Length–weight relationship of thirteen demersal fishes from the tropical Brazilian continental shelf
Leandro Nole, Lucas Vinícius, Santos Silva, Flávia Lucena, Leandro Eduardo, Thierry Frédou, Alex Lira, Lucas Silva, Beatrice Ferreira, Arnaud Bertrand, et al.

To cite this version:
Length–Weight relationship of thirteen demersal fishes from the tropical Brazilian continental shelf

DOI: 10.1111/jai.13831

Leandro Nole Eduardo1,*, Thierry Frédou1, Alex Souza Lira1, Lucas Vinícius Santos Silva1, Beatrice Padovani Ferreira2, Arnaud Bertrand1,2,3, Frédéric Ménard4, Flávia Lucena Frédou1.

1Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Rua D. Manuel de Medeiros, sn, Dois irmãos, CEP 52171-900, Recife, PE, Brazil.

2Universidade Federal de Pernambuco, Departamento de Oceanografia, Recife, PE, Brazil.

3Institut de Recherche pour le Développement (IRD), MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France.

4IRD, UMR MIO Aix Marseille Univ/Université de Toulon/CNRS/IRD, Marseille, France.

*Corresponding author: leandronole@hotmail.com - Tel: +55 81 33206015 (Brazil)

ABSTRACT

This study provides the length-weight relationship (LWR) for 13 demersal fish species belonging to 11 families and 8 orders. Data were collected in the northeast Brazilian continental shelf during two scientific surveys (2015 and 2017) using a bottom trawl net (side length of body mesh: 40 mm, side length of cod-end mesh: 25mm) at 35 stations between 15 and 60 m of depth. We provide novel LWRs for 4 species and expand the size range of 9 relationships previously established.

INTRODUCTION

Length-weight relationships (LWR) can be very important for stock differentiation, ecological modeling, to infer body condition indices, calculate biomass based on length frequency distributions, and for acoustic surveys (R. Froese, 2006; Martins Vaz-dos-Santos & Lúcia Del Bianco Rossi-Wongtschowski, 2013). However, despite its importance and the fact that these relationships are easily obtained, they are usually missing for several species, especially those that are not commercially important (Freire, Rocha, & Souza, 2009).

Along the Brazilian coast, several studies have estimated fish LWRs parameters. However, these studies mainly focused on the South (e.g. Catelani et al., 2017; Martins Vaz-dos-Santos and Lúcia Del Bianco Rossi-Wongtschowski, 2013; Vianna et al., 2004) and Southeast (e.g. Freire et al., 2009; MacIeira and Joyeux, 2009; Passos et al., 2012) regions. In the continental shelf of northeast Brazil, an area of high biodiversity
where many threatened and near-threatened species occur (Eduardo et al., 2018), only a few LWR references are available for estuarine and shallow water (0-30m) species (e.g Aguiar-Santos, Sampaio, Barroso, Nunes, & Piorski, 2018; Joyeux et al., 2009; Viana et al., 2016). Here new LWR information is provided for 13 species of demersal fishes occurring along the Brazilian northeast continental shelf.

MATERIAL AND METHODS

The study area comprises the northeast Brazilian continental shelf, between the states of Rio Grande do Norte (5°0’S; 35°0’W) and Alagoas (9°0’S; 35°0’W). Data were collected during a scientific survey, the Acoustics along the BRAzilian COaSt (ABRACOS) expeditions, on board the IRD R/V ANTEA. Sampling was conducted during two cruises, from August 30th to 20th September 2015 and 9th April – 6th May 2017, using a bottom trawl (side length of body mesh: 40 mm, side length of cod-end mesh: 25mm, entrance dimensions horizontal x vertical: 28 x10 m) at 35 stations. Hauls were performed between 15 and 60 m of depth, for about 5 minutes at 3.2 kt.

Fish individuals were identified, measured (nearest 0.1 cm total length, TL) and weighed (nearest 0.01 g in total weight, TW). The LWR values were estimated using the equation: \(TW = a \times TL^b \), where TW is the total weight (in g); TL is the total length (in cm); \(a \) is the intercept of the regression curve (intercept of TW when TL is zero or initial growth coefficient) and \(b \) is the regression slope (coefficient indicating isometric or allometric growth) (Rainer Froese, 2006; Rainer Froese, Tsikliras, & Stergiou, 2011). Prior to calculation of the LWR, outliers for each species were graphically identified using TL vs. TW plots (Froese & Binohlan, 2000) and removed. The fit of the model to the data was measured by the coefficient of determination r-squared (R²).

RESULTS

A total of 13 species belonging to 11 families and 8 orders were analyzed (Table 1). All regressions were highly significant (P < 0.01), with the coefficient of determination (\(r^2 \)) ranging from 0.953 to 0.994 (Table 1). The intercept \(a \) varied between 0.00002 (Aulostomus maculatus) and 0.0119 (Haemulon squamipinna), while the value of \(b \) varied between 2.67 (Alphestes afer) and 3.58 in (Aulostomus maculatus).
DISCUSSION

This study provides novel LWRs for four species (Bothus ocellatus, A. afer, H. squamipinna and Scorpaena bergii) and expands the size range of nine other relationships (Table 1). For two species, Hypanus marianae and H. squamipinna, we also present record values of maximum total length. The LWR allometric coefficient (b) for all species were within the expected range of 2.5–3.5 (Rainer Froese, 2006), with exception of A. maculatus (b= 3.58). This positive allometric coefficient was obtained from a species with an unusual and elongated body shape. Further, factors as differences across populations, gonadal maturity, sample size, range of specimens size, and techniques of preservation might also have influenced the LWR parameters presented here (Rainer Froese, 2006).

In conclusion, this study provides new LWRs information for thirteen demersal fish species that may be a useful tool in future studies aimed at monitoring and understanding fish populations.

ACKNOWLEDGMENTS

We acknowledge the French oceanographic fleet for funding the at-sea survey ABRACOS 1 and 2 (http://dx.doi.org/10.17600/15005600 / http://dx.doi.org/10.17600/17004100) and the officers and crew of the R/V Antea for their contribution to the success of the operations. The present study could not have been done without the work of all participants from the BIOIMPACT Laboratory. Thanks also to Michael Maia Mincarone (NUPEM) for species identification and deposition in the Fish Collection of NUPEM. We thank the CNPq (Brazilian National Council for Scientific and Technological Development), which provided student scholarship to Leandro Nolé Eduardo and Alex Souza Lira and research grant for Thierry Frédou, Beatrice Padovani Ferreira and Flávia Lucena Frédou. This work is a contribution to the LMI TAPIOCA, program CAPES/COFECUB (88881.142689/2017-01), and PADDLE project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 73427.
REFERENCES

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Total length (cm)</th>
<th>Weight (g)</th>
<th>Regression parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Myliobatiformes</td>
<td>Dasyatidae
Hypanus marianae
Gomes, Rosa & Gadig, 2000</td>
<td>52</td>
<td>16.5</td>
<td>65</td>
</tr>
<tr>
<td>Pleuronectiformes</td>
<td>Paralichthyidae
Syacium micrurum
Ranzani, 1842</td>
<td>70</td>
<td>6.5</td>
<td>25</td>
</tr>
<tr>
<td>Bothidae</td>
<td>Bothus ocellatus
(Agassiz, 1831) ††</td>
<td>154</td>
<td>5.2</td>
<td>16</td>
</tr>
<tr>
<td>Syngnathiformes</td>
<td>Aulostomidae
Aulostomus maculatus
Valenciennes, 1841</td>
<td>37</td>
<td>15.3</td>
<td>31.5</td>
</tr>
<tr>
<td>Labriformes</td>
<td>Scaridae
Cryptotomus roseus
Cope, 1871</td>
<td>25</td>
<td>5.6</td>
<td>10.7</td>
</tr>
<tr>
<td>Scaridae</td>
<td>Sparisoma radians
(Valenciennes, 1840)</td>
<td>50</td>
<td>5.1</td>
<td>20</td>
</tr>
<tr>
<td>Perciformes</td>
<td>Gerreidae
Ulaema lefroyi
(Goode, 1874)</td>
<td>44</td>
<td>9.5</td>
<td>19.5</td>
</tr>
<tr>
<td>Serranidae</td>
<td>Alphespes afer
(Bloch, 1793) ††</td>
<td>38</td>
<td>13.5</td>
<td>21.4</td>
</tr>
<tr>
<td>Haemulidae</td>
<td>Haemulon squamipinna
Rocha & Rosa, 1999 ††</td>
<td>100</td>
<td>11.1</td>
<td>19.5</td>
</tr>
<tr>
<td>Scorpaeniformes</td>
<td>Scorpaenidae
Scorpaena bergii
Evermann & Marsh, 1900 ††</td>
<td>11</td>
<td>5</td>
<td>8.5</td>
</tr>
<tr>
<td>Spariformes</td>
<td>Sparidae
Calamus calamus
(Valenciennes, 1830)</td>
<td>25</td>
<td>6.5</td>
<td>27.5</td>
</tr>
<tr>
<td>Tetraodontiformes</td>
<td>Monacanthidae
Cantherhines macrocerus
(Hollard, 1853)</td>
<td>15</td>
<td>6</td>
<td>38.6</td>
</tr>
<tr>
<td></td>
<td>Stephanolepis hispidus
(Linnaeus, 1766)</td>
<td>73</td>
<td>7.1</td>
<td>36.9</td>
</tr>
</tbody>
</table>

Table 1 - Descriptive statistics and parameters of LWRs for 13 demersal fish species from the northeast Brazilian continental shelf. (††) Novel length-weight relationships.