Weathering history and landscape evolution of Western Ghats (India) from 40 Ar/39 Ar dating of supergene K-Mn oxides

A. Jean, Anicet Beauvais, D. Chardon, N. Arnaud, M. Jayananda, P.-E. Mathe

To cite this version:

HAL Id: ird-02356085
https://hal.ird.fr/ird-02356085v2
Submitted on 19 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Weathering history and landscape evolution of Western Ghats (India) from 40Ar/39Ar dating of supergene K-Mn oxides

A. Jean1, A. Beauvais1*, D. Chardon2,3, N. Arnaud4, M. Jayananda5 & P.E. Mathe1

1 Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France
2 IRD and Département des Sciences de la Terre, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
3 GET, Université de Toulouse, CNRS, IRD, UPS, CNES, F-31400 Toulouse, France
4 Université de Montpellier 2, Géosciences Montpellier, UMR CNRS 5243, 34095 Montpellier, France
5 Centre for Earth, Ocean and Atmospheric Sciences, University of Hyderabad, P.O. Central Gachibowli, Hyderabad 500 046, India

* Correspondence: (beauvais@cerege.fr)

Running title: Western Ghats landscape evolution

Accepted to Journal of the Geological Society
November 05, 2019
DOI: 10.1144/jgs2019-048
Abstract

Laterites preserved on both sides of the Western Ghats Escarpment of Peninsular India have formed by long-term lateritic weathering essentially after India-Seychelles continental break up following Deccan Traps emplacement (c. 63 Ma ago). Supergene manganese ores of the Western Ghats were formed on Late Archean manganese protores. Among Mn oxides composing the ores, cryptomelane (K-rich Mn oxide) was characterized and dated by 40Ar/39Ar geochronology. Measured ages complement those previously obtained in other South-Indian manganese ores from the hinterland plateau (Bonnet et al., 2016) and further document three major weathering periods, c. 53-44 Ma, c. 39-22 Ma, and c. 14-10 Ma, the later being documented for the first time in India. These periods coincide with global paleoclimatic proxies and date the lateritic weathering of three successive paleolandscapes of the Western Ghats that evolved under slow denudation (c. 8 m/m yr) over the last 44 Myr and were mostly incised during the Neogene (< 22 Ma). That indicates the Western Ghats are a relict of a South Indian plateau preserved at the headwaters of very long east-flowing river systems and above the Western Ghats escarpment. Topography and denudation history of this landscape do not require Neogene tilt of the Peninsula as recently proposed.

Keywords: 40Ar/39Ar geochronology – Manganese oxides – Lateritic weathering – Cenozoic – Denudation – Indian Western Ghats

Supplementary material: [Full details of field and samples description, methodology, and analytical data including electron probe microanalyses of cryptomelane, and isotopic analyses and degassing spectra of irradiated cryptomelane grains] is available at
Lateritic regoliths of the continental inter-tropical belt have formed by supergene chemical weathering of rocks and landscape evolution under evolving tropical climates. Over long-time scale, weathering profiles accumulate clays (mainly kaolinite), and metal oxides (Al, Fe, or Mn oxy-hydroxides), which are mostly concentrated in lateritic duricrusts capping the profiles (Bárdossy and Aleva, 1990; Nahon, 1986; Thomas, 1994; Tardy, 1997). Lateritic weathering profiles (up to c.100 m thickness) are currently exposed on relict paleolandsurfaces over large cratonic areas of Africa, South America, Australia and India. Much work was done for dating weathering profiles on most continents of the tropical belt, using \(^{40}\text{Ar}/^{39}\text{Ar}\) dating of K-rich Mn oxides (e.g., Vasconcelos, 1999; Vasconcelos et Conroy, 2003; Beauvais et al., 2008; Bonnet et al., 2016; Deng et al., 2016; Li et al., 2007; Riffel et al., 2015), or (U-Th)/He dating of iron oxy-hydroxides (e.g., Shuster et al., 2005; Vasconcelos et al., 2013; Monteiro et al., 2018; Allard et al., 2018). For instance, ages of cryptomelane formed \textit{in situ} in lateritic regolith of West Africa and Brazil allowed calibrating continental denudation over geological time scales (Beauvais and Chardon, 2013; Vasconcelos and Carmo, 2018). But a reliable geochronological geomorphology is still often lacking to better calibrate the long-term erosion history of many areas of the tropical World that would allow linking lateritic weathering episodes, continental denudation and the evolving paleolandsapes, particularly on passive continental margins and their cratonic hinterlands (e.g., Bonnet et al., 2016).

In Peninsular India, relicts of several generations of stepped lateritic paleolandsapes (termed paleosurfaces) were distinguished (e.g., Widdowson, 1997; Gunnell, 1998), but only recently characterized and dated by \(^{40}\text{Ar}/^{39}\text{Ar}\) radiometry (Bonnet et al, 2014; 2016; Beauvais et al., 2016). Paleolandscape remnants preserved on either side of Western Ghats Escarpment (WGE) separating the coastal lowland plain from a continental-scale high plateau (i.e. the
Karnataka plateau; **Fig. 1b**), are most numerous upon the Western Ghats proper, i.e., the belt of high topography (800 m - 1500 m) running along the escarpment. These remnant landscapes are key paleotopographic markers of the denudation history of the Peninsula. Three major weathering periods, c. 53-45 Ma, c. 37-26 Ma and c. 26-19 Ma, and two discrete pulses, c. 9 and 2.5 Ma, were previously defined from 40Ar/39Ar ages series of cryptomelane, which formed *in situ* in the lateritic profiles and supergene Mn-ore deposits on the highland plateau and coastal lowland plain (Bonnet *et al.*, 2016). These ages combined with regional geomorphological observations imply very slow denudation, c. 5-6 m/Myr in the lowland and a maximum of c. 15 m/Myr in the highland over the last 50 Myr (Beauvais *et al.*, 2016).

The present study focuses on 40Ar/39Ar dating of the cryptomelane-rich Mn ore deposits of North Kanara region in the Western Ghats, which have been loosely dated so far by Neogene palynostratigraphic record in their sedimentary overburden (Krishna Rao *et al.*, 1989a). New data further document the major Cenozoic weathering periods previously identified upon the Karnataka plateau and in the coastal lowland (Bonnet *et al.*, 2016) and reveal for the first time a well-characterized Mid-Miocene (14-10 Ma) weathering period. All the ages obtained here establish the first geochronology of lateritic weathering in the North Kanara region and further document the evolution of Western Ghats landscapes that was previously outlined (e.g., Sethumadhav *et al.*, 2010). The geomorphological structuration of the Western Ghats into three major lateritic paleolandscapes and the new ages obtained imply a slow denudation regime varying between c. 4.5 and c. 12.5 m/Myr over the last 44 Myr, and limited landscape dissection mostly in the Neogene. These results also document the persistence of a lateritic paleolandcape above the West-facing escarpment as a relict of an Eocene plateau in South India comparable to that of current Southern Africa.
Geological and geomorphological setting of the Western Ghats

Lithologies of North Kanara region consist of Archean gneisses/granites and Late Archean (c. 2.6 Ga) supracrustals comprising greywackes, banded iron formations and quartzite with strips of cherts, phyllites, and shales, as well as some stromatolitic dolomites and limestones (Fig. 2a; Sawkar, 1980; Sethumadhav *et al.*, 2010). Greenschist facies metamorphism and moderate deformation affect the supracrustal sequence (Shivaprakash, 1983; Roy, 1981). Supracrustals of North Kanara constitute the northward extension of the Shimoga greenstone belt, and host many Mn supergene ore deposits (Sethumadhav *et al.*, 2010) as other belts of the Dharwar craton (e.g., Sandur and Chitradurga; Figs. 1 and 2) (e.g., Mohopatra *et al.*, 1996; Manikyamba *et Naqvi*, 1997). Most of the North Kanara ore deposits developed upon phyllites/argillites and cherts forming three hilly structural strips trending NNW-SSE (Fig. 2a; Sawkar, 1980).

The Kali River drains the region, sourcing near Diggi east of the escarpment; it first flows eastward then south before turning and incising the escarpment westward (Fig. 2b). Relicts of three lateritic paleolandscapes have been distinguished and mapped on the basis of their regolith, morphology and topography (Figs. 2b-c and 3). The first and older one, noted S1, is mostly flat and carries Al-Fe rich laterites, mostly bauxitic, between altitudes of c. 770 m and c. 1000 m (Figs. 2b-c and 3). This S1 paleolandscape is equivalent to the S2 paleosurface described by Gunnell (1998). The second lateritic paleolandscape, noted S2, bears thick weathering profiles rich in kaolinite and iron oxy-hydroxides, which are often duricrusted by an Al-Fe rich duricrust (Bonnet *et al.*, 2016) between altitudes of c. 650 m and c. 930 m (Figs. 2b-c and 3). The lateritic weathering profile related to the S2 paleolandscape has been previously interpreted as resulting from the late geochemical epigenetic evolution of bauxites (Krishna Rao *et al.*, 1989b; see also Boulangé, 1986). The two paleolandscapes (S1-S2) form
a composite landscape, the S2 relicts being preserved mostly as gentle slopes under scarp-bounded S1 remnants that have undergone limited incision (a few tens of meters) but clear relief inversion before final installation of S2. The composite S1-S2 landscape can reach c. 100 m of relief (Figs. 2c and 3). This paleolandscape is best preserved near the escarpment (Fig. 2b) and represents the westernmost relict of a more extended low relief and gently sloping S1-S2 paleolandscape on the Karnataka plateau, whose remnants have been also observed on the Chitradurga and Sandur greenstone belts at 900-1100 m elevation (Fig. 1; see Bonnet et al., 2016; Beauvais et al., 2016). The third paleolandscape, noted S3, consists of coalescent pediments between c. 750 and 500 m elevation (Figs. 2c and 3). The pediments are covered by clay-rich ferruginous soils (Gunnell and Bourgeon, 1997), which can be locally duricrusted. S3 surface once formed a pediplain resulting from the dissection of the composite S1/S2 landscape. The pediplain fossilizes the foot of steep, regolith-free slopes, 150 to 250 m in amplitude, which formed by incision of the S1-S2 relict landscape (Figs. 2c and 3; Bonnet et al., 2016; see also Chardon et al., 2018 and references therein). The S3 pediplain therefore integrates relicts of the S1-S2 landscape. The pediplain is incised by about 50 to 100 m (locally 300 m by the Kali River valley, Figs 2b-c and 3). The regolith underlying the S3 pediment surfaces hosts most of the Mn ore deposits at altitudes ranging from 520 to 650 m (Fig. 2b and Tab. 1). The S1-S3 landscape sequence in the Western Ghats is similar to that previously described on the Karnataka plateau (Bonnet et al., 2016).

Materials and methods

Sampling, characterization and collection of cryptomelane

Eleven samples of Mn-rich duricrusted ore were collected for their richness in cryptomelane on sections and benches of five-abandoned open mine workings of supergene
Mn ore deposits et Diggi, Terali, Nagari, Illva and Pradhani (Figs. 2 and 4a). Most of collected manganese ores show massive, botryoidally colloform-mineralized structures, or infiltration ore in lateritic iron duricrust rich in cryptomelane and other Mn oxides, as well as secondary goethite (Figs. 4b-e). Some samples also show the primary lithological banding of parent rocks and protores.

The different operations for identifying, characterizing and sampling cryptomelane grains are summarized in the Figure 3 (see also Bonnet et al., 2016). Cryptomelane and other Mn oxides were first identified on fully polished thin sections (200-300 µm-thickness), which were observed under reflected light microscopy and analysed by X-ray micro-fluorescence, µ-XR, (Figs. 4d-e). The µ-XRF analysis allowed mapping Mn, K and Fe concentrations on the polished thin sections to identify the area the richest in cryptomelane. Cryptomelane was also analysed by Electron Probe Micro-Analysis (EPMA) in polished thin sections.

Additional small grains were extracted from the remaining Mn ore duricrust specimens for observation under a scanning electron microscope and characterization by X-ray diffraction (Figs. 4f-g). Cryptomelane grains of 0.5 to 2 mm in size were picked on thick counterparts (500 µm-thickness) of each thin section where K and Mn are both present (Fig. 4e). Fifty-one grains were selected and divided into two batches, one reduced to powder (c. 64 µm size fraction) and analysed by XRD (Fig. 4f), and the other one kept for dating.

Cryptomelane grain irradiation and \(^{40}\text{Ar}/^{39}\text{Ar}\) dating

Cleaned and purified cryptomelane grains were conditioned in aluminium foil packets, and placed into an irradiation vessel including also the monitor VN-FCT-98 of Fish Canyon Tuff volcanic (U.S.A.) dated at 28.172 ± 0.028 Ma (Rivera et al., 2011) every ten grains. Isotopic analyses and dating were performed using the step-heating method of irradiated
grains with a CO2 laser emitting in the infrared. Measured isotopic ratios were corrected for irradiation interferences and air contamination using the up-to-date mean 40Ar/36Ar$_{atm}$ value of 298.56 ± 0.31 (Lee et al., 2006; Renne et al., 2011).

Plateau ages are generally derived using several apparent ages integrated over continuous degassing steps overlapping at 2σ error level and integrating at least 70% 39Ar released (Fleck, 1977; Maluski, 1985; McDougall and Harrison, 1988). A plateau age is still valid when it integrates 50% to 70% of 39Ar released over at least three continuous degassing steps whose individual ages overlap in the 2σ error (e.g., Vasconcelos, 1999; Li and Vasconcelos, 2002; Vasconcelos and Conroy, 2003; Colin et al., 2005; Li et al., 2007; Feng and Vasconcelos, 2007; Vasconcelos et al., 2013; Riffel et al., 2015; Bonnet et al., 2014; Deng et al., 2016). When more than two degassing steps integrate only 40 to 50% of 39Ar released in the 2σ level, a “pseudo-plateau” age was preferred (Vasconcelos et al., 2013; Riffel et al., 2015). When at least three consecutive reasonably flat steps do not strictly overlap in the 2σ level, a “forced” plateau was required to calculate an age weighted by error and the 39Ar released for each degassing step (Vasconcelos et al., 2013; Riffel et al., 2015).

Picked cryptomelane are generally pure, but sometimes, hypogene contaminations (muscovite), mixed cryptomelane generations, or cryptomelane mixed with authigenic phases (e.g., todorokite ((Na,Ca,K)$_2$(Mn$^{4+}$,Mn$^{3+}$)$_6$O$_{12}$•3-4.5(H$_2$O)) result in very perturbed degassing spectra including analysis biases and dating errors. For such cases, although pseudo-plateau and forced plateau ages can be estimated, the 36Ar/40Ar vs. 39Ar/40Ar correlation diagrams may be required to derive age from best-fitted isochron with a mean square weighted deviation (MSWD) as close as possible to 1 (ideally less than 2.5; see Roddick et al., 1980) and a 40Ar/36Ar intercept as close as possible to the air value of 298.56 in the 2σ error level.
Results and interpretations

Characterization and stoichiometric composition of cryptomelane

All samples contain mostly cryptomelane (Fig. 4d-f), but iron oxy-hydroxides such as goethite and sometimes hematite were also identified, with other manganese oxy-hydroxides, i.e., lithiophorite ((Al, Li) Mn⁴⁺O₂(OH)₂), nsutite (γ-MnO₂) (see Figs. 4d-e), and even pyrolusite (β-MnO₂). Similar Mn oxides have been previously described in same Mn ore deposits of Western Ghats (Sethumadhav et al., 2010). The relative richness in iron oxide such as goethite is linked to banded iron formations associated with phyllites/argillites. Quartz and muscovite were also determined as minor components.

The stoichiometric compositions of cryptomelane were calculated from EPMA and plotted in a ternary diagram (Fig. 5). Some microanalyses from Nagari Mn deposit samples have relatively high aluminium content owing to possible intergrowth with lithiophorite, or mixture with a primary mineral like muscovite inherited from parent phyllites and argilites (Bonnet et al., 2016). Microanalyses from Pradhani samples show high Fe content up to 20 wt.%. Cryptomelane from Terali deposit can be Al-rich (Fig. 5) owing to relict muscovite. Cryptomelane from Diggi, Illva and some from Pradhani have less aluminous impurities (Al never exceeding 2.73 wt.%, Fig. 5).

Weathering geochronology of the Western Ghats

Fifty-one cryptomelane grains collected in samples from five Mn ore deposits were analysed and dated, and thirty-eight have significant geological ages (Tab. 1). Synthetic results presented in the Table 1 allow distinguishing three family or groups of ages, Mid-Miocene (Fig. 6), Early Miocene – Late Eocene (Fig. 7), and Mid-Eocene (Fig. 8).
Overview of 39Ar release spectra

Fifteen grains have homogenous degassing spectra allowing calculation of plateau ages integrating 70 to 90 % of 39Ar released and thirteen with 50 to 70 % of 39Ar released (Tab. 1, Figs. 6 and 8). Many irradiated grains picked in the same sample have reproducible homogeneous degassing spectra. Seven spectra do not strictly respect the overlap upon the 2σ error that requires calculation of acceptable age from forced plateaus and/or best-fitted isochrons in correlation diagrams (Figs. 7 and 8 and Tab. 1).

Three types of perturbed degassing spectra have been identified. Hump-shape degassing spectra, tagged HS (see Figs. 7 and 8) typify a mixture of at least two cryptomelane generations that only allow estimating the minimum age of the oldest phase and the maximum age of the youngest phase (Beauvais et al., 2008). Saddle shape degassing spectra, tagged SS (Fig. 7) result from mixture of several supergene phases, or contamination by a hypogene mineral (Hautmann et Lippolt, 2000; Ruffet et al., 1996; Vasconcelos et al., 1995). Staircase-degassing spectra, tagged SD, suggest possibly a system opening, or a mixing of different cryptomelane generations with a disturbance at high energy, owing generally to a contamination by a hypogene phase (Fig. 7).

Mid-Miocene cryptomelane ages

Most of the Mid-Miocene ages have been calculated for cryptomelane of samples collected in Diggi and Illva Mn ore deposits (Figs. 6a-b). Three grains, DIG-1A-T4 to T6, picked in the same thick section, have very similar degassing spectra allowing to derive reproducible plateau ages between c.11 and c.12 Ma integrating more than 70 % of 39Ar (Fig. 6a). Two other grains DIG-1B-T2 to T3 have a same age of c.13 Ma. The first one (DIG-1B-T2) is a “pure” cryptomelane grain, with a regular 39Ar-releasing spectrum allowing to
calculate a meaningful plateau age, based on 85 % \(^{39}\)Ar released. The second one (DIG-1B-T3), picked in the same thick section, has a plateau like degassing spectrum with 79 % \(^{39}\)Ar released confirming the reproducibility of plateau age calculation for the two grains (Fig. 6a). Grain DIG-1B-T4 is also a “pure” cryptomelane characterized by a regular degassing spectrum with 74 % \(^{39}\)Ar released, providing a robust plateau age of c.12 Ma. One grain (ILV-1B-T4) has a homogeneous degassing spectrum providing plateau ages of c.13 Ma integrating more than 90 % \(^{39}\)Ar released (Fig. 6b). Two others grains picked in botryoidal crystallizations from a same thick section (ILV-2C-T3 and -T4) also have reproducible homogenous degassing spectra with robust plateau ages of c.12 to c.13 Ma accounting for more than 80 % of \(^{39}\)Ar released. Grain ILV-3C-T4 picked in allochthonous Mn ore sample has degassing spectra allowing calculation of a plateau age of c. 14 Ma integrating more than 60 % \(^{39}\)Ar released (Fig. 6b). Two other grains picked in a same thick plate have reproducible degassing spectra providing plateau age of c. 12 Ma (ILV-6A-T2) and c. 10 Ma (ILV-6A-T3) both integrating c. 80 % of \(^{39}\)Ar released.

Late Eocene to Early Miocene Cryptomelane ages

This group (Fig. 7) comprises ages obtained for cryptomelane of samples from deposits of Terali and Pradhani. Two cryptomelane rich grains (TER-1A-T1, TER-1B-T3) have degassing spectrum with a slight hump-shape (Fig. 7a) suggesting mixture of two cryptomelane generations. Such spectra allow defining only forced plateau ages c. 29 and c. 27.5 Ma, respectively, both accounting for at least 60% \(^{39}\)Ar released.

One grain (PRA-1B-T1) is characterized by a staircase-degassing spectrum (Fig. 7b), which at best allows estimating poorly robust pseudo or forced plateau ages c. 25 Ma integrating 61 % of \(^{39}\)Ar released. Three cryptomelane grains (PRA-2A-T1, -T3 and -T5) have similar slight
staircase degassing spectra allowing to derive plateau ages of c. 24.5 Ma, c. 23.7 and c. 21.6, integrating 58 to 78-79 % of 39Ar released, respectively (Fig. 7b). The degassing spectra of the other four grains (PRA-2B-T1, -T4; PRA-3B-T1, and -T2) provide plateau and/or forced plateau ages varying from c. 23 Ma to c. 37.5 Ma (Fig. 7 and Tab. 1). Two grains (PRA-3B-T1 –T2) have reproducible “saddle shape” spectra (Fig. 7b) suggesting opened systems and/or supergene phase’s mixture with a hypogene phase at high energies. Nonetheless, plateau and forced plateau accounting for more than 50 % of 39Ar released, allow deriving ages c. 32.8 and c. 37.5 Ma (Tab. 1), which may be the less poorly estimated maximum ages.

Mid-Eocene cryptomelane ages

Most of Mid-Eocene cryptomelane grains (Fig. 8) were picked in samples from the deposits of Nagari and Pradhani (Tab. 1). Two grains picked in the same thick section (NAG-3B-T1 and T2) have a more or less homogenous degassing, allowing calculation of plateau ages at c. 45 and c. 44 Ma, respectively (Fig. 8a). The 39Ar release spectrum of NAG-3B-T2 shows a slight hump shape with three steps accounting for 78 % of 39Ar released and overlapping in 2σ error, which provides a reliable plateau age. The last grain NAG-3B-T3 has a perturbed 39Ar release spectrum resulting from mixing of cryptomelane generations that only allows consideration of a forced plateau age c. 45 Ma accounting for more than 50 % of 39Ar release (Fig. 8a). Grain PRA-1B-T3 has a pronounced hump-shape degassing spectrum typifying phases mixing that provide only a forced-plateau age of c. 45 Ma accounting for 50 % of 39Ar released (Fig. 8b).

Summary and interpretation of the 40Ar/39Ar ages

The three groups of ages (Table 1), c. 45-44 Ma, c. 37.5-22 Ma, and c. 14-10 Ma, complement ages obtained previously in other manganese ore deposits from the Karnataka
Plateau (Sandur) and Western Ghats (Shimoga) south of the present study area that further document the weathering periods previously established by Bonnet et al. (2016): Eocene and Oligocene-Early Miocene, with a new period in Mid-Miocene. Altogether, the ages define three main weathering periods, c. 53 to c. 44 Ma (W1), c. 39 to c. 22 Ma (W2), and c. 14 to c. 10 Ma (W3). Those periods mostly coincide with warm and humid climatic global trends (Fig. 9), which were potentially conducive to intense lateritic weathering in the Peninsula as well on most continents of the tropical belt (Retallack, 2010). Under such conditions, and especially during the two first periods W1 and W2, relatively fast deepening of weathering fronts (up to 10 m/Myr; Boulangé et al., 1997; see also Tardy and Roquin, 1992) allowed early segregation of aluminium, iron and manganese, controlled by their relative mobility (Eh- and pH-dependent) in weathering profiles and landscapes (Melfi and Pedro, 1974; Hem, 1981; Beauvais et al., 1987). Early weathering of parental minerals such as illite or muscovite into kaolinite or gibbsite released K$^+$ ions required to form cryptomelane (Parc et al., 1989).

Like in West Africa (Beauvais et al., 2008) or upon the Karnataka plateau (Bonnet et al., 2014, 2016), Al-Fe-Mn geochemical differentiations have resulted in early formation of manganese ore deposits including K-rich Mn oxides (cryptomelane) at depth in the profiles of the S1 bauxitic paleolandscape (Fig. 10a). Such a surface geochemical dynamics typifies the weathering regime of cratonic tropical regions, where slow base level lowering warranties coeval landscape incision/dissection and long lasting deepening of weathering fronts. A slight change in climatically driven surface erosional processes after c. 44 Ma (Fig. 9) allowed for the abandonment of a duricrust-capped paleosurface S1 and installation of the S2 surface without stripping the entire thickness of the S1 bauxitic weathering profile (Fig. 10b). A comparable scenario applies for the abandonment of S2 and installation of S3, even though S3 has allochthonous clasts of older weathered material dispersed on its surface. Such a
punctuated erosion-weathering regime therefore allowed for the preservation of early-formed weathering materials including manganese ores rich in cryptomelane in the S1 profiles, as well as in those of S2 and S3 (Fig. 10b-c). Therefore, the weathering profiles of the youngest S3 surface were able to host and keep record of “the roots” of manganese-rich profiles formed during the S1 and S2 stages (Fig. 10c). The minimum age of weathering periods marks the stabilization of weathering fronts at each stage responding to the lowering of base levels resulting in landscape dissections and the abandonment of S1 at c. 44 Ma, S2 at c. 22 Ma, and S3 at c. 10 Ma (Figs. 10a-c). The time intervals between the age groups, i.e., 44-39 Ma, 22-14 Ma, and 10-0 Ma (Fig. 9) document periods of subdued weathering under seasonally drier climatic conditions with correlative landscape dissection and evolution into three stepped lateritic paleolandslapes, S1 to S3 (Figs. 2c and 3; see also Beauvais and Chardon, 2013).

Therefore, the Western Ghats have seen their early low-relief S1 landscape differentiated during three major denudation periods bounded by terminal ages of W1, W2, W3 and the present-day, i.e., 44-22 Ma, 22-10 Ma, and 10-0 Ma.

Weathering and morphoclimatic history of the Western Ghats

Early to Mid Eocene weathering period, W1 (53 - 44 Ma)

The Eocene period documented here by four ages around 44-45 Ma attests to the minimum age boundary of this first weathering period (Fig. 9), which begun at least c. 53 Ma ago as documented further east at Sandur (Bonnet et al., 2016). The Eocene is known as a period of bauxitization worldwide, particularly from cratonic domains of the inter-tropical belt (Prasad, 1983; Valeton, 1999; Retallack, 2010). This first weathering period of at least 9 Myr coincided with the global Early Eocene climatic optimum (c. 50 Ma; Fig. 9), and occurred in Peninsular India less than c. 5 Myr after the Paleocene-Eocene Thermal
Maximum and the onset of Himalayan collision c. 55-57 Ma ago (Hu et al., 2016; Najman et al., 2010). During this period, India slowed its northward drift across the mostly equatorial inter-tropical zone (Tardy and Roquin, 1998; Kent and Muttoni, 2008; see Bonnet et al., 2016) and intense lateritic weathering, with segregation of aluminium from iron and manganese in thick, mostly bauxitic profiles, affected most of lithologies including the Deccan Traps (Bardossy and Aleva, 1990; Krishna Rao et al., 1989b; Valeton, 1999). Remnants of such bauxitic paleolandscapes (S1) are distributed in the Western Ghats and locally preserved on the Karnataka plateau (Bonnet et al., 2016). After 44 Ma, the S1 bauxitic paleolandscape was reworked (see Krisna Rao et al., 1989b) allowing the establishment of the S2 paleolandscape (Figs. 2c, 3 and 10b).

Late Eocene - Early Miocene weathering period, W2 (39 - 22 Ma)

This long weathering period (c. 17 Myr) in the Western Ghats is documented by fifteen ages complementing those previously obtained in Sandur on the Karnataka plateau and in Shimoga (Western Ghats south of the Kanara district studied here) between 39 Ma and 23 Ma (Bonnet et al., 2016). The oldest ages obtained in the Western Ghats (c. 37.5 Ma in the present study and c. 39 Ma in Shimoga) document that lateritic weathering might have been enhanced in South India by monsoon-like climatic regimes recently reported by authors (Dupont-Nivet et al., 2008; Licht et al., 2014). This weathering period occurred a few million years after the onset of global Mid-Eocene Climatic Optimum (c. 42 Ma; Fig. 9).

Late Eocene ages (c. 39 Ma) were obtained on cryptomelane in Shimoga Mn ore deposit upon the S2 paleosurface (Bonnet et al., 2016; Fig. 9) and on kaolinite from a relict truncated weathering profile from the southernmost Western Ghats in the upslope part of Kavery River drainage (see Mathian et al., 2019). This means that both minerals formed simultaneously at
the onset of lateritization and morphogenesis of S2 paleolandscape (Fig. 10b). Old concordant
dates obtained on the Karnataka plateau as well as in the Western Ghats belt are attributed to
the S2 paleolandscape that evolved slowly during a long-lasting period (c. 17 Myr) of intense
lateritic weathering, potentially under seasonally tropical humid climate.

The numerous ages between c. 30 and 23 Ma (Tab. 2 and Fig. 9) confirm those
previously obtained in Sandur and Shimoga (Fig. 1a; Bonnet et al., 2016) and document
enhanced weathering of S2 paleolandscape at the Oligocene-Miocene transition. These ages
bracket the global late Oligocene warming (LOW) at c. 26 Ma (Fig. 9), during which modern-
like monsoon regimes might have installed on the Peninsula (Chatterjee et al., 2013), with a
western/eastern rainfall contrast comparable to the modern one. Therefore, more humidity
supported intense lateritic weathering upon the Western Ghats and below the escarpment,
while further aridity and landscape dissection prevailed in the interior plateau, e.g., Sandur
where weathering was subdued from c. 26 Ma (Fig. 8; see also Bonnet et al., 2016). The
weathering period ended c. 22 Ma ago with the abandonment of paleolandscape S2 (Fig.
10b). Afterwards, landscape dissection prevailed in the Western Ghats and the S3
paleolandscape established (Figs. 2c, 3 and 10c).

Mid-Miocene weathering period, W3 (14 - 10 Ma)

The mid-Miocene weathering period W3 is relatively short (c. 4 myr) but well
documented by eighteen ages in the Western Ghats, and coincided with the global Mid-
Miocene Climatic Optimum (Fig. 9). The ages also agree with palynostratigraphy in the same
Mn deposits (Krishna Rao et al., 1989a), and document renewed lateritic weathering in the
Western Ghats once the S3 pediplain landscape was established (Figs. 2c, 3 and 10c). After c.
10 Ma, landscape dissection that formed the current incised valleys (Fig. 2c) would have been
coeval with apparently subdued weathering attested to by the lack of ages (Fig. 9). However, late Neogene ages (9 and 2.5 Ma) were previously recorded on cryptomelane in the coastal lowland (Bonnet et al., 2016) or further south (9, 3.5 and 1 Ma) on kaolinite in the Western Ghats (Mathian et al., 2019). Those weathering pulses date landsurface processes responses to Neogene monsoon regimes, which are particularly marked in the Western Ghats and the western lowland due to the orographic effect of the WGE (Bonnet et al., 2016).

Landscape evolution of the Western Ghats

The well-preserved S1-S2 composite paleolandscape of Western Ghats has been mostly shaped by c. 18 Myr of cumulated chemical weathering (45 to 44 and 39 to 22 Ma; Fig. 9) and moderate denudation between 44 and 39 Ma (Figs. 2c and 10a-b). Most of the dissection of that landscape occurred from 22 to 14 Ma during which the S3 pediplain grew at its expenses (Figs. 2c, 3 and 10c). Then, after a short episode of weathering (4 Myr), the S3 paleolandscape was finally dissected over the last 10 Myr. Therefore, after abandonment of S1 paleolandscape 44 Ma ago (Fig. 10a), the Western Ghats relief gradually increased up to 350 m by punctuated base level falls (Fig. 2c), implying a maximal denudation rate of c. 8 m/Myr over the last 44 Myr. In detail, the maximum 350 m of relief production in Western Ghats may be divided into three steps correlated to the abandonment of each paleolandscape, S1 to S3 (Figs. 2c, 3 and 10). First, a maximum elevation difference of 100 m between S1 (44 Ma) and S2 (22 Ma) implies a maximum denudation rate of 4.5 m/Myr, which is mostly chemical (Fig. 9). Then, a maximum of 150 m elevation between S2 and S3 (Figs. 2c, 3 and 10b-c) implies 12.5 m/Myr of maximum denudation rate between 22 Ma and 10 Ma. Finally, the 100 m of maximum elevation difference between S3 and the current local base level in the upstream area of the Kali River drainage basin (Figs. 2c and 3) implies a river incision rate
that did not exceed 10 m/Myr over the last 10 Myr. Locally, 300 m-deep gorges of the Kali River imply an incision rate of 30 m/Myr.

The estimated denudation rates are similar to millennial-scale erosion rates derived from 10Be cosmogenic radionuclides measurements (CRN) on the southern Karnataka plateau (Gunnell et al., 2007), or slightly lower than 10Be-derived estimate (c. 15 m/Myr) in river borne sediments from the same region (Mandal et al., 2015). Although time scale (1 myr) and hypotheses of CRN methods complicate comparisons, altogether same order estimates derived from different time scales typify slow, steady state denudation regimes of landscapes mostly controlled by climate rather than by epeirogeny (Beauvais and Chardon, 2013).

Over the last 22 Myr, slow denudation (c. 11 m/Myr) and dissection have preserved a Paleogene S1-S2 smooth paleolandscape over the Western Ghats (Figs. 2b-c, 3 and 10b-c). This antique paleolandscape is the remnant of a South Indian plateau that once occupied most of the peninsula, comparable to the current Southern African Plateau (Partridge and Maud, 1987; Burke and Gunnell, 2008). The great extension of the South Indian plateau is attested to, for instance, by the preservation of large areas of smooth bauxitic paleolandschaptes at 900-1450 m elevation in the Eastern Ghats (Bardossy and Aleva, 1990; see also Subramanian and Mani, 1979) or by the Sandur relic of the S1-S2 paleolandscape more than 250 km inland the WGE (Bonnet et al., 2016). The current E-W asymmetric and eastward sloping topographic profile of the Peninsula (e.g., Gunnell, 1998; Richards et al., 2016) would be due to the regressive erosion of the plateau by the long east-flowing river systems that mostly preserved a plateau relict near their headwaters, right above the Western Ghats escarpment as well as residual patches such as the Eastern Ghats (Jean, 2019). The asymmetrically eroded plateau model proposed here is an alternative to the c. 20 Ma eastward tilt model of the Peninsula proposed by Richards et al. (2016) to explain the current eastward slope of Southern India.
Indeed, negligible Neogene denudation rates documented on either side of the WGE (Beauvais et al., 2016; Bonnet et al., 2016; present work) imply that the escarpment is at least 50 Ma old and challenge the popular model of uplift and/or rejuvenation of the escarpment in the Neogene advocated by most authors (e.g., Radhakrishna, 1993; Widdowson and Gunnell, 1999; Mandal et al., 2017). Furthermore, combined geomorphology and Ar-Ar geochronology of the western coastal lateritic lowland of the Peninsula infers negligible uplift since c. 50 Ma (Beauvais et al., 2016; Bonnet et al., 2016). Therefore, geomorphological observations and denudation rates quantified by Ar-Ar geochronology preclude the eastward tilt model of Richard et al. (2016) that requires 30 to 100 m/myr of uplift - and thus rejuvenation - of the Western margin of the Peninsula since 23 Ma. Our results also imply that the largest volume of sediments produced from the dissection of the South Indian plateau was routed towards the eastern margin of the Peninsula.

Conclusions

The 40Ar/39Ar ages of cryptomelane from supergene manganese ores of the Western Ghats document three major weathering periods in South India: Early-Mid-Eocene (W1), Late Eocene-Early Miocene (W2) and Mid-Miocene (W3). These weathering periods coincide with known global and regional climatic proxies and alternated after c. 22 Ma with periods of subdued weathering during which landscape has been structured step by step into three composite lateritic paleolandscapes S1, S2 and S3. The minimum age of each weathering period determines the abandonment of each paleolandscape, i.e., S1 at 44 Ma, S2 at 22 Ma and S3 at 10 Ma, which bound three major periods of landscape denudation and shaping, i.e., 44-22 Ma, 22-10 Ma and 10-0 Ma. Maximum Cenozoic denudation rates in Western Ghats range from 4.5 to 12.5 m/myr, which confirms previous estimates in South India (Beauvais et
Our results document very long-term slow denudation of tropical cratonic mountains typified by the Western Ghats. That persistent topography is a relict of a South Indian lateritic plateau of Eocene age.

Acknowledgements – This work is part of AJ PhD thesis, funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR) project 5007-1, the CNRS (INSU-2017-programme TelluS-SYSTEM) and the IRD (UMR 161 CEREGE). The Karnataka State Forest Department (Wild Life Division) is gratefully acknowledged for guidance and logistic support. The French Ministry for Scientific Research and Education granted AJ a PhD scholarship (ED251, Aix Marseille Université, Obervatoire des Sciences de l’Univers Pytheas). This work also benefited of technical support from D. Borschneck, Cerege (XRD and µ-XRF analyses), B. Boyer (EPMA), and M. Bonno, A. Iemmolo, D. Jourdain, C. Lanvin, P. Monié, P. Münch (Argon radiochronology), from Geosciences Montpellier. We thank Peter Van der Beek for his remarks on a first draft, and suggestions from reviews of Cécile Gautheron and Gregory Retallack. Igor Maria Vila is thanked for editorial handling.

Funding information
IFCPAR (5007-1); INSU-2017-programme TelluS-SYSTEM; IRD recurrent funding

References

Deng, X.-D., Li, J.-W. & Vasconcelos, P.M. 2016. 40Ar/39Ar dating of supergene Mn-oxides from the Zunyi Mn deposit, Guizhou Plateau, SW China: Implications for chemical weathering and paleoclimatic evolution since the late Miocene. *Chemical Geology, 445*, 185–198.

Jean, A. Histoire de la denudation en Inde Péninsulaire: Contraintes des ages 40Ar/39Ar des oxydes de manganese supergenes et des reconstructions topographiques des paléo-paysages latéritiques. PhD Thesis, Aix-Marseille University, Marseille, France.

Mandal, S.K., Burg, J.P. and Haghipour, N., 2017. Geomorphic fluvial markers reveal transient landscape evolution in tectonically quiescent southern Peninsular India.

Najman, Y., Appel, E., Boudgher-Fadel M., Brown, P., Carter, A., Garzanti, E., Godin, L.,

Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R. & Min, K. 2011. Response to the comment by W.H. Schwarz *et al.* on ‘Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology’ by P.R. Renne *et al.* (2010). *Geochimica et Cosmochimica Acta*, **75**, 5097–5100.

Riffel, S.B., Vasconcelos, P.M., Carmo, I.O. & Farley, K.A. 2015. Combined 40Ar/39Ar and

Shuster, D.L., Vasconcelos, P.M., Heim, J.A. & Farley, K.A. Weathering geochronology by

Vasconcelos, P.M., Heim, J.A., Farley, K.A., Monteiro, H. & Waltenberg, K. 2013. $^{40}\text{Ar}/^{39}\text{Ar}$ and (U–Th)/He – $^{4}\text{He}/^{3}\text{He}$ geochronology of landscape evolution and channel iron

FIGURES AND TABLE CAPTION

Fig. 1. (a) Simplified geology (adapted from Bonnet et al., 2016 based on Chardon et al., 2008) of the western part of Peninsular India, and (b) 30 m SRTM topography. Location of studied area (North Kanara region) is shown.

Fig. 2. (a) Geological map of the study area in North Kanara region with the three morphogeological strips upon which Mn ore deposits formed; (b) Topo-geomorphologic map of the region showing the distribution area of remnants of three major landsurfaces, S1, S2,
and S3, with location of the studied dated Mn ore deposits; (e) Synthetic geomorphological section across the study area in upstream Kali river drainage basin (section lines shown in Fig. 2b). Vertical exaggeration = 4.

Fig. 3. 3-D distribution of relicts of the three major lateritic landsurfaces of the Western Ghats landscape, S1, S2, and S3; (a) Google-Earth view showing the landscape geomorphology around the Terali Mn ore deposit, TER, (Image Landsat/Copernicus, Image©2018 DigitalGlobe); (b) Geomorphological interpretation map of this image. The altitudes are those given by Google Earth (black dots).

Fig. 4. Field characteristics and petrographic structures of sample DIG-1 collected in the Diggi Mn ore deposits. (a) Diggi open cast mine; (b) sample DIG-1 showing infiltration Mn ore in iron duricrust; (c) Polished thin section of sample DIG-1A; (d) microscopic observation of the polished thin section showing the colloform structure of infiltration Mn ore (C= cryptomelane; Li= lithiophorite; ns= nsutite G= goethite); (e) micro X-ray fluorescence analysis showing cryptomelane (C) and goethite (G) determined from a colour code, blue (Mn) and green (K), and iron in red; (f) Scanning Electron Microscopy (SEM) image of cryptomelane “needles”; (g) X-ray diffraction diagram of the sample powder.

Fig. 5. Micro-chemical compositions of cryptomelane obtained by electron probe microanalyses (EPMA) distributed in a ternary diagram whose poles are Mn, 10 K and 10 Al.

Fig. 6. 40Ar/39Ar age spectra of crytpomelane grains from Mn ore deposits of (a) Diggi and (b) Illva, with K/Ca (black) and Ar* (grey) step curves. (SS = Saddle shape)
Fig. 7. $^{40}\text{Ar}/^{39}\text{Ar}$ age spectra of crytpomelane grains from Mn ore deposits of (a) Terali, and (b) Pradhanî, with K/Ca (black) and Ar* (grey) step curves. (HS = Hump shape; SD = Staircase degassing; SS = Sadde shape)

Fig. 8. $^{40}\text{Ar}/^{39}\text{Ar}$ age spectra of crytpomelane grains from Mn ore deposits of (a) Nagari, and (b) Pradhanî, with K/Ca (black) and Ar* (grey) step curves. (HS = Hump shape)

Fig. 9. Synthesis of the $^{40}\text{Ar}/^{39}\text{Ar}$ ages results with individual ages probability curves accounting for results from this study and previous ones (Bonnet et al., 2016). Each age probability curve accounts for 1/3 of the total signal integrating individual ages degassing at least 5% ^{39}Ar from all the preferred calculated ages (table. 1) weighted by the error margin for the three sites ($N_{\text{Sandur}} = 19$ ages, $N_{\text{Shimoga}} = 10$ ages; $N_{\text{This study}} = 38$ ages). The calculated ages are also plotted against the altitude. Altogether, the probability curves and the calculated ages document major weathering peaks and periods W1, W2 and W3 (vertical colour bands), which are compared to major trends of the global paleoclimatic curve (from Zachos et al., 2008). PETM = Paleocene-Eocene Thermal Maximum; EECO = Early Eocene Climatic Optimum; MECO = Mid-Eocene Climatic Optimum; EOC = Early Oligocene Cooling; LOW = Late Oligocene Warming; MMCO = Mid-Miocene Climatic Optimum. Ages in bold and arrowed are terminal ages of weathering periods W1 to W3.

Fig. 10. Landscape and lateritic weathering dynamical evolution in Western Ghats of Peninsular India illustrating early cryptomelane-rich Mn ores formation at (a) the first bauxitic step S1 (red), and their preservation over the Cenozoic at each next landscape (b)
stage S2 (in blue), and (c) S3 pediment (in green). Coloured dashed lines represent successive weathering fronts of S1, S2 and S3 profiles. After 10 Ma, the S3 landscape is dissected.

Table 1. Synthesis of the 40Ar/39Ar ages calculated from plateaus in 39Ar release spectra and isochrons, with the integrated and the preferred ages.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Altitude (m)</th>
<th>Age ± 2σ, Ma</th>
<th>Step(s)</th>
<th>%39Ar</th>
<th>Age ± 2σ, Ma</th>
<th>40Ar/36Ar</th>
<th>MSWD</th>
<th>Steps</th>
<th>%39Ar</th>
<th>Integrated Age</th>
<th>Preferred age</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGGI</td>
<td></td>
</tr>
<tr>
<td>DIG-1A-T4</td>
<td>623</td>
<td>12.3 ± 0.3</td>
<td>7-11</td>
<td>72</td>
<td>11.3 ± 0.5</td>
<td>318 ± 10</td>
<td>1.11</td>
<td>7-11</td>
<td>72</td>
<td>12.0 ± 0.3</td>
<td>12.3 ± 0.3</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>DIG-1A-T5</td>
<td>623</td>
<td>11.6 ± 0.2</td>
<td>5-8</td>
<td>71</td>
<td>11.8 ± 0.2</td>
<td>298 ± 5</td>
<td>0.13</td>
<td>5-6, 12-14</td>
<td>21</td>
<td>11.7 ± 0.5</td>
<td>11.6 ± 0.2</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>DIG-1A-T6</td>
<td>623</td>
<td>12.3 ± 0.3</td>
<td>7-12</td>
<td>83</td>
<td>12.6 ± 0.2</td>
<td>284 ± 6</td>
<td>1.36</td>
<td>6-7, 9-10, 14-15, 17-18</td>
<td>62</td>
<td>12.4 ± 0.2</td>
<td>12.3 ± 0.3</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>DIG-1B-T2</td>
<td>623</td>
<td>13.3 ± 0.2</td>
<td>4-8</td>
<td>85</td>
<td>13.0 ± 0.7</td>
<td>302 ± 31</td>
<td>1.43</td>
<td>4-6-8</td>
<td>61</td>
<td>13.3 ± 0.3</td>
<td>13.3 ± 0.2</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>DIG-1B-T3</td>
<td>623</td>
<td>13.3 ± 0.3</td>
<td>3-9</td>
<td>79</td>
<td>13.3 ± 0.4</td>
<td>296 ± 6</td>
<td>0.69</td>
<td>3-9</td>
<td>79</td>
<td>13.4 ± 0.5</td>
<td>13.3 ± 0.3</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>DIG-1B-T4</td>
<td>623</td>
<td>12.4 ± 0.2</td>
<td>9-13</td>
<td>74</td>
<td>12.4 ± 0.2</td>
<td>298 ± 3</td>
<td>1.19</td>
<td>2-3, 10-13</td>
<td>73</td>
<td>12.2 ± 0.5</td>
<td>12.4 ± 0.2</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Altitude (m)</th>
<th>Age ± 2σ, Ma</th>
<th>Step(s)</th>
<th>%39Ar</th>
<th>Age ± 2σ, Ma</th>
<th>40Ar/36Ar</th>
<th>MSWD</th>
<th>Steps</th>
<th>%39Ar</th>
<th>Integrated Age</th>
<th>Preferred age</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERALI</td>
<td></td>
</tr>
<tr>
<td>TER-1A-T1</td>
<td>644</td>
<td>28.7 ± 0.5</td>
<td>6-8</td>
<td>61</td>
<td>28.5 ± 0.4</td>
<td>289 ± 7</td>
<td>2.41</td>
<td>1-4, 6, 8-9</td>
<td>63</td>
<td>28.2 ± 0.5</td>
<td>28.7 ± 0.5</td>
<td>Min of oldest Forced plateau > 50 % 39Ar</td>
</tr>
<tr>
<td>TER-1A-T2</td>
<td>644</td>
<td>32.3 ± 0.4</td>
<td>11-14</td>
<td>49</td>
<td>22.6 ± 0.6</td>
<td>289 ± 3</td>
<td>0.61</td>
<td>2-5-7-8</td>
<td>10</td>
<td>31.5 ± 0.9</td>
<td>32.3 ± 0.4</td>
<td>Min of oldest Forced plateau < 50 % 39Ar</td>
</tr>
<tr>
<td>TER-1B-T3</td>
<td>644</td>
<td>27.5 ± 0.3</td>
<td>6-8</td>
<td>73</td>
<td>27.8 ± 0.2</td>
<td>278 ± 4</td>
<td>2.88</td>
<td>1, 3-6-7, 12</td>
<td>63</td>
<td>26.7 ± 1.2</td>
<td>27.5 ± 0.3</td>
<td>Min of oldest Plateau > 70 % 39Ar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Altitude (m)</th>
<th>Age ± 2σ, Ma</th>
<th>Step(s)</th>
<th>%39Ar</th>
<th>Age ± 2σ, Ma</th>
<th>40Ar/36Ar</th>
<th>MSWD</th>
<th>Steps</th>
<th>%39Ar</th>
<th>Integrated Age</th>
<th>Preferred age</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAGARI</td>
<td></td>
</tr>
<tr>
<td>NAG-1B-T2</td>
<td>520</td>
<td>32.0 ± 1.9</td>
<td>1-4</td>
<td>50</td>
<td>32.4 ± 2.0</td>
<td>293 ± 6</td>
<td>0.78</td>
<td>1-4, 7</td>
<td>52</td>
<td>38.0 ± 3.4</td>
<td>32.4 ± 2.0</td>
<td>Best fitted isochrone</td>
</tr>
<tr>
<td>NAG-3A-T3</td>
<td>520</td>
<td>31.3 ± 0.1</td>
<td>9-11</td>
<td>24</td>
<td>31.6 ± 1.1</td>
<td>295 ± 2</td>
<td>2.07</td>
<td>3-4, 9-12</td>
<td>32</td>
<td>43.8 ± 4.5</td>
<td>31.6 ± 1.1</td>
<td>Best fitted isochrone</td>
</tr>
<tr>
<td>NAG-3B-T1</td>
<td>520</td>
<td>45.0 ± 1.0</td>
<td>7-11</td>
<td>53</td>
<td>40.6 ± 1.6</td>
<td>301 ± 4</td>
<td>0.5</td>
<td>2-6, 10-11</td>
<td>49</td>
<td>44.3 ± 1.3</td>
<td>45.0 ± 1.0</td>
<td>Plateau > 50 % 39Ar</td>
</tr>
<tr>
<td>NAG-3B-T2</td>
<td>520</td>
<td>44.0 ± 0.9</td>
<td>4-6</td>
<td>78</td>
<td>44.3 ± 0.8</td>
<td>299 ± 4</td>
<td>1.74</td>
<td>2-4-5</td>
<td>58</td>
<td>43.6 ± 1.3</td>
<td>44.0 ± 0.9</td>
<td>Min of oldest Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>NAG-3B-T3</td>
<td>520</td>
<td>44.9 ± 3.6</td>
<td>8-10</td>
<td>52</td>
<td>35.3 ± 4.7</td>
<td>297 ± 16</td>
<td>0.25</td>
<td>7, 11-14</td>
<td>28</td>
<td>43.2 ± 2.9</td>
<td>44.9 ± 3.6</td>
<td>Forced plateau > 50 % 39Ar</td>
</tr>
</tbody>
</table>

TABLE 1a-b
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Altitude (m)</th>
<th>39Ar release spectrum</th>
<th>Isochrone</th>
<th>Integrated Age</th>
<th>Preferred age</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILV-1B-T4</td>
<td>524</td>
<td>12.7 ± 0.8</td>
<td>2-8</td>
<td>92</td>
<td>12.7 ± 0.8</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>ILV-1B-T5</td>
<td>524</td>
<td>12.3 ± 0.1</td>
<td>6-9</td>
<td>73</td>
<td>12.3 ± 0.1</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>ILV-2C-T3</td>
<td>524</td>
<td>12.1 ± 1.3</td>
<td>1-9</td>
<td>100</td>
<td>12.1 ± 1.6</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>ILV-2C-T4</td>
<td>524</td>
<td>12.9 ± 0.3</td>
<td>7-9</td>
<td>70</td>
<td>12.9 ± 0.7</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>ILV-3A-T1</td>
<td>524</td>
<td>13.1 ± 0.4</td>
<td>6-7</td>
<td>63</td>
<td>13.2 ± 0.2</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>ILV-3A-T3</td>
<td>524</td>
<td>14.0 ± 0.7</td>
<td>6-10</td>
<td>76</td>
<td>14.0 ± 0.8</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>ILV-3C-T4</td>
<td>524</td>
<td>13.6 ± 0.3</td>
<td>1-6</td>
<td>65</td>
<td>13.5 ± 0.3</td>
<td>Plateau > 70 % 39Ar</td>
</tr>
<tr>
<td>ILV-6A-T1</td>
<td>524</td>
<td>11.0 ± 0.1</td>
<td>7-9</td>
<td>55</td>
<td>11.0 ± 0.1</td>
<td>Pseudo-Plateau > 50 % 39Ar</td>
</tr>
<tr>
<td>ILV-6A-T2</td>
<td>524</td>
<td>14.4 ± 0.4</td>
<td>7-9</td>
<td>62</td>
<td>14.5 ± 0.1</td>
<td>Best fitted isochrone</td>
</tr>
<tr>
<td>ILV-6B-T1</td>
<td>524</td>
<td>11.0 ± 0.1</td>
<td>7-9</td>
<td>55</td>
<td>11.0 ± 0.1</td>
<td>Plateau > 50 % 39Ar</td>
</tr>
<tr>
<td>ILV-6B-T3</td>
<td>524</td>
<td>12.0 ± 0.2</td>
<td>8-11</td>
<td>66</td>
<td>11.9 ± 0.2</td>
<td>Plateau > 50 % 39Ar</td>
</tr>
</tbody>
</table>

TABLE. 1c
Figure 2 (Jean et al., 2019)
FIGURE. 3 (Jean et al., 2019)
FIGURE 4 (Jean et al., 2019)

a. DIG-1

b. Sample close-up

c. Micrograph showing 2 mm

Fig. 4d

d. Micrograph showing detailed structure with Li, ns, C, and G

1 mm

20 μm

e. Micrograph with 1 mm scale showing C and G

f. Micrograph with 20 μm scale showing C

g. X-ray diffraction pattern with peaks at 2θ = 20°, 30°, 40°, 50°, 60°, 70°, 80°

Counts

C Cryptomemlane
G Goethite

FIGURE 4 (Jean et al., 2019)
FIGURE 5 (Jean et al., 2019)
FIGURE 6 (Jean et al., 2019)
Integrated age = 28.2 ± 0.5 Ma

Integrated age = 27.5 ± 0.3 Ma

28.7 ± 0.5 Ma (61 %)

27.5 ± 0.3 Ma (73 %)

60
40
20
0

Age (Ma)

TER-1A-T1

21.6 ± 0.1 Ma (79 %)

Integrated age = 21.5 ± 0.3 Ma

TER-1B-T3

27.5 ± 0.3 Ma (73 %)

Integrated age = 27.5 ± 0.3 Ma

60
40
20
0

Age (Ma)

PRA-1B-T1

25.2 ± 0.2 Ma (61 %)

Integrated age = 25.2 ± 1.7 Ma

PRA-2B-T1

27.8 ± 0.2 Ma (59 %)

Integrated age = 27.5 ± 0.6 Ma

PRA-2B-T4

23.4 ± 0.1 Ma (62 %)

Integrated age = 23.6 ± 0.7 Ma

60
40
20
0

Age (Ma)

PRA-2A-T1

24.5 ± 0.2 Ma (58 %)

Integrated age = 24.5 ± 0.6 Ma

PRA-2A-T3

23.7 ± 0.2 Ma (78 %)

Integrated age = 23.7 ± 0.4 Ma

PRA-2A-T5

21.6 ± 0.1 Ma (79 %)

Integrated age = 21.5 ± 0.3 Ma

PRA-3B-T1

32.8 ± 0.2 Ma (54 %)

Integrated age = 36.2 ± 4.3 Ma

PRA-3B-T2

37.5 ± 0.5 Ma (58 %)

Integrated age = 41.6 ± 8.7 Ma

37.5 ± 0.5 Ma (58 %)

FIGURE. 7 (Jean et al., 2019)
FIG. 10 (Jean et al., 2019)