1350-1600 1400-2450		
Goethite	920-960L (D>1%	550-1240 1760-2250	588R/772R<0.9 810R/944R>1.02	

26 | Caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale POC NC

Mg Smectite Orthopyroxene	890-930L (D>0.2%) 2304-2320L (D>0.5%) Exclude630- 720L (D>0.5%) Exclude1390- 1400L (D>0.2%) Exclude1710- 1740L (D>0.2%)	712-1250 2015-2230	1438R/1718R>1 2344/2360R<1	
Mg Smectite Serpentine	850-960L (D>0.5%) 2311-2325L (D>0.2%) 2370-2400L (D>0.1%) Exclude630- 720L (D>0.5%) Exclude2066- 2096L (D>0.2%)	580-1250 1124-1200 2015-2230 2250-2500 2340-2360	1438R/1710R<1	
Mg Smectite Garnierite	630-720L (D>0.5%) 2311-2325L (D>0.2%) 2370-2400L (D>0.1%) Exclude1130- 1180L (D>0.2%) Exclude2066- 2096L (D>0.2%)	580- 1250nm 2015- 2230nm 2250- 2500nm	1438R/1710R<1 1910R/2310R<1	
Ni-Mg Smectite	630-720L (D>0.5%) 2304-2311L (D>0.2%) 2370-2400L (D>0.1%) Exclude1130- 1180L (D>0.2%) Exclude2066- 2096L (D>0.2%)	580-1250 2016-2230 2250-2500	1438R/1710R<1 1910R/2310R<1	
Sepiolite	1126-1180L (D>0.3%) 1415-1430L (D>0.2%) 2310-2320L (D>0.2%)	710-1060 1376-1580 2276-2500	2344R/2360R>1	

5.4 Comparaison entre la diffraction des rayons X et la quantification hyperspectrale

La comparaison entre les résultats minéralogiques issus de la DRX pour les olivines et les orthopyroxènes montrent une très bonne corrélation avec les résultats minéralogiques obtenus avec l'imagerie hyperspectrale (Table 3). Comme expliqué précédemment la taille des pixels de l'image hyperspectrale est de 500 par 500 µm et donc certains pixels contiennent en général et donc on doit comparer la minéralogie DRX pour un minéral avec plusieurs classes minérales hyperspectrales. Par exemple, la présence et le pourcentage d'olivine en DRX doivent être comparés avec les classes olivine, olivine serpentinisée et olivine serpentinisée altérée (Table 3). Il en est de même pour les pyroxènes qui doivent être comparés avec les classes pyroxène et pyroxène serpentinisé. Les différences observées entre présence d'un minéral en DRX et son absence en imagerie hyperspectrale peuvent expliquées par la différence entre l'analyse d'une poudre totale en DRX et de la surface de l'échantillon en imagerie hyperspectrale.

Des résultats comparables sont observés pour les serpentines et smectites (Table 4) et les oxydes de fer (Table 5).

Sample	Olivine DRX	Olivine C	Olivine serpentinisée C	Olivine serpentinisée altérée C	Pyroxene XRD	Orthopyroxène C	Orthopyroxène serpentinisé C
HV0	69	30	15	0	30	19	2
259827	67	0	8	0	27	0	61
260041	41	0	0	0	19	0	0
152447	41	0	0	0	27	0	1
DI2	40	0	80	0	0	0	0
HI1	29	0	33	1	42	2	25
ню	26	0	41	0	0	1	3
259859	24	0	39	17	6	0	2
153892	21	0	37	0	4	0	58
DB0	21	0	1	0	0	0	0
153836	20	0	3	0	15	0	56
152427	19	0	0	0	13	0	0
DG1	17	0	73	0	0	0	0
152615	17	0	3	1	21	0	2
259806	15	0	0	1	0	0	0
152931	14	0	7	3	0	0	3
153885	13	0	22	4	15	0	22
HG1	9	0	53	0	2	0	4
DN0	8	0	1	0	0	0	0
HB1	4	0	1	6	1	0	0
153882	4	0	0	0	4	0	0
153834	3	0	3	0	0	0	15
153439	3	0	0	0	4	0	1
LRG	0	0	0	0	0	0	0
LR	0	0	0	0	0	0	0

Table 3 Pourcentages des classes minérales Olivine et Orthopyroxène caractérisées par les Rayons X (DRX) et par l'imagerie hyperspectrale Corescan™ (C) rangés par ordre décroissant du pourcentage d'olivine (DRX)

30 | Caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale POC NC

Ц	0	0	0	0	0	0	0
JB2-9	0	0	0	0	0	0	0
JB2-4	0	0	0	0	0	0	0
JB2-35	0	0	0	0	0	0	0
JB2-3	0	0	0	0	0	0	0
JB2-26	0	0	1	0	0	0	0
JB2-16	0	0	0	1	14	0	2
HN4	0	0	0	0	0	0	0
HN2	0	0	4	4	0	0	2
HI4	0	0	0	0	9	0	0
HI3	0	0	0	0	6	0	2
HI2	0	0	0	1	20	0	3
HB2	0	0	0	0	0	0	0
GR	0	0	0	0	0	0	0
DN2	0	0	1	3	0	0	0
DG3	0	0	1	0	0	0	0
CF	0	0	0	0	0	0	0
BSM	0	0	0	0	0	0	0
BSI	0	0	0	0	0	0	0
BSERP	0	0	0	0	0	0	0
259816	0	0	0	0	0	0	0
259803	0	0	0	0	0	0	0
153436	0	0	0	0	0	0	0
153435	0	0	0	0	0	0	0
153433	0	0	0	0	0	0	0
153426	0	0	0	0	0	0	0
152619	0	0	0	0	0	0	0
152606	0	0	0	0	1	0	0

152604	0	0	0	0	10	0	0
152580	0	0	0	0	8	0	0
152574	0	0	0	0	0	0	0

Table 4 Pourcentages des classes minérales Serpentine et Smectite caractérisées par les Rayons X (DRX) et par l'imagerie hyperspectrale Corescan™ (C) rangés par ordre décroissant du pourcentage de serpentine (DRX)

Sample	Serpentine XRD	Antigorite C	Lizardite C	Serpentine C	Népouite C	Serpentine altérée C	Serpentine smectitisée	Stevensite XRD	Smectite Mg C	Smectite Mg-Ni C	Garniérite smectitisée C
DN2	100	0	12	1	1	76	0	0	0	0	0
259816	96	0	1	0	0	91	0	0	0	0	0
HB2	95	2	71	6	1	18	0	0	0	0	0
HB1	94	0	66	10	0	3	0	0	0	0	0
153439	93	1	37	1	0	46	0	0	0	0	0
153436	93	0	1	0	0	85	6	0	0	0	0
HN2	92	4	48	24	4	5	0	0	0	0	0
153834	92	10	40	2	12	4	0	0	0	0	0
153433	89	0	1	0	1	70	6	0	0	0	0
DN0	88	9	16	57	11	0	0	0	0	0	0
HG1	88	9	1	2	27	0	0	0	0	0	0
152931	86	4	29	0	1	46	0	0	0	0	0
153435	81	0	0	0	0	93	4	0	0	0	0
DG3	79	0	2	1	65	7	0	2	0	0	0

JB2-16	75	0	9	0	52	22	2	9	0	0	2
DG1	75	0	16	5	5	0	0	0	0	0	0
259806	73	0	3	0	1	90	0	0	0	0	0
HIO	70	1	0	46	5	0	0	0	0	0	0
152619	68	0	0	0	0	0	10	32	39	0	0
153885	66	2	9	1	10	25	1	0	0	0	0
DB0	66	0	4	85	0	0	0	0	0	0	0
НІЗ	65	0	2	0	34	39	3	0	0	0	2
259859	63	0	32	0	1	7	0	0	0	0	0
BSERP	61	71	0	7	2	0	0	0	0	0	0
HI2	61	0	9	0	16	49	5	0	0	0	0
153836	59	4	1	0	12	0	0	0	0	0	0
152604	59	0	0	0	0	0	0	31	34	15	0
153892	58	0	1	0	3	0	0	0	0	0	0
152615	52	0	5	0	0	6	43	9	2	0	0
152580	51	0	0	0	0	0	0	41	0	72	1
DI2	47	1	2	0	14	0	0	0	0	0	0
260041	29	0	6	0	0	91	0	0	0	0	0

34 | Caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale POC NC

HN4	28	0	2	1	1	78	0	0	0	0	0
152606	27	0	0	0	0	0	2	11	48	0	0
HI1	26	0	5	10	1	1	4	0	0	1	2
HI4	26	0	0	0	0	29	0	0	0	0	0
153882	25	0	0	0	0	97	0	0	0	0	0
152447	24	0	2	0	0	92	0	0	0	0	0
JB2-9	14	0	0	0	0	0	0	0	0	0	0
153426	4	0	0	0	0	0	0	0	0	0	0
259803	1	0	0	0	0	0	0	0	0	0	0
JB2-35	1	0	1	0	1	1	0	0	0	0	0
HV0	0	0	2	14	1	0	1	0	0	0	0
259827	0	0	12	0	11	4	0	0	0	0	0
152427	0	0	0	0	0	0	1	0	0	0	0
LRG	0	0	0	0	0	0	0	0	0	0	0
LR	0	0	0	0	0	0	0	0	0	0	0
Ц	0	0	0	0	0	0	0	0	0	0	0
JB2-4	0	0	0	0	0	0	0	0	0	0	0
JB2-3	0	0	0	0	0	0	0	0	0	0	0

JB2-26	0	0	1	0	29	1	1	0	0	0	1
GR	0	0	0	0	0	0	0	0	0	0	0
CF	0	0	0	0	0	0	0	0	0	0	0
BSM	0	0	0	8	0	0	2	0	0	0	0
BSI	0	0	0	0	0	2	0	0	0	0	0
152574	0	0	0	0	0	0	0	0	0	0	0

Table 5 Pourcentages des classes minérales goethite et hématite caractérisées par les Rayons X (DRX) et par l'imagerie hyperspectrale Corescan™ (C) rangés par ordre décroissant du pourcentage de goethite (DRX)

Sample	Goethite XRD	Hematite XRD	Maghemite Magnetite XRD	Goethite C	Goethite- Hématite C	Hématite/Goethite C	Hématite C
CF	100	0	0	86	12	2	0
JB2-3	88	6	5	95	4	0	0
Ц	88	0	12	94	2	0	0
LR	87	13	0	93	7	0	0
153426	82	0	14	95	5	0	0
152574	78	0	0	28	62	1	0
LRG	59	41	0	0	1	95	1
JB2-4	54	0	40	41	53	5	0
GR	31	47	23	34	31	19	2
JB2-9	21	0	0	4	18	27	0
HI4	14	0	0	64	1	0	0
153435	13	0	0	2	0	0	0
260041	11	0	0	2	0	0	0
259803	10	0	0	2	13	76	2
153433	8	0	0	19	1	0	0
153436	7	0	0	4	1	0	0
259816	4	0	0	0	0	0	0
152447	3	0	5	1	0	0	0
DN2	0	0	0	2	0	0	0
HB2	0	0	0	0	0	0	0
HB1	0	0	0	1	0	0	0
153439	0	0	0	6	1	0	0
HN2	0	0	0	0	0	0	0
153834	0	0	0	0	0	0	0
DN0	0	0	0	0	0	0	0
HG1	0	0	0	0	0	0	0

Caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale | 37

152931	0	0	0	0	0	0	0
DG3	0	0	0	22	0	0	0
JB2-16	0	0	0	6	1	0	0
DG1	0	0	0	0	0	0	0
259806	0	0	0	2	0	0	0
HIO	0	0	0	0	0	0	0
152619	0	0	0	35	14	0	0
153885	0	0	0	1	0	0	0
DB0	0	0	0	0	0	0	0
HI3	0	0	0	11	1	0	0
259859	0	0	0	0	0	0	0
BSERP	0	0	0	0	0	0	0
HI2	0	0	0	8	5	0	0
153836	0	0	0	0	0	0	0
152604	0	0	0	48	2	0	0
153892	0	0	0	0	0	0	0
152615	0	0	0	33	3	0	0
152580	0	0	0	4	0	0	0
DI2	0	0	0	0	0	0	0
HN4	0	0	0	8	1	0	0
152606	0	0	2	29	20	0	0
HI1	0	0	0	3	1	0	0
153882	0	0	0	2	0	0	0
JB2-35	0	0	0	1	0	0	0
HV0	0	0	0	0	0	0	0
259827	0	0	0	0	0	0	0
152427	0	0	0	48	2	0	0
JB2-26	0	0	0	1	0	0	0
BSM	0	0	0	6	0	0	0
BSI	0	0	0	26	16	2	0

38 | Caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale

5.5 Classification hyperspectrale

Le but ultime de cette étude est de pouvoir automatiser la classification typologique à partir de l'imagerie hyperspectrale. Pour cela, il est nécessaire de quantifier toutes les classes minérales et des critères bien spécifiques pour produire une classification hyperspectrale que l'on pourra alors comparer à la classification typologique. Pour la lithologie, les critères retenus sont les suivants :

Pour la serpentinisation, les critères retenus sont les suivants :

Et enfin pour l'altération, les critères retenus sont les suivants :

En utilisant tous les critères, une classification hyperspectrale a été générée et comparée à la classification typologique (Tables 6 à 14). Pour la classification hyperspectrale, une classe

lithologique plus générique a été rajoutée, péridotite ou Pr, car dans certains cas on ne peut pas être certain si l'échantillon est une dunite ou une harzburgite car il est trop altéré.

Un très grand nombre d'échantillons montrent une bonne corrélation entre les deux classifications mais il y a parfois quelques différences en particulier quand les échantillons sont altérés (Tables 6 à 14).

Figure 20 Exemple de Cartographie minéralogique hyperspectrale

Figure 21 Cartographie minéralogique hyperspectrale des silicates primaires dans les péridotites

Figure 22 Cartographie minéralogique hyperspectrale des serpentines dans les péridotites

Figure 23 Cartographie minéralogique hyperspectrale des minéraux riches en nickel dans la saprolite

Figure 24 Cartographie minéralogique hyperspectrale de la serpentine altérée dans la saprolite

Figure 25 Cartographie minéralogique hyperspectrale des smectites dans la saprolite grossière

Figure 26 Pourcentage des minéraux dans la latérite de transition

Figure 27 Cartographie minéralogique hyperspectrale des oxydes de fer dans la latérite jaune

Figure 28 Cartographie minéralogique hyperspectrale des oxydes de fer dans la latérite rouge

		Classifi	cation Type	ologique	Classific	ation Hyper	spectrale								
Echantill	ons	L	S	Α	L	S	Α								
drillhole_id	sample_id							1st Mineral Name	Value (%)	2nd Mineral Name	Value (%)	3rd Mineral Name	Value (%)	4th Mineral Name	Value (%)
BOULINDA-G250	152955	Du	N	3	Pr	В	3	Serpentine altérée	97.8	Goethite	0.6	Lizardite	0.2	Népouite	0.1
BOULINDA-G250	152958	Du	1	4	Pr	Α	3	Serpentine altérée	99.6	Goethite	0.2	Lizardite	0.0	Goethite-Hématite	0.0
BOULINDA-G586	152915	Gb			Gb			Kaolinite	49.2	Talc	48.0	Goethite	1.2	Hématite	0.9
BOULINDA-G586	152921	Du	В	4	Gb			Serpentine smectitisée	38.3	Serpentine altérée	25.9	Goethite	18.0	Kaolinite	8.9
BOULINDA-G586	152923	Du	В	5	Pr	Α	3	Serpentine altérée	80.4	Goethite	11.7	Serpentine smectitisée	5.4	Goethite-Hématite	0.9
BOULINDA-G586	152928	Du	В	3	Pr	В	3	Serpentine altérée	81.0	Lizardite	12.0	Goethite	2.3	Népouite	0.7
BOULINDA-G586	152931	Du	В	2	Hz	N	3	Serpentine altérée	45.7	Lizardite	29.1	Olivine serpentinisée	7.4	Antigorite	3.6
BOULINDA-G586	152934	Du	В	1	Du	N	3	Lizardite	28.1	Serpentine altérée	27.2	Népouite	16.8	Olivine serpentinisée	8.3
BOULINDA-H350	258105	Hz	В	3	Hz	N	3	Serpentine altérée	71.9	Serpentine smectitisée	16.6	Népouite	3.0	Goethite	2.4
BOULINDA-H350	258106	Hz	В	4	Hz	1 I	5	Goethite	37.1	Smectite Mg	30.9	Serpentine smectitisée	15.5	Serpentine altérée	8.7
BOULINDA-H369	258342	Hz	В	1	Hz	N	3	Lizardite	29.2	Népouite	27.1	Antigorite	8.7	Serpentine altérée	7.4
BOULINDA-H446	258095	Hz	В	2	Hz	Ν	3	Serpentine altérée	43.9	Lizardite	17.0	Orthopyroxène serpentinisé	13.7	Antigorite	7.1
BOULINDA-H446	258303	Hz	В	1	Hz	N	3	Lizardite	26.2	Olivine serpentinisée	12.2	Antigorite	10.6	Serpentine	8.7
BOULINDA-1462	259934	Du	N	4	Hz	1	3	Serpentine altérée	86.3	Serpentine smectitisée	6.3	Goethite-Hématite	2.7	Goethite	2.6
BOULINDA-1923	259855	Du	N	2	Pr	Α	3	Serpentine altérée	99.7	Lizardite	0.1	Goethite	0.0	Hématite	0.0
BOULINDA-1923	259859	Hz	N	1	Hz	- I	3	Olivine serpentinisée	39.4	Lizardite	31.7	Olivine serpentinisée altérée	16.5	Serpentine altérée	6.6
BOULINDA-1923	259860	Du	N	2	Bsi			Serpentine altérée	65.4	Goethite	26.1	Goethite-Hématite	3.4	Népouite	3.0

Table 6 Comparaison de la classification typologique et de la classification hyperspectrale pour Boulinda G, H et I. Minéralogie et pourcentage

Table 7 Comparaison de la classification typologique et de la classification hyperspectrale pour Boulinda L 890. Minéralogie et pourcentage

		Classif	ication Typ	ologique	Classifica	tion Hypers	pectrale								
		L	S	Α	L	S	Α								
drillhole_id	sample_id							1st Mineral Name	Value (%)	2nd Mineral Name	Value (%)	3rd Mineral Name	Value (%)	4th Mineral Name	Value (%)
BOULINDA-L890	259801	Lj		6 (Lj)	Lj		6	Goethite	96.3	Goethite-Hématite	3.5	Orthopyroxène	0.0	Orthopyroxène	0.0
BOULINDA-L890	259802	Lj		6 (Lj)	Cu		6	Goethite	61.1	Goethite-Hématite	38.1	Hématite/Goethite	0.8	Talc	0.0
BOULINDA-L890	259803	Lj		6 (Lj)	Gr		6	Hématite/Goethite	76.1	Goethite-Hématite	13.0	Hématite	2.5	Goethite	1.5
BOULINDA-L890	259804	Du	S	5	Cu		6	Goethite-Hématite	50.5	Goethite	46.8	Smectite Mg	1.4	Hématite/Goethite	0.8
BOULINDA-L890	259808	Du	S	4	Bsi			Goethite	65.8	Talc	13.1	Goethite-Hématite	7.4	Serpentine smectitisée	4.8
BOULINDA-L890	259805	Du	S	5	Bsi			Goethite	47.0	Goethite-Hématite	31.9	Talc	7.0	Smectite Mg	4.3
BOULINDA-L890	259806	Du	S	2	Du	Ν	2	Serpentine altérée	89.8	Lizardite	3.2	Goethite	2.3	Olivine serpentinisée altérée	0.8
BOULINDA-L890	259807	Du	S	4	Gb?			Serpentine altérée	49.1	Goethite	25.0	Goethite-Hématite	18.4	Serpentine smectitisée	5.6
BOULINDA-L890	259809	Hz	S	2	Du	I	3	Serpentine altérée	63.6	Olivine serpentinisée	10.5	Lizardite	10.2	Goethite	2.9
BOULINDA-L890	259810	Hz	N	4	Pr	Α	3	Serpentine altérée	80.0	Serpentine smectitisée	16.7	Goethite	1.9	Goethite-Hématite	1.3
BOULINDA-L890	259811	Hz	S	4	Pr	Ν	4	Serpentine smectitisée	39.9	Serpentine altérée	35.8	Goethite	19.6	Goethite-Hématite	2.6
BOULINDA-L890	259812	Du	S	4	Pr	Α	3	Serpentine altérée	84.3	Serpentine smectitisée	12.3	Goethite	1.7	Népouite	1.0
BOULINDA-L890	259813	Hz	S	3	Pr	Ν	3	Serpentine altérée	76.1	Serpentine smectitisée	21.1	Goethite	0.7	Népouite	0.6
BOULINDA-L890	259814	Hz	S	2	Hz	Ν	3	Serpentine altérée	37.9	Lizardite	27.3	Orthopyroxène serpentinisé	11.1	Olivine serpentinisée	7.8
BOULINDA-L890	259815	Hz	S	3	Du	Ν	3	Serpentine altérée	73.3	Serpentine smectitisée	19.8	Lizardite	3.2	Olivine serpentinisée altérée	1.2
BOULINDA-L890	259816	Du	В	2	Pr		3	Serpentine altérée	91.4	Lizardite	1.1	Népouite	0.3	Goethite	0.0
BOULINDA-L890	259817	Du	N	4	Pr		3	Serpentine altérée	64.6	Serpentine smectitisée	29.7	Goethite	1.5	Lizardite	0.8
BOULINDA-L890	259818	Du	В	3	Du	В	3	Serpentine altérée	63.3	Lizardite	10.4	Goethite	6.4	Népouite	0.8
BOULINDA-L890	259819	Du	N	4	Pr	Α	3	Serpentine altérée	96.7	Serpentine smectitisée	2.8	Goethite	0.2	Lizardite	0.1
BOULINDA-L890	259820	Du	N	2	Du	1	3	Olivine serpentinisée altérée	47.6	Lizardite	23.2	Serpentine altérée	5.8	Népouite	1.9
BOULINDA-L890	259821	Du	В	4	Pr	Α	3	Serpentine altérée	75.1	Serpentine smectitisée	24.6	Goethite	0.1	Lizardite	0.0
BOULINDA-L890	259822	Du	N	2	Du	Ν	3	Lizardite	44.2	Olivine serpentinisée altérée	15.2	Serpentine altérée	13.3	Népouite	3.3
BOULINDA-L890	259823	Du	N	3	Du	1	3	Serpentine altérée	97.0	Serpentine smectitisée	1.4	Goethite	0.7	Olivine serpentinisée altérée	0.3
BOULINDA-L890	259824	Hz	N	2	Hz	Ν	3	Serpentine altérée	75.7	Lizardite	9.6	Olivine serpentinisée altérée	5.9	Serpentine smectitisée	2.0
BOULINDA-L890	259825	Hz	N	3	Hz	1	3	Serpentine altérée	91.0	Serpentine smectitisée	4.7	Lizardite	1.0	Olivine serpentinisée altérée	0.9
BOULINDA-L890	259826	Hz	S	1	Hz	1	3	Orthopyroxène serpentinisé	45.1	Serpentine altérée	33.2	Lizardite	6.6	Olivine serpentinisée	4.9
BOULINDA-L890	259827	Hz	S	1	Hz	1	3	Orthopyroxène serpentinisé	60.7	Lizardite	12.3	Népouite	10.6	Olivine serpentinisée	7.8
BOULINDA-L890	259828	Hz	S	2	Du	1	3	Serpentine altérée	46.8	Olivine serpentinisée altérée	14.1	Lizardite	12.5	Goethite	8.2
BOULINDA-L890	259829	Du	S	3	Pr	В	3	Serpentine altérée	99.0	Goethite	0.4	Serpentine smectitisée	0.2	Lizardite	0.1
BOULINDA-L890	259830	Du	S	2	Hz	1	3	Serpentine altérée	90.4	Orthopyroxène serpentinisé	3.4	Lizardite	1.3	Goethite	1.1
BOULINDA-L890	259831	Du	S	1	Hz	1	3	Orthopyroxène serpentinisé	53.6	Olivine serpentinisée	15.7	Serpentine altérée	9.3	Lizardite	8.8

	Classification Typologique		ologique	Classifica	tion Hyper	spectrale									
Echantille	ons	L	S	Α	L	S	Α								
drillhole_id	sample_id							1st Mineral Name	Value (%)	2nd Mineral Name	Value (%)	3rd Mineral Name	Value (%)	4th Mineral Name	Value (%)
BOULINDA-M384	152447	Hz	S	2	Hz	Ν	3	Serpentine altérée	92.0	Lizardite	2.1	Goethite	1.0	Orthopyroxène serpentinisé	0.6
BOULINDA-M438	260036	Du	S	2	Pr	Α	3	Goethite	52.4	Serpentine altérée	45.4	Goethite-Hématite	2.2	Népouite	0.0
BOULINDA-M438	260037	Du	S	4	Pr	Α	3	Goethite	53.4	Serpentine altérée	45.6	Goethite-Hématite	0.9	Népouite	0.0
BOULINDA-M438	260038	Du	S	4	Pr	Α	3	Serpentine altérée	99.2	Goethite	0.4	Népouite	0.4	Orthopyroxène serpentinisé	0.0
BOULINDA-M438	260039	Du	S	4	Pr	Α	3	Serpentine altérée	99.6	Goethite	0.2	Népouite	0.1	Lizardite	0.0
BOULINDA-M438	260040	Du	S	3	Pr	В	3	Serpentine altérée	96.1	Lizardite	1.8	Goethite	1.7	Serpentine smectitisée	0.2
BOULINDA-M438	260041	Du	1	1	Hz	Ν	3	Serpentine altérée	90.5	Lizardite	5.9	Goethite	1.8	Olivine serpentinisée altérée	0.4
BOULINDA-N096	152421	Hz	S	4	Gb?			Goethite	50.9	Talc	43.9	Goethite-Hématite	4.2	Serpentine altérée	0.1
BOULINDA-N096	152424	Hz	S	5	Gb?			Goethite	70.1	Talc	17.4	Goethite-Hématite	11.9	Serpentine smectitisée	0.4
BOULINDA-N096	152427	Hz	S	3	Gb?			Goethite	47.5	Talc	47.5	Goethite-Hématite	2.1	Serpentine smectitisée	1.3
BOULINDA-N096	152429	Hz	S	1	Gb?			Goethite	53.0	Talc	38.3	Serpentine smectitisée	2.7	Goethite-Hématite	1.0

Table 8 Comparaison de la classification typologique et de la classification hyperspectrale pour Boulinda M et N. Minéralogie et pourcentage

Table 9 Comparaison de la classification typologique et de la classification hyperspectrale pour JB2-EF91. Minéralogie et pourcentage

(Classific	ation Type	ologique	Classifica	tion Hyper	spectrale								
Echantille	ons	L	S	Α	L	S	Α								
drillhole_id	sample_id							1st Mineral Name	Value (%)	2nd Mineral Name	Value (%)	3rd Mineral Name	Value (%)	4th Mineral Name	Value (%)
JB2-EF910	1	Cf		6 (Cf)	Cu		6	Goethite	52.0	Gibbsite	16.8	Goethite-Hématite	13.6	Hématite/Goethite	10.0
JB2-EF910	2	Gr		6 (Gr)	Lj		6	Goethite	96.7	Goethite-Hématite	1.6	Gibbsite	0.9	Amphibole	0.0
JB2-EF910	3	Lr		6 (Lr)	Lj		6	Goethite	94.9	Goethite-Hématite	4.3	Gibbsite	0.5	Hématite/Goethite	0.0
JB2-EF910	4	Lj		6 (Lj)	Cu		6	Goethite-Hématite	53.5	Goethite	41.5	Hématite/Goethite	4.9	Hématite	0.0
JB2-EF910	5	Lj		6 (Lj)	Cu		6	Goethite	87.2	Goethite-Hématite	11.3	Hématite/Goethite	0.6	Orthopyroxène	0.0
JB2-EF910	6	Lj		6 (Lj)	Lr		6	Goethite	90.1	Goethite-Hématite	8.8	Hématite/Goethite	1.0	Hématite	0.1
JB2-EF910	7	Lt		6 (Lt)	Gb			Hématite/Goethite	74.3	Hématite	9.3	Kaolinite	9.2	Goethite-Hématite	3.7
JB2-EF910	8	Gb			Bsi			Opale	67.7	Goethite	11.8	Hématite/Goethite	5.3	Goethite-Hématite	3.0
JB2-EF910	9	Gb			Gb			Kaolinite	49.0	Hématite/Goethite	26.9	Goethite-Hématite	17.7	Goethite	4.5
JB2-EF910	10	Lt		6 (Lt)	Bsi			Goethite	38.6	Talc	33.1	Goethite-Hématite	14.0	Opale	8.4
JB2-EF910	11	Lt		6 (Lt)	Bsi			Goethite	58.9	Goethite-Hématite	18.8	Talc	12.1	Opale	7.2
JB2-EF910	12	Px			Bsi			Kaolinite	29.7	Talc	24.1	Goethite	19.8	Serpentine altérée	3.6
JB2-EF910	13	Px			Bsi			Goethite	33.6	Serpentine smectitisée	22.5	Ni-talc like/Willemseite	9.0	Garniérite smectitisée	8.2
JB2-EF910	14	Bsi			Bsi			Opale	52.9	Goethite	36.8	Serpentine altérée	2.6	Goethite-Hématite	0.8
JB2-EF910	15	Bsi			Bsi			Goethite	54.3	Serpentine smectitisée	14.4	Opale	9.0	Talc	4.0
JB2-EF910	16	Hz	1	2	Hz	N	2	Népouite	52.1	Serpentine altérée	21.7	Lizardite	8.5	Goethite	5.8
JB2-EF910	17	Bsi			Bsi			Opale	32.4	Goethite	31.2	Ni-talc like/Willemseite	15.5	Lizardite	4.8
JB2-EF910	18	Bsr			Bsi			Goethite	52.2	Ni-talc like/Willemseite	9.7	Serpentine smectitisée	8.9	Serpentine altérée	5.8
JB2-EF910	19	Bsi			Bsi			Goethite	37.6	Ni-talc like/Willemseite	28.5	Serpentine altérée	11.9	Opale	9.9
JB2-EF910	20	Bsi			Bsi			Serpentine altérée	24.3	Ni-talc like/Willemseite	22.0	Opale	20.9	Goethite	10.6
JB2-EF910	21	Bsr			Bsi			Serpentine altérée	51.2	Goethite	29.4	Lizardite	4.2	Serpentine smectitisée	3.5
JB2-EF910	22	Bsi			Bsi			Serpentine altérée	42.7	Lizardite	42.5	Serpentine smectitisée	5.2	Opale	1.5
JB2-EF910	23	Du	1	3	Hz	N	2	Serpentine altérée	70.5	Goethite	15.1	Népouite	3.0	Serpentine smectitisée	2.5
JB2-EF910	24	Bsi			Bsi			Népouite	38.3	Serpentine altérée	26.1	Lizardite	21.2	Ni-talc like/Willemseite	5.4
JB2-EF910	25	Bsi			Bsi			Serpentine altérée	44.4	Goethite	36.3	Serpentine smectitisée	4.9	Opale	3.9
JB2-EF910	26	Px			Bsi			Ni-talc like/Willemseite	39.8	Népouite	29.4	Amphibole	16.4	Garniérite smectitisée	1.2
JB2-EF910	27	Hz	1	2	Hz	N	2	Népouite	46.3	Serpentine altérée	15.6	Lizardite	13.4	Orthopyroxène serpentinisé	4.1
JB2-EF910	28	Hz	1	4	Bsi			Serpentine altérée	48.4	Népouite	11.2	Goethite	8.6	Ni-talc like/Willemseite	8.6
JB2-EF910	29	Bsi			Bsi			Ni-talc like/Willemseite	42.2	Opale	32.8	Serpentine altérée	9.1	Népouite	6.1
JB2-EF910	30	Hz	1	2	Hz	N	2	Népouite	26.5	Serpentine altérée	17.2	Lizardite	16.7	Orthopyroxène serpentinisé	9.0
JB2-EF910	31	Hz	1	2	Hz	1	1	Népouite	25.1	Olivine serpentinisée	24.2	Orthopyroxène serpentinisé	12.3	Lizardite	10.9
JB2-EF910	32	Hz	1	2	Hz	I	1	Olivine serpentinisée	36.1	Orthopyroxène serpentinisé	14.0	Népouite	11.1	Serpentine	10.2
JB2-EF910	33	Hz	1	3	Bsi			Serpentine altérée	29.1	Népouite	21.0	Ni-talc like/Willemseite	14.7	Opale	8.1
JB2-EF910	34	Hz	1	2	Hz	N	0	Olivine serpentinisée	34.3	Serpentine	29.2	Lizardite	21.0	Orthopyroxène serpentinisé	5.5
JB2-EF910	35	Bsi			Bsi			Ni-talc like/Willemseite	49.8	Opale	43.7	Népouite	1.3	Serpentine altérée	1.1
JB2-EF910	36	Bsi			Bsi			Ni-talc like/Willemseite	52.8	Népouite	18.2	Opale	10.4	Goethite	8.1
JB2-EF910	37	Du	1	2	Du		1	Olivine serpentinisée	50.9	Lizardite	20.2	Népouite	20.0	Serpentine	4.1
JB2-EF910	38	Bsi			Bsi			Ni-talc like/Willemseite	41.0	Opale	28.2	Népouite	9.3	Serpentine altérée	5.1
JB2-EF910	39	Bsi			Bsi			Ni-talc like/Willemseite	49.7	Opale	31.5	Népouite	6.5	Talc	3.1
JB2-EF910	40	Bsi			Bsi			Ni-talc like/Willemseite	60.8	Opale	27.6	Garniérite smectitisée	2.5	Népouite	2.1
JB2-EF910	41	Du	1	2	Du		1	Népouite	40.4	Olivine serpentinisée	26.6	Lizardite	7.1	Ni-talc like/Willemseite	6.7
JB2-EF910	42	Bsi			Bsi			Ni-talc like/Willemseite	48.8	Opale	25.6	Serpentine altérée	8.6	Népouite	5.0

Table 10 Comparaison de la classification typologique et de la classification hyperspectrale pour N'GO-PB4-H188. Minéralogie et pourcentage

		Classifi	cation Type	ologique	Classifica	tion Hype	rspectrale]]			
Echantill	ons	L	S	Α	L	S	A								
drillhole_id	sample_id							1st Mineral Name	Value (%)	2nd Mineral Name	Value (%)	3rd Mineral Name	Value (%)	4th Mineral Name	Value (%)
NGO-PB4-H188	153415	Lr	I.	6 (Lr)	Cu		6	Goethite	76.3	Goethite-Hématite	23.1	Serpentine altérée	0.3	Hématite/Goethite	0.2
NGO-PB4-H188	153416	Lr		6 (Lr)	Lr		6	Goethite	94.2	Goethite-Hématite	5.5	Serpentine altérée	0.3	Hématite/Goethite	0.0
NGO-PB4-H188	153417	Lr		6 (Lr)	Lj		6	Goethite	97.4	Goethite-Hématite	1.5	Serpentine altérée	0.9	Hématite/Goethite	0.1
NGO-PB4-H188	153418	Lj		6 (Lj)	Lr		6	Goethite	93.0	Goethite-Hématite	6.4	Hématite/Goethite	0.3	Serpentine altérée	0.2
NGO-PB4-H188	153419	Lj		6 (Lj)	Cu		6	Goethite	82.6	Goethite-Hématite	16.6	Serpentine altérée	0.6	Hématite/Goethite	0.2
NGO-PB4-H188	153420	Lj		6 (Lj)	Lr		6	Goethite	91.4	Goethite-Hématite	8.4	Hématite/Goethite	0.2	Serpentine altérée	0.1
NGO-PB4-H188	153421	Lj		6 (Lj)	Lr		6	Goethite	91.9	Goethite-Hématite	7.8	Serpentine altérée	0.2	Hématite/Goethite	0.0
NGO-PB4-H188	153422	Lj		6 (Lj)	Lj		6	Goethite	97.5	Goethite-Hématite	2.2	Serpentine altérée	0.3	Orthopyroxène	0.0
NGO-PB4-H188	153423	Lj		6 (Lj)	Lj		6	Goethite	97.2	Goethite-Hématite	2.7	Orthopyroxène	0.0	Orthopyroxène	0.0
NGO-PB4-H188	153424	Lj		6 (Lj)	Lr		6	Goethite	90.3	Goethite-Hématite	9.4	Hématite/Goethite	0.1	Serpentine altérée	0.0
NGO-PB4-H188	153425	Lj		6 (Lj)	Cu		6	Goethite-Hématite	57.5	Goethite	33.9	Hématite/Goethite	8.5	Serpentine altérée	0.0
NGO-PB4-H188	153426	Lj		6 (Lj)	Lr		6	Goethite	94.7	Goethite-Hématite	5.2	Hématite/Goethite	0.1	Talc	0.0
NGO-PB4-H188	153427	Lj		6 (Lj)	Lj		6	Goethite	98.3	Goethite-Hématite	1.1	Serpentine altérée	0.5	Hématite/Goethite	0.1
NGO-PB4-H188	153428	Lj		6 (Lj)	Lj		6	Goethite	94.9	Goethite-Hématite	4.9	Orthopyroxène	0.1	Hématite/Goethite	0.1
NGO-PB4-H188	153429	Lj		6 (Lj)	Lr		6	Goethite	89.9	Goethite-Hématite	9.9	Hématite/Goethite	0.1	Serpentine altérée	0.1
NGO-PB4-H188	153430	Lj		6 (Lj)	Gb?			Goethite	93.2	Goethite-Hématite	4.6	Talc	1.8	Serpentine smectitisée	0.2
NGO-PB4-H188	153431	Lj		6 (Lj)	Gb?			Goethite	96.2	Talc	1.6	Goethite-Hématite	1.4	Serpentine smectitisée	0.5
NGO-PB4-H188	153432	Lt		6 (Lj)	Lj		6	Goethite	92.9	Goethite-Hématite	3.4	Serpentine altérée	1.7	Serpentine smectitisée	0.5
NGO-PB4-H188	153433	Bsr			Hz	N	2	Serpentine altérée	70.4	Goethite	19.1	Serpentine smectitisée	6.5	Goethite-Hématite	1.0
NGO-PB4-H188	153434	Du	N	5	Pr	В	2	Serpentine altérée	81.6	Goethite	14.2	Goethite-Hématite	1.8	Serpentine smectitisée	1.5
NGO-PB4-H188	153435	Du	N	5	Pr	В	2	Serpentine altérée	92.7	Serpentine smectitisée	4.4	Goethite	1.7	Goethite-Hématite	0.2
NGO-PB4-H188	153436	Du	В	3	Pr		2	Serpentine altérée	85.0	Serpentine smectitisée	6.1	Goethite	3.8	Lizardite	0.8
NGO-PB4-H188	153437	Du	В	2	Hz	В	2	Serpentine altérée	70.4	Lizardite	22.2	Goethite	3.8	Goethite-Hématite	0.6
NGO-PB4-H188	153438	Du	В	2	Hz	В	2	Serpentine altérée	85.2	Lizardite	7.5	Goethite	5.2	Goethite-Hématite	0.3
NGO-PB4-H188	153439	Du	В	1	Hz	В	2	Serpentine altérée	45.7	Lizardite	36.6	Goethite	6.1	Goethite-Hématite	1.3
NGO-PB4-H188	153440	Du	В	2	Pr	В	2	Serpentine altérée	92.6	Lizardite	2.3	Serpentine	1.6	Goethite	1.5
NGO-PB4-H188	153441	Du	В	5	Pr	Α	2	Serpentine altérée	59.3	Goethite	32.6	Goethite-Hématite	6.5	Garniérite smectitisée	0.5
NGO-PB4-H188	153442	Du	В	2	Pr	В	2	Serpentine altérée	90.1	Goethite	5.3	Lizardite	2.7	Goethite-Hématite	0.3
NGO-PB4-H188	153443	Hz	В	2	Hz	В	2	Serpentine altérée	76.9	Goethite	10.0	Lizardite	9.2	Goethite-Hématite	1.0
NGO-PB4-H188	153444	Du	В	2	Pr	В	2	Serpentine altérée	88.9	Goethite	4.9	Lizardite	4.0	Goethite-Hématite	0.5
NGO-PB4-H188	153445	Hz	Ν	2	Hz	N	3	Serpentine altérée	84.3	Lizardite	9.5	Goethite	3.2	Olivine serpentinisée altérée	0.7
NGO-PB4-H188	153446	Hz	N	2	Pr	N	3	Serpentine altérée	90.1	Goethite	5.0	Serpentine smectitisée	1.9	Lizardite	1.9
NGO-PB4-H188	153447	Du	Ν	5	Pr	Α	3	Goethite	72.1	Serpentine altérée	17.2	Goethite-Hématite	8.7	Serpentine smectitisée	0.8
NGO-PB4-H188	153448	Hz	N	2	Gb?			Goethite	60.5	Talc	22.0	Serpentine smectitisée	12.3	Serpentine altérée	2.5
NGO-PB4-H188	153449	Hz	N	5	Pr	В	3	Serpentine altérée	99.0	Goethite	0.3	Lizardite	0.2	Amphibole	0.1
NGO-PB4-H188	153450	Hz	N	1	Hz	<u> </u>	3	Serpentine altérée	81.5	Lizardite	6.2	Orthopyroxène serpentinisé	4.7	Olivine serpentinisée altérée	3.2
NGO-PB4-H188	153451	Hz	N	2	Hz	N	3	Serpentine altérée	94.8	Lizardite	2.5	Olivine serpentinisée altérée	1.8	Goethite	0.3
NGO-PB4-H188	153452	Hz	N	3	S	N	3	Serpentine altérée	89.6	Serpentine smectitisée	6.9	Goethite	1.3	Lizardite	0.9
NGO-PB4-H188	153453	Du	В	4	Pr	В	3	Serpentine altérée	71.0	Serpentine smectitisée	22.3	Goethite	2.7	Goethite-Hématite	0.6
NGO-PB4-H188	153454	Hz	В	1	Hz	I	3	Serpentine altérée	73.0	Lizardite	9.0	Orthopyroxène serpentinisé	6.8	Olivine serpentinisée altérée	5.6

Table 11 Comparaison de la classification typologique et de la classification hyperspectrale pour N'GO-PB4-H321 et 411. Minéralogie et pourcentage

Classification Typologique		Classifica	tion Hype	rspectrale]]						
Echantill	ons	L	S	Α	L	S	Α								
drillhole_id	sample_id							1st Mineral Name	Value (%)	2nd Mineral Name	Value (%)	3rd Mineral Name	Value (%)	4th Mineral Name	Value (%)
NGO-PB4-H321	153695	Du	В	3	Pr		3	Serpentine altérée	67.0	Lizardite	16.0	Goethite	4.4	Serpentine smectitisée	1.5
NGO-PB4-H321	153696	Hz	В	2	Hz	N	3	Lizardite	61.7	Serpentine altérée	20.1	Serpentine	5.4	Antigorite	2.9
NGO-PB4-H321	153703	Lj		6 (Lj)	Gb?			Goethite	74.3	Talc	14.8	Goethite-Hématite	8.1	Serpentine smectitisée	2.6
NGO-PB4-H411	153830	Du	В	5	Gb?			Goethite	49.8	Serpentine altérée	10.1	Talc	8.4	Serpentine	2.7
NGO-PB4-H411	153831	Du	В	4	Hz	В	3	Serpentine altérée	43.1	Lizardite	7.7	Serpentine	7.5	Serpentine smectitisée	6.9
NGO-PB4-H411	153834	Hz	В	3	Hz	N	3	Lizardite	40.2	Orthopyroxène serpentinisé	15.0	Népouite	12.3	Antigorite	10.2
NGO-PB4-H411	153836	Hz	В	1	Hz	1	3	Orthopyroxène serpentinisé	56.3	Népouite	12.1	Antigorite	4.4	Olivine serpentinisée	3.0

		Classifi	cation Type	ologique	Classifica	ation Hype	rspectrale								
Echantill	lons	L	S	Α	L	S	Α								
drillhole_id	sample_id							1st Mineral Name	Value (%)	2nd Mineral Name	Value (%)	3rd Mineral Name	Value (%)	4th Mineral Name	Value (%)
NGO-PB5-1872	153870	Lr		6 (Lr)	Lr		6	Goethite	93.6	Goethite-Hématite	6.4	Talc	0.0	Hématite/Goethite	0.0
NGO-PB5-1872	153871	Hz	1	3	Hz	N	3	Serpentine altérée	94.7	Népouite	1.5	Goethite	1.5	Lizardite	0.9
NGO-PB5-1872	153872	Hz	1	4	Pr	N	3	Serpentine altérée	99.1	Lizardite	0.4	Goethite	0.2	Olivine serpentinisée altérée	0.2
NGO-PB5-1872	153873	Hz	1	2	Pr	В	3	Serpentine altérée	99.4	Goethite	0.3	Lizardite	0.1	Olivine serpentinisée altérée	0.0
NGO-PB5-1872	153874	Hz	1	4	Du	N	3	Serpentine altérée	92.1	Lizardite	4.3	Olivine serpentinisée altérée	1.9	Goethite	1.4
NGO-PB5-1872	153875	Hz	1	2	Du	- I	3	Lizardite	25.3	Olivine serpentinisée altérée	23.6	Olivine serpentinisée	18.0	Népouite	13.0
NGO-PB5-1872	153876	Hz	1	4	Pr	N	3	Serpentine altérée	96.1	Lizardite	1.8	Goethite	1.0	Olivine serpentinisée altérée	0.7
NGO-PB5-1872	153877	Hz	N	1	Hz	1	3	Orthopyroxène serpentinisé	37.4	Olivine serpentinisée	37.0	Lizardite	18.6	Népouite	1.6
NGO-PB5-1872	153878	Du	N	4	Pr	В	3	Serpentine altérée	83.0	Goethite	14.2	Goethite-Hématite	1.6	Lizardite	0.5
NGO-PB5-1872	153879	Hz	N	1	Hz	1	3	Orthopyroxène serpentinisé	31.4	Serpentine altérée	24.3	Olivine serpentinisée	20.4	Lizardite	9.1
NGO-PB5-1872	153880	Hz	1	2	Hz	1	3	Serpentine altérée	72.7	Orthopyroxène serpentinisé	14.6	Lizardite	2.6	Olivine serpentinisée	2.2
NGO-PB5-1872	153881	Hz	1	1	Hz	1	3	Orthopyroxène serpentinisé	72.9	Olivine serpentinisée	14.5	Lizardite	4.3	Antigorite	2.3
NGO-PB5-1872	153882	Du	1	5	Pr	N	3	Serpentine altérée	97.2	Goethite	1.6	Lizardite	0.4	Népouite	0.2
NGO-PB5-1872	153883	Hz	1	1	Hz	1	3	Olivine serpentinisée	29.4	Orthopyroxène serpentinisé	21.2	Lizardite	20.0	Serpentine altérée	17.8
NGO-PB5-1872	153884	Hz	1	1	Hz	1	3	Orthopyroxène serpentinisé	51.6	Olivine serpentinisée	17.4	Lizardite	8.9	Népouite	8.2
NGO-PB5-1872	153885	Hz	1	1	Hz	1	3	Serpentine altérée	24.9	Olivine serpentinisée	21.8	Orthopyroxène serpentinisé	21.7	Népouite	10.5
NGO-PB5-1872	153886	Hz	N	4	Hz	N	3	Serpentine altérée	89.9	Serpentine smectitisée	3.5	Népouite	2.3	Goethite	1.6
NGO-PB5-1872	153887	Hz	N	1	Рх			Orthopyroxène serpentinisé	97.3	Olivine serpentinisée	0.5	Lizardite	0.4	Serpentine altérée	0.3
NGO-PB5-1872	153888	Hz	N	2	Hz	1	3	Serpentine altérée	85.2	Serpentine smectitisée	5.1	Goethite	2.5	Orthopyroxène serpentinisé	2.1
NGO-PB5-1872	153889	Hz	N	4	Hz	1	3	Serpentine altérée	91.2	Serpentine smectitisée	3.8	Goethite	1.5	Goethite-Hématite	1.5
NGO-PB5-1872	153890	н	N	2	Du	N	3	Serpentine altérée	85.1	Serpentine smectitisée	6.0	Goethite	2.8	Goethite-Hématite	1.4
NGO-PB5-1872	153891	н	N	1	Рх			Orthopyroxène serpentinisé	98.2	Olivine serpentinisée	1.3	Lizardite	0.1	Népouite	0.1
NGO-PB5-1872	153892	н	N	1	Hz	1	1	Orthopyroxène serpentinisé	57.6	Olivine serpentinisée	37.4	Népouite	2.8	Lizardite	1.0

Table 12 Comparaison de la classification typologique et de la classification hyperspectrale pour N'GO-PB5-I872. Minéralogie et pourcentage

Table 13 Comparaison de la classification typologique et de la classification hyperspectrale pour Ouaco M-H880. Minéralogie et pourcentage

		Classifie	cation Type	ologique	Classifica	tion Hype	spectrale								
Echantill	ons	L	S	Α	L	S	Α								
drillhole_id	sample_id							1st Mineral Name	Value (%)	2nd Mineral Name	Value (%)	3rd Mineral Name	Value (%)	4th Mineral Name	Value (%)
OUACO-M-H880	152574	Lr		6 (Lr)	Gb?			Goethite-Hématite	62.2	Goethite	27.9	Talc	8.4	Hématite/Goethite	0.7
OUACO-M-H880	152575	Lr		6 (Lr)	Bsi			Goethite-Hématite	71.5	Goethite	18.6	Opale	6.5	Hématite/Goethite	1.7
OUACO-M-H880	152576	Hz	1	4	Pr	Α	5	Smectite Mg	47.7	Goethite	34.2	Goethite-Hématite	15.0	Serpentine smectitisée	2.8
OUACO-M-H880	152577	Hz	I.	3	Pr	Α	4	Garniérite smectitisée	44.5	Goethite	37.2	Serpentine smectitisée	9.5	Goethite-Hématite	2.9
OUACO-M-H880	152578	Hz	1	3	Pr	В	4	Serpentine smectitisée	46.5	Goethite	24.4	Goethite-Hématite	20.0	Garniérite smectitisée	3.7
OUACO-M-H880	152579	Hz	1	3	Gb?			Serpentine smectitisée	37.2	Goethite	25.2	Goethite-Hématite	23.6	Smectite Mg	8.9
OUACO-M-H880	152580	Hz	I.	4	Pr	Α	5	Smectite Mg-Ni	72.5	Goethite	4.3	Garniérite smectitisée	0.6	Talc	0.4
OUACO-M-H880	152581	Hz	1	4	Pr	Α	5	Smectite Mg-Ni	64.7	Gamiérite smectitisée	13.7	Goethite	10.5	Chrysoprase	2.6
OUACO-M-H880	152582	Hz	1	4	Gb?			Smectite Mg-Ni	46.4	Goethite	42.7	Goethite-Hématite	4.2	Garniérite smectitisée	3.1
OUACO-M-H880	152583	Hz	I	5	Pr	Α	5	Smectite Mg	48.7	Goethite	27.7	Goethite-Hématite	23.3	Smectite Mg-Ni	0.1
OUACO-M-H880	152584	Hz	1	5	Gb?			Smectite Mg	47.8	Goethite	45.2	Goethite-Hématite	4.6	Talc	1.5
OUACO-M-H880	152585	Hz	1	5	Bsi			Smectite Mg	48.0	Goethite	37.2	Goethite-Hématite	12.6	Talc	0.8
OUACO-M-H880	152586	Hz	1	4	Pr	Α	5	Goethite	48.9	Smectite Mg-Ni	29.5	Smectite Mg	20.4	Goethite-Hématite	0.7
OUACO-M-H880	152587	Hz	1	5	Gb?			Goethite	51.9	Smectite Mg	23.6	Talc	15.3	Goethite-Hématite	7.9
OUACO-M-H880	152588	Hz	1	3	Gb?			Goethite	41.7	Serpentine altérée	25.1	Serpentine smectitisée	21.8	Talc	6.7
OUACO-M-H880	152589	Hz	I.	5	Gb?			Goethite	46.8	Smectite Mg	43.7	Talc	5.0	Goethite-Hématite	3.5
OUACO-M-H880	152590	Hz	1	4	Gb?			Goethite	46.0	Talc	30.3	Goethite-Hématite	11.0	Smectite Mg	6.9
OUACO-M-H880	152591	Hz	1	4	Gb?			Goethite	45.4	Talc	28.0	Serpentine smectitisée	15.0	Serpentine altérée	4.9
OUACO-M-H880	152592	Hz	i i	4	Gb?			Goethite	46.5	Smectite Mg	34.7	Talc	11.7	Goethite-Hématite	4.3
OUACO-M-H880	152593	Du	S	4	Pr	Α	5	Smectite Mg	47.1	Goethite	41.6	Goethite-Hématite	9.6	Smectite Mg-Ni	0.9
OUACO-M-H880	152594	Du	1	4	Pr	Α	5	Smectite Mg	49.4	Goethite	33.6	Goethite-Hématite	16.5	Smectite Mg-Ni	0.2
OUACO-M-H880	152595	Du	1	4	Pr	Α	5	Smectite Mg	49.8	Goethite	33.2	Goethite-Hématite	16.8	Hématite/Goethite	0.1
OUACO-M-H880	152596	Du	1	4	Pr	Α	5	Smectite Mg	49.0	Goethite	32.3	Goethite-Hématite	18.4	Talc	0.1
OUACO-M-H880	152597	Du	1	5	Pr	Δ	5	Smectite Mg	48.4	Goethite	29.2	Goethite-Hématite	20.8	Smertite Mø-Ni	1.4
OUACO-M-H880	152598	Du	s	4	Pr	A	5	Goethite	42.5	Smectite Mg	27.7	Smectite Mg-Ni	22.2	Goethite-Hématite	7.5
0UACO-M-H880	152599	Du	s	4	Gb?			Goethite	48.2	Smertite Mg-Ni	47.9	Goethite-Hématite	1.6	Talc	1.4
011ACO-M-H880	152600	Du	s	4	Pr	Δ	5	Smectite Mg	49.6	Goethite	33.1	Goethite-Hématite	16.6	Sementine smertitisée	0.4
0UACO-M-H880	152600	Du	c	3	Pr	Δ	5	Smectite Mg	45.8	Goethite	33.0	Goethite-Hématite	14.2	Serpentine smectitisée	5.9
OUACO-M-H880	152602	Du	s	4	Pr	Δ	5	Goethite	51 5	Smectite Mg-Ni	13.3	Goethite-Hématite	1 3	Tale	0.8
OUACO-M-H880	152602	Du	s	4	Pr	Δ	5	Goethite	47.7	Smeetite Mg-Ni	43.9	Smertite Mg	4.6	Goethite-Hématite	2.6
011ACO-M-H880	152604	Du	s	3	Pr	Δ	5	Goethite	47.9	Smertite Mg	33.7	Smectite Mg-Ni	14.9	Goethite-Hématite	1.5
0UACO-M-H880	152605	Du/Hz	1	3	Pr	Δ	5	Smectite Mg	48.5	Goethite	38.5	Goethite-Hématite	10.9	Sementine smectitisée	0.8
0UACO-M-H880	152606	Hz		3	Pr	Δ	5	Smectite Mg	47.9	Goethite	28.7	Goethite-Hématite	20.4	Serpentine smectitisée	2.2
011ACO-M-H880	152607	Du/Hz		3	Pr	Δ	5	Smectite Mg-Ni	47.6	Goethite	46.4	Goethite-Hématite	3.4	Smertite Mg	1.3
0UACO-M-H880	152608	Du		5	Bsi	~		Goethite-Hématite	40.6	Smertite Mg	30.5	Goethite	21.7	Onale	4.3
0UACO-M-H880	152600	Hz/Du		3	Pr	Δ	5	Smectite Mg	48.0	Goethite	39.8	Goethite-Hématite	9.2	Sernentine smertitisée	2.5
OUACO-M-H880	152610	Hz		3	Pr	N	5	Smectite Mg	35.2	Goethite	33.6	Sementine smertitisée	17.3	Goethite-Hématite	12.8
0UACO-M-H880	152611	Du		3	Pr	Δ	5	Smectite Mg	43.1	Goethite	30.1	Goethite-Hémotite	9.4	Sementine smectitisée	7.9
0UACO-M-H880	152612	Hz		3	Hz	1	5	Smeetite Mg	41.7	Goethite	20.2	Serpentine emectiticée	10.5	Goothito, Hémotito	0.2
	152012	He		3	Pr	Δ.	5	Smeetite Mg	22.5	Goothito	25.4	Goothito Hémotito	21.2	Sorpontino emostiticóo	20.1
	152614	Hz/Du		4	Pr	Δ	5	Smeetite Mg	42.5	Goothito Hémotito	20.7	Goothito	17.2	Serpentine smectitisée	6.0
0UACO-M-H880	152615	Hz	N	2	Hz	i	4	Serventine emectiticée	42.6	Goethite	33.5	Sernentine altérée	6.4	Lizardita	4.7
	152612	H-	N	2	Pr	A	5	Smertite Mg	34 5	Goethite-Hématite	24.7	Goethite	22.7	Sementine smeetiticáe	17.6
	152010	H7/D	1	2	ран ст Ца	1	4	Samentine emostiticé o	18.9	Goethite	24.7	Goethite-Hémotite	24.7	Smortite Mg	11
	152017	Du/H-		4	Dr.	^	-	Smootite Ma	40.0	Goothite	27.1	Goothito-Hématito	12.2	Someonte Mg	1.1
	152610	Du/Hz		3	Pr	Δ	5	Smectite Mg	20.2	Goethite	25.1	Goethite-Hématite	14.2	Serpentine smectrusee	10.5
	152619	H7	1	2	Ha	1	4	Corportino emoctiticé o	33.Z	Goothito Hémotito	26.7	Goothite	22.4	Serpentine sinecutisee	2.0
	152620	μ.,	N	2	на Ца		-	Serpentine smectusee	40.5	Goothite Melliatite	20.7	Somentine altérée	10.2	Lizardita	2.9
	152621	μ.	N	2	112 114		2	Serpentine smectrusee	25.0	Corporting altérée	22.1	Goothito	15.0	Lizardite	4.0
00AC0-IVI-H880	152622	114	IN	4	114		4	serpentine smectitisee	55.ö	serpentine alteree	55.0	obernite	10.0	cizaruite	5.7

Caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale | 57

Table 14 Comparaison de la classification typologique et de la classification hyperspectrale pour la SLN. Minéralogie et pourcentage

		Classifi	cation Type	ologique	Classifica	tion Hypers	pectrale								
Echanti	lons	L	S	Α	L	S	Α								
drillhole_id	sample_id							1st Mineral Name	Value (%)	2nd Mineral Name	Value (%)	3rd Mineral Name	Value (%)	4th Mineral Name	Value (%)
SLN	DBÓ	Du	В	0	Du	В	0	Serpentine	84.7	Lizardite	3.6	Olivine serpentinisée	0.6	Antigorite	0.3
SLN	DN5	Du	N	5	ij		6	Goethite	93.2	Goethite-Hématite	0.9	Orthopyroxène	0.1	Serpentine altérée	0.1
SLN	DN4	Du	N	4	Gb?			Goethite	44.6	Serpentine smectitisée	25.2	Smectite Mg	22.3	Goethite-Hématite	1.4
SLN	DN3	Du	N	3	Hz	Ν	2	Serpentine altérée	81.6	Lizardite	3.8	Orthopyroxène serpentinisé	3.2	Antigorite	1.9
SLN	DN2	Du	N	2	Du	Ν	2	Serpentine altérée	76.5	Lizardite	11.8	Olivine serpentinisée altérée	3.4	Goethite	1.9
SLN	DNÔ	Du	N	0	Hz	В	1	Serpentine	57.0	Lizardite	16.0	Népouite	10.6	Antigorite	8.6
SLN	DI3	Du	1	3	Pr		1	Népouite	96.2	Serpentine altérée	1.9	Lizardite	0.4	Goethite	0.1
SLN	DI2	Du	1	2	Du	- I	0	Olivine serpentinisée	80.2	Népouite	13.9	Lizardite	1.9	Antigorite	0.7
SLN	DI1	Du	1	1	Du	1 I I	0	Olivine serpentinisée altérée	43.7	Olivine serpentinisée	29.3	Lizardite	22.4	Népouite	0.3
SLN	DG3	Du	G	3	Du	Ν	1	Népouite	65.4	Goethite	22.4	Serpentine altérée	6.6	Lizardite	1.9
SLN	DG2	Du	G	2	Du	Ν	0	Népouite	85.1	Serpentine	4.9	Lizardite	2.8	Olivine serpentinisée	1.1
SLN	DG1	Du	G	1	Du	1	1	Olivine serpentinisée	72.8	Lizardite	15.8	Serpentine	5.4	Népouite	4.5
SLN	HB4	Hz	В	4	Pr	В	2	Serpentine altérée	48.4	Serpentine smectitisée	17.6	Népouite	10.0	Goethite	9.3
SLN	HB3	Hz	В	3	Pr	В	2	Serpentine altérée	51.6	Lizardite	37.0	Népouite	3.0	Goethite	0.8
SLN	HB2	Hz	В	2	Hz	В	2	Lizardite	70.8	Serpentine altérée	17.8	Serpentine	5.6	Antigorite	1.8
SLN	HB1	Hz	В	1	Hz	Ν	1	Lizardite	66.3	Serpentine	10.0	Olivine serpentinisée altérée	6.2	Serpentine altérée	3.4
SLN	HN5	Hz	N	5	Gb			Goethite	39.4	Gibbsite	38.0	Goethite-Hématite	10.9	Kaolinite	8.9
SLN	HN4	Hz	N	4	Ар			Serpentine altérée	77.7	Amphibole	8.7	Goethite	7.8	Lizardite	2.3
SLN	HN3	Hz	N	3	Hz	N	2	Serpentine altérée	81.4	Serpentine smectitisée	10.6	Goethite-Hématite	2.5	Goethite	2.2
SLN	HN2	Hz	N	2	Hz	N	1	Lizardite	48.4	Serpentine	24.0	Serpentine altérée	5.4	Olivine serpentinisée	4.3
SLN	HN1	Hz	N	1	Hz	N	1	Serpentine	29.2	Lizardite	22.3	Olivine serpentinisée	20.3	Olivine serpentinisée altérée	8.0
SLN	HN0	Hz	N	0	Hz	N	0	Serpentine	70.5	Olivine serpentinisée	17.9	Orthopyroxène serpentinisé	6.5	Orthopyroxène	3.7
SLN	HI5	Hz	1	5	Lį		6	Goethite	95.4	Goethite-Hématite	2.5	Hématite	0.1	Orthopyroxène	0.1
SLN	HI4	Hz	1	4	Bsi			Goethite	64.3	Serpentine altérée	29.0	Opale	0.6	Goethite-Hématite	0.5
SLN	HI3	Hz	1	3	Hz	N	2	Serpentine altérée	38.7	Népouite	34.0	Goethite	10.7	Serpentine smectitisée	2.7
SLN	HI2	Hz	1	2	Hz	N	2	Serpentine altérée	48.8	Népouite	15.6	Lizardite	9.0	Goethite	7.9
SLN	HI1	Hz	1	1	Hz	1	1	Olivine serpentinisée	33.4	Orthopyroxène serpentinisé	25.1	Serpentine	9.6	Lizardite	4.9
SLN	HIO	Hz	1	0	Hz	N	1	Serpentine	45.8	Olivine serpentinisée	41.2	Népouite	5.1	Orthopyroxène serpentinisé	2.6
SLN	HV0	Hz	S	0	Hz	S	0	Olivine	29.6	Orthopyroxène	18.7	Olivine serpentinisée	15.2	Serpentine	14.3
SEN	HG4	Hz	G	4	Hz	N	2	Serpentine altérée	70.1	Népouite	14.3	Goethite	11.2	Goethite-Hématite	1.2
SLN	HG3	Hz	G	3	Du	N	1	Népouite	94.0	Antigorite	1.7	Lizardite	1.7	Serpentine	1.0
SLN	HG2	Hz	G	2	Pr	B	2	Serpentine altérée	39.2	Lizardite	37.5	Népouite	8.0	Serpentine	2.6
SLN	HG1	Hz	G	1	Hz	-	1	Olivine serpentinisée	52.6	Népouite	27.0	Antigorite	9.0	Orthopyroxène serpentinisé	4.3
SLN	BSI	Bsi			Bsi			Opale	45.9	Goethite	26.0	Goethite-Hématite	16.1	Gibbsite	7.7
SLN	BSERP	Bsr			Bsr			Antigorite	71.4	Serpentine	6.6	Népouite	2.0	Olivine serpentinisée	0.2
SLN	BSEM	Bmg			Bmg			Séniolite	63.7	Onale	13.6	Sementine	8.0	Goethite	6.0
SLN	GR	Gr		6 (Gr)	Gr		6	Goethite	34.4	Goethite-Hématite	31.3	Hématite/Goethite	19.3	Hématite	1.7
SLN	ĆF	Cf		6 (Cf)	Cu		6	Goethite	86.1	Goethite-Hématite	12.2	Hématite/Goethite	15.5	Hématite	0.1
SLN	LEG	Cd		6 (Cd)			6	Hématite/Goethite	94.9	Goethite-Hématite	1 4	Hématite	0.7	Goethite	0.3
SLN	IR	Lr.		6 (Lr)	l e		6	Goethite	92.7	Goethite-Hématite	6.9	Hématite/Goethite	0.0	Amphihole	0.0
SLN	11	11		6(1)	li		6	Goethite	93.7	Goethite. Hématite	2.2	Sementine	0.1	Serpentine altérée	0.1
JEN	U			0(4)	9		•	overnite	55.7	overline nematice	2.0	Scipentine	0.1	Serpentine alteree	0.1

6 Note sur le potentiel économique en Nouvelle-Calédonie

La société Corescan[™] opère sous 4 entités (1) Corescan Pty Ltd en Australie et en Asie du Sud Est, (2) Corescan SpA en Amérique du Sud, Corescan Inc. en Amérique du Nord et comme Georesolution au Mexique (Table 15). Corescan[™] a 8 systèmes en opération dans le monde en ce moment (Figure 29). Corescan[™] gère aussi maintenant tous les systèmes HyLogging présents dans les Geological Surveys Australiens.

Corescan[™] avec les systèmes HyLogging propose des acquisitions 1D (point) et avec le Core HCl3, il mesure en 2D (image). Ils ont des laboratoires mobiles parfois dans des camps d'exploration éloignés, par exemple à El Indio au Chili (Figure 30).

REGION	ENTITY	STRUCTURE
Australia	Corescan Pty Ltd	Direct
South East Asia	Corescan Pty Ltd	Direct
South America	Corescan SpA	Direct
Canada / USA	Corescan Inc.	Direct
Mexico	GeoResolution	Partnership

Table 15 La structure de Corescan™ par entités et régions

Figure 29 Localisation des systèmes Corescan[™] dans le monde

Figure 30 Un système Corescan™ a El Indio au Chili

Corescan[™] propose des services de traitement de spectres hyperspectraux, d'algorithmes d'identification des minéraux, d'analyse d'image et de visualisation, de la gestion de données ainsi que des solutions pour stocker les données.

Une implémentation d'un système Corescan[™] en Nouvelle Calédonie permettrait aux compagnies minières de scanner leurs carottes de sondage et leurs drill chips et d'obtenir des résultats minéralogiques ainsi que la classification typologique extrêmement rapidement. Ce système pourrait aussi être utilisé par le service géologique de nouvelle Calédonie pour établir une base de données des gisements Néo Calédoniens de manière à promouvoir l'exploration sur le territoire comme cela est le cas en Australie avec un site web dédié au stockage et à l'accès des données hyperspectrales. L'utilisation du Corescan[™] pour les mineurs néo calédoniens mais aussi par la Dimenc permettra d'assurer l'utilisation du système pendant toute l'année et donc réduira le coût du service Corescan[™]. Le prix de l'analyse hyperspectrale par Corescan[™] étant dépendante de l'utilisation de l'instrument, plus le système sera utilisé plus le coût du mètre sera bas. De manière générale, le coût d'1 mètre de carottes de sondage est d'environ A\$ 40 (incluant les mesures et les interprétations). La société Corescan[™] est une société privée et elle pourra fournir tous les coûts associés à une implémentation en Nouvelle Calédonie en fonction de la demande. CSIRO est seulement un associé scientifique de Corescan[™] et ne peut en aucun cas préparer de devis.

7 Conclusion

La caractérisation des dépôts nickélifères de Nouvelle Calédonie par imagerie hyperspectrale a été effectuée en utilisant le système Corescan[™] et a été validée par des analyses chimiques et minéralogiques.

Une comparaison entre les analyses chimiques données par la NMC et celles faites par BV montre une excellente corrélation avec des valeurs pour tous les éléments quasi identiques indiquant la fiabilité des résultats chimiques de la NMC et de BV. Les comparaisons entre les analyses chimiques de Minalyze[™] et de BV montrent de bonnes corrélations entre les deux méthodes pour l'ensemble des échantillons.

Les échantillons analysés par la diffraction aux Rayons X montrent qu'ils sont composés d'olivine, de pyroxène, d'amphibole, de chlorite, de serpentine, de talc, de quartz, de goethite, d'hématite, de maghemite ou de magnétite, de brucite, de stevensite, de chromite, de kaolinite, de falcondoite et de pyroaurite et de comblainite

La comparaison entre les résultats minéralogiques issus de la DRX montre une très bonne corrélation avec les résultats minéralogiques obtenus avec l'imagerie hyperspectrale.

Le but ultime de cette étude était de pouvoir automatiser la classification de la classification typologique à partir de l'imagerie hyperspectrale. La majorité des échantillons montrent une bonne corrélation entre les deux classifications. Il y a toutefois quelques différences en particulier quand les échantillons sont altérés.

Une implémentation d'un système Corescan[™] en Nouvelle Calédonie permettrait aux compagnies minières de scanner leurs échantillons et d'obtenir la classification typologique d'une manière automatisée et objective. Ce système pourrait aussi être utilisé par le service géologique de nouvelle Calédonie pour établir une base de données de tous les forages Néo Calédoniens de manière à promouvoir l'exploration minière sur le territoire.

Appendix A Liste des échantillons

A.1 Liste des échantillons de la NMC(181)

ZONE_CONCESSION	HOLE_NUMBER	NUMBER	DEPTH_FROM	DEPTH_TO	LITHO	SERPENTINISATION	ALTERATION
N'GO_PB5	18ED2016G545I872	153870	0	0.5	LR		
N'GO_PB5	18ED2016G545I872	153871	0.5	0.9	н	I	3
N'GO_PB5	18ED2016G545I872	153872	0.9	1.1	Н	I	4
N'GO_PB5	18ED2016G545I872	153873	1.1	2	н	I	2
N'GO_PB5	18ED2016G545I872	153874	2	2.6	Н	I	4
N'GO_PB5	18ED2016G545I872	153875	2.6	2.9	н	I	2
N'GO_PB5	18ED2016G545I872	153876	2.9	3.1	Н	I	4
N'GO_PB5	18ED2016G545I872	153877	3.1	3.3	н	Ν	1
N'GO_PB5	18ED2016G545I872	153878	3.3	3.5	D	Ν	4
N'GO_PB5	18ED2016G545I872	153879	3.5	3.8	Н	Ν	1
N'GO_PB5	18ED2016G545I872	153880	3.8	4.1	Н	I	2
N'GO_PB5	18ED2016G545I872	153881	4.1	4.3	н	I	1
N'GO_PB5	18ED2016G545I872	153882	4.3	4.5	D	I	5
N'GO_PB5	18ED2016G545I872	153883	4.5	5	н	I	1
N'GO_PB5	18ED2016G545I872	153884	5	6	Н	I	1
N'GO_PB5	18ED2016G545I872	153885	6	7	Н	I	1
N'GO_PB5	18ED2016G545I872	153886	7	7.1	Н	Ν	4
N'GO_PB5	18ED2016G545I872	153887	7.1	8	н	Ν	1
N'GO_PB5	18ED2016G545I872	153888	8	8.2	Н	Ν	2
N'GO_PB5	18ED2016G545I872	153889	8.2	8.4	Н	Ν	4
N'GO_PB5	18ED2016G545I872	153890	8.4	8.8	Н	Ν	2
N'GO_PB5	18ED2016G545I872	153891	8.8	9	н	Ν	1
N'GO_PB5	18ED2016G545I872	153892	9	10	Н	Ν	1
N'GO_PB4	18ED2016G785H188	153413	0	0.3	CF		
N'GO_PB4	18ED2016G785H188	153414	0.3	1	LR		
N'GO_PB4	18ED2016G785H188	153415	1	2	LR		
N'GO_PB4	18ED2016G785H188	153416	2	3	LR		
N'GO_PB4	18ED2016G785H188	153417	3	4	LR		
N'GO_PB4	18ED2016G785H188	153418	4	5	IJ		
N'GO_PB4	18ED2016G785H188	153419	5	6	IJ		
N'GO_PB4	18ED2016G785H188	153420	6	7	IJ		
N'GO_PB4	18ED2016G785H188	153421	7	8	IJ		
N'GO_PB4	18ED2016G785H188	153422	8	9	IJ		
N'GO_PB4	18ED2016G785H188	153423	9	10	IJ		

N'GO_PB4	18ED2016G785H188	153424	10	11	IJ		
N'GO_PB4	18ED2016G785H188	153425	11	12	IJ		
N'GO_PB4	18ED2016G785H188	153426	12	13	IJ		
N'GO_PB4	18ED2016G785H188	153427	13	14	IJ		
N'GO_PB4	18ED2016G785H188	153428	14	15	IJ		
N'GO_PB4	18ED2016G785H188	153429	15	16	IJ		
N'GO_PB4	18ED2016G785H188	153430	16	17	IJ		
N'GO_PB4	18ED2016G785H188	153431	17	18	IJ		
N'GO_PB4	18ED2016G785H188	153432	18	19	LT		
N'GO_PB4	18ED2016G785H188	153433	19	19.2	BSERP		
N'GO_PB4	18ED2016G785H188	153434	19.2	20	D	Ν	5
N'GO_PB4	18ED2016G785H188	153435	20	21	D	Ν	5
N'GO_PB4	18ED2016G785H188	153436	21	21.5	D	В	3
N'GO_PB4	18ED2016G785H188	153437	21.5	22	D	В	2
N'GO_PB4	18ED2016G785H188	153438	22	22.5	D	В	2
N'GO_PB4	18ED2016G785H188	153439	22.5	23	D	В	1
N'GO_PB4	18ED2016G785H188	153440	23	23.75	D	В	2
N'GO_PB4	18ED2016G785H188	153441	23.75	24.75	D	В	5
N'GO_PB4	18ED2016G785H188	153442	24.75	25.3	D	В	2
N'GO_PB4	18ED2016G785H188	153443	25.3	26	н	В	2
N'GO_PB4	18ED2016G785H188	153444	26	27	D	В	2
N'GO_PB4	18ED2016G785H188	153445	27	28	н	Ν	2
N'GO_PB4	18ED2016G785H188	153446	28	28.5	Н	Ν	2
N'GO_PB4	18ED2016G785H188	153447	28.5	29	D	Ν	5
N'GO_PB4	18ED2016G785H188	153448	29	30	Н	Ν	2
N'GO_PB4	18ED2016G785H188	153449	30	30.3	н	Ν	5
N'GO_PB4	18ED2016G785H188	153450	30.3	31	Н	Ν	1
N'GO_PB4	18ED2016G785H188	153451	31	32	н	Ν	2
N'GO_PB4	18ED2016G785H188	153452	32	32.5	Н	Ν	3
N'GO_PB4	18ED2016G785H188	153453	32.5	32.9	D	В	4
N'GO_PB4	18ED2016G785H188	153454	32.9	33.5	Н	В	1
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152574	0	1	LR		
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152575	1	2	LR		
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152576	2	3	н	I	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152577	3	4	Н	I	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152578	4	5	н	I	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152579	5	5.5	н	I	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152580	5.5	6	н	I	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152581	6	7	Н	L	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152582	7	7.3	Н	I	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152583	7.3	8	н	I	5
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152584	8	9	Н	I	5

OUACO_MOUSQUETAIRE1	03ED2016P739H880	152585	9	10	Н	I	5
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152586	10	10.6	Н	I	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152587	10.6	11.5	Н	I	5
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152588	11.5	12	Н	I	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152589	12	12.5	Н	I	5
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152590	12.5	13	Н	I	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152591	13	14	Н	I	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152592	14	15	Н	I	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152593	15	16	D	V	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152594	16	17	D	I	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152595	17	18	D	L	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152596	18	19	D	I	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152597	19	20	D	I	5
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152598	20	21	D	V	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152599	21	22	D	V	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152600	22	22.65	D	V	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152601	22.65	23	D	V	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152602	23	24	D	V	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152603	24	25	D	V	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152604	25	26	D	V	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152605	26	27	DH	L	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152606	27	28	Н	I	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152607	28	29	DH	L	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152608	29	30	D	I	5
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152609	30	31	HD	L	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152610	31	32	Н	I	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152611	32	33	D	L	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152612	33	34	Н	I	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152613	34	35	Н	I	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152614	35	36	HD	I	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152615	36	37	Н	Ν	2
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152616	37	38	Н	N	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152617	38	38.6	HD	L	2
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152618	38.6	39.6	DH	I	4
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152619	39.6	40.3	DH	L	3
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152620	40.3	41	Н	I	2
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152621	41	41.6	Н	Ν	2
OUACO_MOUSQUETAIRE1	03ED2016P739H880	152622	41.6	42	Н	Ν	2
BOULINDA_MONIQUE20	05ED2016T356L890	259801	0	1	IJ		
BOULINDA_MONIQUE20	05ED2016T356L890	259802	1	1.3	IJ		
BOULINDA_MONIQUE20	05ED2016T356L890	259803	1.3	2	IJ		
BOULINDA_MONIQUE20	05ED2016T356L890	259804	2	3	D	V	5

BOULINDA_MONIQUE20	05ED2016T356L890	259808	3	4	D	V	4
BOULINDA_MONIQUE20	05ED2016T356L890	259805	4	5	D	V	5
BOULINDA_MONIQUE20	05ED2016T356L890	259806	5	5.2	D	V	2
BOULINDA_MONIQUE20	05ED2016T356L890	259807	5.2	6	D	V	4
BOULINDA_MONIQUE20	05ED2016T356L890	259809	6	6.75	Н	V	2
BOULINDA_MONIQUE20	05ED2016T356L890	259810	6.75	7	н	Ν	4
BOULINDA_MONIQUE20	05ED2016T356L890	259811	7	8	Н	V	4
BOULINDA_MONIQUE20	05ED2016T356L890	259812	8	8.3	D	V	4
BOULINDA_MONIQUE20	05ED2016T356L890	259813	8.3	8.6	Н	V	3
BOULINDA_MONIQUE20	05ED2016T356L890	259814	8.6	8.8	Н	V	2
BOULINDA_MONIQUE20	05ED2016T356L890	259815	8.8	9.1	Н	V	3
BOULINDA_MONIQUE20	05ED2016T356L890	259816	9.1	9.4	D	В	2
BOULINDA_MONIQUE20	05ED2016T356L890	259817	9.4	9.6	D	Ν	4
BOULINDA_MONIQUE20	05ED2016T356L890	259818	9.6	10.2	D	В	3
BOULINDA_MONIQUE20	05ED2016T356L890	259819	10.2	10.8	D	Ν	4
BOULINDA_MONIQUE20	05ED2016T356L890	259820	10.8	11.3	D	Ν	2
BOULINDA_MONIQUE20	05ED2016T356L890	259821	11.3	12	D	В	4
BOULINDA_MONIQUE20	05ED2016T356L890	259822	12	12.4	D	Ν	2
BOULINDA_MONIQUE20	05ED2016T356L890	259823	12.4	13.1	D	Ν	3
BOULINDA_MONIQUE20	05ED2016T356L890	259824	13.1	13.3	Н	Ν	2
BOULINDA_MONIQUE20	05ED2016T356L890	259825	13.3	13.8	Н	Ν	3
BOULINDA_MONIQUE20	05ED2016T356L890	259826	13.8	14	Н	V	1
BOULINDA_MONIQUE20	05ED2016T356L890	259827	14	15	Н	V	1
BOULINDA_MONIQUE20	05ED2016T356L890	259828	15	15.2	Н	V	2
BOULINDA_MONIQUE20	05ED2016T356L890	259829	15.2	15.5	D	V	3
BOULINDA_MONIQUE20	05ED2016T356L890	259830	15.5	16	D	V	2
BOULINDA_MONIQUE20	05ED2016T356L890	259831	16	17	D	V	1
BOULINDA_MONIQUE20	05ED2016U060N096	152421	19	20	Н	V	4
BOULINDA_MONIQUE20	05ED2016U060N096	152424	22	23	Н	V	5
BOULINDA_MONIQUE20	05ED2016U060N096	152427	25	26	Н	V	3
BOULINDA_MONIQUE20	05ED2016U060N096	152429	26.2	27	Н	V	1
BOULINDA_MONIQUE20	05ED2016T309M438	260036	30	30.3	D	V	2
BOULINDA_MONIQUE20	05ED2016T309M438	260037	30.3	31	D	V	4
BOULINDA_MONIQUE20	05ED2016T309M438	260038	31	32	D	V	4
BOULINDA_MONIQUE20	05ED2016T309M438	260039	32	32.9	D	V	4
BOULINDA_MONIQUE20	05ED2016T309M438	260040	32.9	33	D	V	3
BOULINDA_MONIQUE20	05ED2016T309M438	260041	33	33.5	D	I	1
BOULINDA_MONIQUE19	05ED2016P514I923	259855	20	20.7	D	Ν	2
BOULINDA_MONIQUE19	05ED2016P514I923	259859	23	24	Н	Ν	1
BOULINDA_MONIQUE19	05ED2016P514I923	259860	24	25	D	Ν	2
BOULINDA_MONIQUE18	05ED2016O050G250	152955	9	10	D	Ν	3
BOULINDA_MONIQUE18	05ED2016O050G250	152958	11.2	11.7	D	I	4

BOULINDA_MONIQUE17	05ED2016M017H369	258342	13	14	Н	В	1
BOULINDA_MONIQUE19	05ED2016P432I462	259934	2.8	3.2	D	Ν	4
BOULINDA_MONIQUE17	05ED2016M197H446	258095	15	16	Н	В	2
BOULINDA_MONIQUE17	05ED2016M197H446	258303	22	23	Н	В	1
BOULINDA_MONIQUE17	05ED2016L864H350	258105	2	2.5	Н	В	3
BOULINDA_MONIQUE17	05ED2016L864H350	258106	2.5	3.1	Н	В	4
N'GO_PB4	18ED2016G497H411	153830	14	15	D	В	5
N'GO_PB4	18ED2016G497H411	153831	15	15.4	D	В	4
N'GO_PB4	18ED2016G497H411	153834	16.1	17	Н	В	3
N'GO_PB4	18ED2016G497H411	153836	18	19	Н	В	1
N'GO_PB4	18ED2016G989G921	153128	26	27	D	I	5
N'GO_PB4	18ED2016G662H321	153695	4.3	4.5	D	В	3
N'GO_PB4	18ED2016G662H321	153696	4.5	5	Н	В	2
N'GO_PB4	18ED2016G662H321	153703	7.3	8.15	IJ		
BOULINDA_MONIQUE18	05ED2016O439G586	152915	8	9	GB		
BOULINDA_MONIQUE18	05ED2016O439G586	152921	11.5	12.25	D	В	4
BOULINDA_MONIQUE18	05ED2016O439G586	152923	12.45	13.05	D	В	5
BOULINDA_MONIQUE18	05ED2016O439G586	152928	15.6	16.25	D	В	3
BOULINDA_MONIQUE18	05ED2016O439G586	152931	17	18	D	В	2
BOULINDA_MONIQUE18	05ED2016O439G586	152934	19	20	D	В	1
BOULINDA_MONIQUE20	05ED2016T290M384	152447	11	11.3	Н	V	2

A.2 Liste des échantillons de la SMT(42)

Classification	Classification	Classification
DB0	HB1	BSERP
DN0	HB2	BSM
DN1	HB3	BSI
DN2	HB4	CF
DN3	HNO	LR
DN4	HN1	LRG
DN5	HN2	u
DI1	HN3	GR
DI2	HN4	
DI3	HN5	
DG1	HIO	
DG2	HI1	
DG3	HI2	
	HI3	
	HI4	
	HI5	

HV0
HG1
HG2
HG3
HG4

A.3 Liste des échantillons de la SLN(42)

ZONE_CONCESSION	HOLE_NUMBER	SAMPLE_NUMBER	DEPTH_FROM	DEPTH_TO	LITHO	SERPENTINISATION	ALTERATION
JB2	JB_EF910	JB2-1	0.5	0.65	CF		6
JB2	JB_EF910	JB2-2	1	1.2	GR		6
JB2	JB_EF910	JB2-3	4	4.4	LR		6
JB2	JB_EF910	JB2-4	9.6	9.85	IJ		6
JB2	JB_EF910	JB2-5	10.35	10.55	IJ		6
JB2	JB_EF910	JB2-6	11.9	12	IJ		6
JB2	JB_EF910	JB2-7	12.25	12.5	LT		6
JB2	JB_EF910	JB2-8	14.6	14.7	GB		
JB2	JB_EF910	JB2-9	16.6	16.75	GB		
JB2	JB_EF910	JB2-10	18.5	18.6	LT		6
JB2	JB_EF910	JB2-11	19.3	19.55	LT		6
JB2	JB_EF910	JB2-12	21.8	21.9	РХ		
JB2	JB_EF910	JB2-13	23.4	23.6	РХ		
JB2	JB_EF910	JB2-14	23.75	23.85	BSI		
JB2	JB_EF910	JB2-15	24	24.15	BSI		
JB2	JB_EF910	JB2-16	24.55	24.7	н	I.	2
JB2	JB_EF910	JB2-17	26.4	26.5	BSI		
JB2	JB_EF910	JB2-18	26.7	26.8	BSERP		
JB2	JB_EF910	JB2-19	27.6	27.7	BSI		
JB2	JB_EF910	JB2-20	28.3	28.5	BSI		
JB2	JB_EF910	JB2-21	31.6	31.7	BSERP		
JB2	JB_EF910	JB2-22	33.7	33.9	BSI		
JB2	JB_EF910	JB2-23	35.15	35.3	D	I	3
JB2	JB_EF910	JB2-24	35.7	35.9	BSI		
JB2	JB_EF910	JB2-25	37.3	37.4	BSI		
JB2	JB_EF910	JB2-26	39.8	40	РХ		
JB2	JB_EF910	JB2-27	41.05	41.15	н	I	2
JB2	JB_EF910	JB2-28	41.7	42	н	I	4
JB2	JB_EF910	JB2-29	43	43.2	BSI		
JB2	JB_EF910	JB2-30	43.7	43.85	н	I	2
JB2	JB_EF910	JB2-31	44.5	44.65	н	I	2

JB2	JB_EF910	JB2-32	45.8	46	н	I	2
JB2	JB_EF910	JB2-33	46.4	46.55	н	I	3
JB2	JB_EF910	JB2-34	48.2	48.45	Н	I	2
JB2	JB_EF910	JB2-35	50.3	50.5	BSI		
JB2	JB_EF910	JB2-36	52	52.15	BSI		
JB2	JB_EF910	JB2-37	52.8	53	D	I	2
JB2	JB_EF910	JB2-38	53.2	53.4	BSI		
JB2	JB_EF910	JB2-39	53.7	53.85	BSI		
JB2	JB_EF910	JB2-40	56.4	56.5	BSI		
JB2	JB_EF910	JB2-41	57.4	57.55	D	I	2
JB2	JB_EF910	JB2-42	58.85	59	BSI		

A.5 Photographie des échantillons de N'go PB4

A.6 Photographie des échantillons de N'go PB5

A.7 Photographie des échantillons d'Ouaco Mousquetaire

A.8 Photographie des échantillons de JB2

A.9 Photographie des échantillons de la SLN

Appendix B Classification typologique

Lith	Serp	Alt OBS	Code	Min1	TxMin1	Min2	TxMin2	Min3	Min4	Min5	Txele	Txt1	Txt2	Com
CF		6	CF	Hematite-Goethite	>70%	Goethite-Hematite	>15%					Cohésif		
CD		6	CD	Hematite-Goethite	>70%	Goethite-Hematite	>15%				Fe	Démantelé		
GR		6	GR	Goethite							Fe	Granulaire		
LR		6	LR	Goethite	>70%	Goethite-Hematite	>20%				Fe	Siltite?		
IJ		6	IJ	Goethite	>80%						Fe	Argilite?		OxMnetCo?
LT		6	LT	Goethite	>80%						Fe			OxMnetCo?
н	V/S	0	HV0	Olivine		Pyroxene								
Н	V/S	1	HV1	Olivine		Pyroxene								
н	V/S	2	HV2	Olivine		Pyroxene		Goethite						
н	V/S	3	HV3	Olivine		Pyroxene		Goethite				Siltite		
н	V/S	4	HV4	Olivine		Pyroxene		Goethite-Hematite				Siltite		
н	v/s	5	HV5	Olivine		Pyroxene		Goethite-Hematite				Argilite		
н	I	0	HIO	Olivine serpentinisée		Pyroxene							Filonnets de serp	Pyroxene serp?

Н	I	1	HI1	Olivine serpentinisée	Pyroxene				Filonnets de serp
н	I	2	HI2	Olivine serpentinisée	Pyroxene	Goethite			Filonnets de serp
Н	I	3	НІЗ	Olivine serpentinisée	Pyroxene	Goethite		Siltite	Filonnets de serp
н	I	4	HI4	Olivine serpentinisée	Pyroxene	Goethite-Hematite		Siltite	Filonnets de serp
Н	I	5	HI5	Olivine serpentinisée	Pyroxene	Goethite-Hematite		Argilite	Filonnets de serp
н	N	0	HN0	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé			
н	N	1	HN1	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé			
н	N	2	HN2	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé	Goethite		
Н	N	3	HN3	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé	Goethite	Siltite	
н	N	4	HN4	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé	Goethite- Hematite	Siltite	
Н	N	5	HN5	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé	Goethite- Hematite	Argilite	
н	В	0	НВО	Serpentine sombre	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé		
н	В	1	HB1	Serpentine sombre	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé		

н	В	2	HB2	Serpentine sombre	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé	Goethite	
Н	В	3	HB3	Serpentine sombre	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé	Goethite	Siltite
н	В	4	HB4	Serpentine sombre	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé	Goethite- Hematite	Siltite
Н	В	5	HB5	Serpentine sombre	Serpentine	Olivine serpentinisée	Pyroxene serpentinisé	Goethite- Hematite	Argilite
D	V/S	0	DV0	Olivine					
D	V/S	1	DV1	Olivine					
D	V/S	2	DV2	Olivine	Goethite				
D	V/S	3	DV3	Olivine	Goethite				Siltite
D	V/S	4	DV4	Olivine	Goethite-Hematite				Siltite
D	V/S	5	DV5	Olivine	Goethite-Hematite				Argilite
D	I	0	DI0	Olivine serpentinisée					
D	I	1	DI1	Olivine serpentinisée					
D	I	2	DI2	Olivine serpentinisée	Goethite				
D	I	3	DI3	Olivine serpentinisée	Goethite				Siltite
D	I.	4	DI4	Olivine serpentinisée	Goethite-Hematite				Siltite
D	I	5	DI5	Olivine serpentinisée	Goethite-Hematite				Argilite

D	N	0		DN0	Serpentine		Olivine serpentinisée				
D	N	1		DN1	Serpentine		Olivine serpentinisée				
D	N	2		DN2	Serpentine		Olivine serpentinisée		Goethite		
D	N	3		DN3	Serpentine		Olivine serpentinisée		Goethite		Siltite
D	N	4		DN4	Serpentine		Olivine serpentinisée		Goethite-Hematite		Siltite
D	N	5		DN5	Serpentine résiduel >80	%	Goethite	>			Argilite
D	В	0		DB0	Serpentine sombre		Serpentine		Olivine serpentinisée		n
D	В	1		DB1	Serpentine sombre		Serpentine		Olivine serpentinisée		
D	В	2		DB2	Serpentine sombre		Serpentine		Olivine serpentinisée	Goethite	
D	В	3		DB3	Serpentine sombre		Serpentine		Olivine serpentinisée	Goethite	Siltite
D	В	4		DB4	Serpentine sombre		Serpentine		Olivine serpentinisée	Goethite- Hematite	Siltite
D	В	5		DB5	Serpentine sombre		Serpentine		Olivine serpentinisée	Goethite- Hematite	Argilite
GB			s	GBS	Amphibole						
GB			т	GBT	Kaolinite						
BSI			B/X	BSI	Silice		Silice garniérite				
BSERP			B/X	BSERP	Antigorite						

BMG B/X BMG Giobertite Smectite magnésienne	
---	--

Appendix C Comparaison de la classification typologique entre logging visuel et diffraction des rayons X

Numer	Olivi	Pyrove	Actinol	Sernent	Goeth	Homat	Magh/M		SEDD	A1	ПТШ	SED	ALT
o	ne	ne	ite	ine	ite	ite	agt	0	JERP	T	0	P	ALI
HV0	69	30	1	0	0	0	0	н	v	0	н	V/S	0
259827	67	27	0	0	0	0	0	н	v	1	н	V/S	0
260041	41	19	0	29	11	0	0	D	Т	1	н	I	2
152447	41	27	0	24	3	0	5	н	v	2	н	Т	2
DI2	40	0	0	47	0	0	0	D	I	2	D	Ν	1
HI1	29	42	1	26	0	0	0	н	I	1	н	Т	1
HI0	26	0	2	70	0	0	0	н	I	0	D	Ν	1
259859	24	6	0	63	0	0	0	н	Ν	1	н	Ν	1
153892	21	4	2	58	0	0	0	н	Ν	1	н	Ν	1
DB0	21	0	0	66	0	0	0	D	В	0	D	Ν	1
153836	20	15	0	59	0	0	0	н	В	1	н	Ν	1
152427	19	13	1	0	0	0	0	н	v	3	Н	V/S	1
DG1	17	0	0	75	0	0	0	D	G	1	D	В	1
152615	17	21	0	52	0	0	0	н	Ν	2	Н	Ν	1
259806	15	0	0	73	0	0	0	D	v	2	D	Ν	1
152931	14	0	0	86	0	0	0	D	В	2	D	В	1
153885	13	15	0	66	0	0	0	н	I	1	Н	Ν	1
HG1	9	2	1	88	0	0	0	н	G	1	н	В	1
DN0	8	0	0	88	0	0	0	D	Ν	0	D	В	1
HB1	4	1	0	94	0	0	0	н	В	1	Н	В	1
153882	4	4	1	25	0	0	0	D	I	5	D	I	1
153834	3	0	0	92	0	0	0	н	В	3	D	В	1
153439	3	4	0	93	0	0	0	D	В	1	D	В	1
153433	0	0	0	89	8	0	0	BSE RP				В	2
152574	0	0	0	0	78	0	0	LR					4
152580	0	8	0	51	0	0	0	н	I	4	Н	Ν	1
152604	0	10	0	59	0	0	0	D	v	3	Н	Ν	1
152606	0	1	0	27	0	0	2	н	I	3	Н	I	1
152619	0	0	0	68	0	0	0	DH	I	3		Ν	1

153426	0	0	0	4	82	0	14	IJ					4
153435	0	0	0	81	13	0	0	D	Ν	5		В	3
153436	0	0	0	93	7	0	0	D	В	3		В	2
259803	0	0	0	1	10	0	0	IJ					3
259816	0	0	0	96	4	0	0	D	В	2		В	2
BSERP	0	0	0	61	0	0	0	BSE RP				Ν	1
BSI	0	0	0	0	0	0	0	BSI				V/S	1
BSM	0	0	0	0	0	0	0	BSM				V/S	1
CF	0	0	0	0	100	0	0	CF					6
DG3	0	0	0	79	0	0	0	D	G	3		В	1
DN2	0	0	0	100	0	0	0	D	Ν	2		В	1
GR	0	0	0	0	31	47	23	GR					6
HB2	0	0	0	95	0	0	0	н	В	2		В	1
HI2	0	20	0	61	0	0	0	н	I	2	Н	Ν	1
HI3	0	6	0	65	0	0	0	н	I	3	Η	Ν	1
HI4	0	9	0	26	14	0	0	н	I	4	Н	I	2
HN2	0	0	2	92	0	0	0	н	Ν	2		В	1
HN4	0	0	0	28	0	0	0	н	Ν	4		I	2
IJ	0	0	0	0	88	0	12	IJ			IJ		5
LR	0	0	0	0	87	13	0	LR			LR		5
LRG	0	0	0	0	59	41	0	LRG			LR		6

Références

Bailly, L., J. P. Ambrosi, J. Barbarand, A. Beauvais, D. Cluzel, C. Lerouge, F. Quesnel, E. Ramanaidou, C. Ricordel-Prognon, G. Ruffet, B. Sevin, M. Wells, et J. Yans (2014), Projet NICKAL : "Typologie des latérites de Nouvelle-Calédonie et facteurs de concentration de Co et Ni", rapport final, 402 pp, BRGM/RP-63 482-FR.

Bailly, L., J. P. Ambrosi, J. Barbarand, A. Beauvais, D. Cluzel, C. Lerouge, F. Quesnel, E. Ramanaidou,
C. Ricordel-Prognon, G. Ruffet, B. Sevin, M. Wells, et J. Yans (2014) 2016. Rapport Scientifique
Edition 2016. Nickal Typologie des minerais lateritiques de Nouvelle Caledonie et facteurs de
concentration de cobalt et de nickel. Tome Nickel et Technologie. 449p.

Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A. & Vergo, N. 1990. High Spectral Resolution Reflectance Spectroscopy of Minerals. *Journal of Geophysical Research*, 95, 12653-12680.

Despinoy, M., F. De Boissieu, M. Mangeas, T. Cudahy, C. Ong, I. Lau, B. Sevin, P. Maurizot, S. Chevrel, F. Flouvat, N. Selmaouï, et C. D. (2012), Etude sur la CArtographie du Régolithe par Télédétection Hyperspectrale Aéroportée en Nouvelle-Calédonie, 130 pp, IRD, Nouméa.

Fraser, S. J., Whitbourn, L., Yang, K., Ramanaidou, E., Connor, P., Poropat, G., Soole, P., Mason, P., Coward, D. & Phillips, R. Mineralogical face-mapping using hyperspectral scanning for mine mapping and control. 2006 2006 Australia (AUS). AusIMM - Australasian Institute of Mining and Metallurgy, Carlton, Victoria, Australia (AUS), 227-227-232.

Harris, D. C. & Bertolucci, M. D. 1989. *Symetry and Spectroscopy An Introduction to Vibrational and Electronic Spectroscopy*, New Yrok, Dover Publications, Inc.

Melkumyan, A. & Murphy, R. J. 2010. Spectral domain noise suppression in dual-sensor hyperspectral imagery using Gaussian processes.

Murphy, R. J. & Monteiro, S. T. 2013. Mapping the distribution of ferric iron minerals on a vertical mine face using derivative analysis of hyperspectral imagery (430-970 nm). *ISPRS-J. Photogramm. Remote Sens.*, 75, 29-39.

Ramanaidou, E. R. & Wells, M. A. 2011a. Hyperspectral imaging of iron ores. *In:* BROEKMANS, M. (ed.) *10th International Congress for Applied Mineralogy (ICAM)*. Trondheim.

Ramanaidou, E.R. and Wells, M. A. 2016. Lateritic Nickel Deposits. In Godel, B, Barnes, S, Gonzales–Alvarez, I, Fiorentini, M and Le Vaillant, M (eds) 2016, 13th International Ni-Cu-PGE Symposium, Fremantle, Australia: Abstracts: Geological Survey of Western Australia, Record 2016/13, p 62.

Ramanaidou, E.R. Fonteneau, L. C. and Wells, M. A. 2017a. Hyperspectral Imaging of Lateritic Nickel Deposits in New Caledonia. ICNIRS 2017 Conference, Copenhagen, Denmark, 11–15 June, 2017.

Ramanaidou, E. R., Wells, M. A. & Godel, B. 2017b. Ni-goethites in nickel laterites. International workshop, Geochemical cycle of Ni, Co and Sc: from mining exploration to ecotoxicity, October 17-19, 2017.

Reston, M. S. & Cocks, T. D. 1998. Mapping Mineralogy of the Mt.Fitton Area, Flinders Ranges, South Australia, Using HyMap Airborne Imaging Spectrometer Data. 9th Australasian Remote

Sensing and Photogrammetry Conference, July 20-24, 1998 University of New South Wales, Sydney, Australia.

Sevin, B. 2014. CARTOGRAPHIE DU REGOLITHE SUR FORMATION ULTRABASIQUE DE NOUVELLE-CALEDONIE : Localisation dans l'espace et le temps des gisements nickélifères, Thèse Université de Nouvelle Calédonie, 387p.

Singer, R. B. 1981. Near-Infrared Spectral Reflectance of Mineral Mixtures: Systematic Combinations of Pyroxenes, Olivine, and Iron Oxides. *JGR. Journal of Geophysical Research. B*, 86, 7967-7982.

Wells, M., Ramanaidou, E. and Fonteneau, L., 2013. Characterisation of the Ni goethite association in the Yellow Laterite of New Caledonian Nickel deposits Projet NICKAL - Typologie des minerais latéritiques de Nouvelle- Calédonie et facteurs de concentration de Ni et Co CSIRO EP#1310009.

Wells, M. A., Ramanaidou, E.R., Duvernois, A. and Fonteneau, L., 2016. Hyperspectral imaging of Ni grade variability in the Goro Nickel Deposit (New Caledonia). In Godel, B, Barnes, S, Gonzales– Alvarez, I, Fiorentini, M and Le Vaillant, M (eds) 2016, 13th International Ni-Cu-PGE Symposium, Fremantle, Australia: Abstracts: Geological Survey of Western Australia, Record 2016/13, p 77.

Yang, K and Huntington, J.F., 2000. Spectral analyses of Ni-laterite samples from the Koniambo massif, New Caledonia. CSIRO Exploration & Mining Report 702R, 15pp.

Yang, K and Huntington, J.F., 2001. Spectral analyses of Ni-laterite samples from the Koniambo massif, New Caledonia: results of the phase 2 study. CSIRO Exploration & Mining Report 814R, 19pp.

Yang, K., Whitbourn, L., Huntington, J. & Mason, P.2001. Spectral analyses of Ni-laterite samples from the Koniambo massif, New Caledonia: results of the phase 3 study, 860R, 17pp.

Yang, K., Whitbourn, L., Huntington, J. & Mason, P.2002. Spectral analyses of Ni-laterite samples from the Koniambo massif, New Caledonia: results of the phase 4 study, 906R, 30pp.

Yang, K., Whitbourn, L. & Mason, P, 2004. Spectrally Scanning Mine Bench Faces and Predicting Compositions of Laterites at the Koniambo Massif, New Caledonia: Results of the Phase 5 Study. CSIRO Exploration & Mining Report 2004/369, 30pp.

CONTACTUS

- t 1300 363 400 +61 3 95452176
- e csiroenquiries@csiro.au
- **w** www.csiro.au

AT CSIRO, WE DOTHE EXTRAORDINARY EVERYDAY

We innovate for tomorrow and help improve today–for our customers, all Australians and the world.

Our innovations contribute billions of dollars to the Australian economy every year. As the largest patent holder in the nation, our vast wealth of intellectual property has led to more than 150 spin-off companies.

With more than 5,000 experts and a burning desire to get things done, we are Australia's catalyst for innovation.

CSIRO.WE IMAGINE.WE COLLABORATE. WE INNOVATE.

FORFURTHERINFORMATION

Mineral Resources

- Erick Ramanaidou
- t +61 8 6436 8810
- e Erick.Ramanaidou@csiro.auw www.csiro.au/

