Late-Holocene palaeoenvironmental reconstruction from a lake in the Amazon Rainforest-Tropical Savanna (Cerrado) boundary in Brazil using a multi-proxy approach

Kury Milena Souza, Moreira Luciane Silva, Cordeiro Renato Campello, Abdelfettah Sifeddine, Turcq Bruno, Stríkis Nicolás Misailidis, Santos Matheus Simões

To cite this version:

HAL Id: ird-03688670
https://hal.ird.fr/ird-03688670

Submitted on 5 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Introduction

The Amazon plays a vital role in the global climate system, influencing precipitation (Cheng et al., 2013) and carbon cycles in both hemispheres (Olivares et al., 2015). With rising concerns on how global climatic changes will affect the environment, it is paramount to understand climate-environment interaction mechanisms, especially in such a region as the Amazon. In this context, reconstructions regarding environmental responses to past climatic alterations may assist in predicting the magnitude and timing of future natural feedback to these changes.

Palaeoclimatic studies show that a dryer phase occurred in several areas in the Amazon basin during the Mid-Holocene (MH, ca. 6ka) (Abys et al., 1991; Bush et al., 2007; Cordeiro et al., 2008; Moreira et al., 2013a; Pessenda et al., 2001; Sifeddine et al., 1994; Vidotto et al., 2007). This dryness may have been caused by a weakened South American Monsoon System (SAMS) and an associated northwards displacement of the Intertropical Convergence Zone (ITCZ) (Cruz et al., 2005; Wolff et al., 2010). A return to more humid conditions then ensued in the Late-Holocene (LH) (Aniceto et al., 2014; Burbridge et al., 2004; Cordeiro et al., 2008; Mayle et al., 2000).

Late-Holocene palaeoenvironmental reconstruction from a lake in the Amazon Rainforest-Tropical Savanna (Cerrado) boundary in Brazil using a multi-proxy approach

Kury Milena Souza,1,2* Moreira Luciane Silva,1 Cordeiro Renato Campello,1 Sifeddine Abdelfettah,3,4 Turcq Bruno,3 Stríkis Nicolás Misailidis1 and Santos Matheus Simões1

Abstract

As an ecotone, the region between the Amazon Rainforest and Tropical Savanna (Cerrado) biomes is, by definition, more susceptible to climate change. Therefore, understanding palaeoenvironmental dynamics is essential to address the future responses of such transition areas to climatic fluctuations. In this context, we present a new sediment record for the Late-Holocene retrieved from Barro-Preto, currently an oxbow lake located in an ecotone at the southern Brazilian Amazon border. Our multi-proxy data include carbon and nitrogen isotopes, as well as bulk TOC, chlorophyll derivatives, grain-size and microcharcoal analyses, all anchored on a radiocarbon-dated chronology. The sedimentary process recorded at the Barro-Preto Lake responded to both local and regional climate dynamics. It was influenced by river excursions associated to local responses to precipitation changes by the activation of the palaeochannel connecting the main-stem river and the Barro-Preto lake. This activation was evidenced by the presence of different colour lithology laminations accompanied by coarser sediments and also by climate conditions known to influence the Amazon region. Depositional processes linked to lake dynamics and different oxbow lake cycle stages were also important to explain the changes verified in the Barro-Preto record, endorsing the use of this lake formation for palaeoclimatic reconstructions. The record indicated a rising humidity trend, reflected by a progressive increase in lacustrine productivity, in accordance to other studies carried out in the Amazon region concerning the Late-Holocene, associated with a more southward displacement of the Intertropical Convergence Zone. Despite this rising humidity trend, dry episodic events during the Late-Holocene were evidenced by charcoal data, also coherent with regional Amazon studies, albeit exhibiting increased intensity, suggesting that the transitional nature of the environment might have influenced susceptibility to fires.

Keywords

Amazon basin, charcoal, ecotone, organic matter, oxbow lake dynamics, palaeolimnology

Received 29 July 2020; revised manuscript accepted 6 April 2021

*Corresponding author:
Kury, Milena Souza, Fundação Cearense de Meteorologia e Recursos Hídricos (FUNCHEME), Av. Rui Barbosa, 1246 – Aldeota, Fortaleza – CE, Fortaleza, Ceará 60115-221, Brazil.
Email: milenaskury@gmail.com
The extension to which vegetation distribution is altered in response to different climatic fluctuations in the Amazon is highly debated (Bush and de Oliveira, 2006; De Toledo and Bush, 2008; Nolan et al., 2018; Van Der Hammen and Hooghiemstra, 2000). While some studies suggest that no forest replacement by savannas associated with climate shifts during the Holocene took place (Bush et al., 2004; Castro et al., 2013; Colinvaux et al., 1996), fluctuations in boundaries from savanna to forest biomes during the Holocene have been observed for several Amazon regions (Desjardins, 1996; Pessenda et al., 1998a, 1998b, 2001). A recent modelling effort indicated that global temperature changes due to greenhouse gas emissions could lead to significant compositional and structural changes in the vegetation of the Neotropics by the end of the 21st century (Nolan et al., 2018).

Forest-savanna ecotones can respond to climatic fluctuations by altering their extensions according to edaphic conditions and moisture availability, associated to changes in precipitation distributions throughout the year (seasonality) (Behling and Hooghiemstra, 2000a; Silverio et al., 2013; Staver et al., 2011). Ecotones are, therefore, more susceptible to landscape modifications (Allen-car et al., 2006). The present distribution of these boundary ecosystems in the Amazon region seems to be related to past climate fluctuations (Desjardins, 1996).

Oxbow lakes are residual water bodies resulting from the lateral migration of river channels across floodplains (Esteves, 1998). Common to practically all floodplains, oxbow lakes are an important source for palaeoenvironment reconstructions. In general, the depositional sequence of an oxbow lake comprises coarse sediments deposited during the fluvial phase at the bottom, followed by a finer upward sequence, composed by mud as the system evolves to a lacustrine environment (Hudson et al., 2012; Wren et al., 2008). The oxbow-lake formation can be briefly categorized into four phases: an active meander bend (phase I), the detachment of the lake by a neck cut-off (phase II), the full lacustrine environment (phase III) and, lastly, the terrestrial phase (phase IV) (Wren et al., 2014). Monitoring studies exploring the hydrologic connectivity between oxbow lakes and main-stem rivers during flood events indicate that the influence of floodplains can, however, persist even in matured-phased oxbow lakes, such as those in lacustrine phase III (Hudson et al., 2012).

The hydrologic connectivity observed in a mature-phased oxbow lake, however, involves complex surface pathways associated with notched channels and floodplain swales (Hudson et al., 2012). In this scenario, flood events play an important depositional history role throughout episodic allogenic inputs well recognized in the sedimentary sequence by peaks in coarse sediments, generally the depositional sequence of an oxbow lake comprises coarse sediments deposited during the fluvial phase at the bottom, followed by a finer upward sequence, composed by mud as the system evolves to a lacustrine environment (Hudson et al., 2012; Wren et al., 2008). The oxbow-lake formation can be briefly categorized into four phases: an active meander bend (phase I), the detachment of the lake by a neck cut-off (phase II), the full lacustrine environment (phase III) and, lastly, the terrestrial phase (phase IV) (Wren et al., 2014). Monitoring studies exploring the hydrologic connectivity between oxbow lakes and main-stem rivers during flood events indicate that the influence of floodplains can, however, persist even in matured-phased oxbow lakes, such as those in lacustrine phase III (Hudson et al., 2012).

The hydrologic connectivity observed in a mature-phased oxbow lake, however, involves complex surface pathways associated with notched channels and floodplain swales (Hudson et al., 2012). In this scenario, flood events play an important depositional history role throughout episodic allogenic inputs well recognized in the sedimentary sequence by peaks in coarse sediments, generally coarse sediments deposited during the fluvial phase at the bottom, followed by a finer upward sequence, composed by mud as the system evolves to a lacustrine environment (Hudson et al., 2012; Wren et al., 2008). The oxbow-lake formation can be briefly categorized into four phases: an active meander bend (phase I), the detachment of the lake by a neck cut-off (phase II), the full lacustrine environment (phase III) and, lastly, the terrestrial phase (phase IV) (Wren et al., 2014). Monitoring studies exploring the hydrologic connectivity between oxbow lakes and main-stem rivers during flood events indicate that the influence of floodplains can, however, persist even in matured-phased oxbow lakes, such as those in lacustrine phase III (Hudson et al., 2012).

The hydrologic connectivity observed in a mature-phased oxbow lake, however, involves complex surface pathways associated with notched channels and floodplain swales (Hudson et al., 2012). In this scenario, flood events play an important depositional history role throughout episodic allogenic inputs well recognized in the sedimentary sequence by peaks in coarse sediments, generally coarse sediments deposited during the fluvial phase at the bottom, followed by a finer upward sequence, composed by mud as the system evolves to a lacustrine environment (Hudson et al., 2012; Wren et al., 2008). The oxbow-lake formation can be briefly categorized into four phases: an active meander bend (phase I), the detachment of the lake by a neck cut-off (phase II), the full lacustrine environment (phase III) and, lastly, the terrestrial phase (phase IV) (Wren et al., 2014). Monitoring studies exploring the hydrologic connectivity between oxbow lakes and main-stem rivers during flood events indicate that the influence of floodplains can, however, persist even in matured-phased oxbow lakes, such as those in lacustrine phase III (Hudson et al., 2012).

The hydrologic connectivity observed in a mature-phased oxbow lake, however, involves complex surface pathways associated with notched channels and floodplain swales (Hudson et al., 2012). In this scenario, flood events play an important depositional history role throughout episodic allogenic inputs well recognized in the sedimentary sequence by peaks in coarse sediments, generally coarse sediments deposited during the fluvial phase at the bottom, followed by a finer upward sequence, composed by mud as the system evolves to a lacustrine environment (Hudson et al., 2012; Wren et al., 2008). The oxbow-lake formation can be briefly categorized into four phases: an active meander bend (phase I), the detachment of the lake by a neck cut-off (phase II), the full lacustrine environment (phase III) and, lastly, the terrestrial phase (phase IV) (Wren et al., 2014). Monitoring studies exploring the hydrologic connectivity between oxbow lakes and main-stem rivers during flood events indicate that the influence of floodplains can, however, persist even in matured-phased oxbow lakes, such as those in lacustrine phase III (Hudson et al., 2012).

The hydrologic connectivity observed in a mature-phased oxbow lake, however, involves complex surface pathways associated with notched channels and floodplain swales (Hudson et al., 2012). In this scenario, flood events play an important depositional history role throughout episodic allogenic inputs well recognized in the sedimentary sequence by peaks in coarse sediments, generally coarse sediments deposited during the fluvial phase at the bottom, followed by a finer upward sequence, composed by mud as the system evolves to a lacustrine environment (Hudson et al., 2012; Wren et al., 2008). The oxbow-lake formation can be briefly categorized into four phases: an active meander bend (phase I), the detachment of the lake by a neck cut-off (phase II), the full lacustrine environment (phase III) and, lastly, the terrestrial phase (phase IV) (Wren et al., 2014). Monitoring studies exploring the hydrologic connectivity between oxbow lakes and main-stem rivers during flood events indicate that the influence of floodplains can, however, persist even in matured-phased oxbow lakes, such as those in lacustrine phase III (Hudson et al., 2012).

The hydrologic connectivity observed in a mature-phased oxbow lake, however, involves complex surface pathways associated with notched channels and floodplain swales (Hudson et al., 2012). In this scenario, flood events play an important depositional history role throughout episodic allogenic inputs well recognized in the sedimentary sequence by peaks in coarse sediments, generally coarse sediments deposited during the fluvial phase at the bottom, followed by a finer upward sequence, composed by mud as the system evolves to a lacustrine environment (Hudson et al., 2012; Wren et al., 2008). The oxbow-lake formation can be briefly categorized into four phases: an active meander bend (phase I), the detachment of the lake by a neck cut-off (phase II), the full lacustrine environment (phase III) and, lastly, the terrestrial phase (phase IV) (Wren et al., 2014). Monitoring studies exploring the hydrologic connectivity between oxbow lakes and main-stem rivers during flood events indicate that the influence of floodplains can, however, persist even in matured-phased oxbow lakes, such as those in lacustrine phase III (Hudson et al., 2012).

Study site
Barro-Preto is an oxbow lake formed by an abandoned meander of the Teles Pires River, a major Tapajós River tributary, and is located in Sinop, a city in northern Mato Grosso (Figure 1).
underwent a pre-treatment during 8 months with weekly 5 mL H$_2$O$_2$ applications to remove organic matter (the time of H$_2$O$_2$ application varied per sample, as some samples stopped reacting before others). The peroxide was removed by adding 30 mL of distilled water to the samples, followed by centrifugation for 5 min at 3500 rpm. The supernatants were discarded and the process was repeated until a transparent supernatant was obtained. Then, 40 mL of a dispersal agent (sodium hexametaphosphate, 4%) were added to the samples, which were then mixed using a shaker table for 24 h before being analysed by laser granulometry. Grain sizes were categorized as coarse silt (31–16 µm), medium silt (16–8 µm), very fine silt (4–2 µm) and clay (>2 µm) (Udden, 1914; Wentworth, 1922). As the clay and very fine silt fractions were significantly correlated, they were combined as “Clay + VFS.”

Isotopic and elemental analyses

Ninety-nine aliquots were ground, homogenized, dried until constant weight and wrapped in tin capsules of ca. 2 g. They were then sent to the Laboratoire de Mesure du Carbone 14, IRD-Bondy, wherein isotopic and elemental carbon and nitrogen were analysed by a PDZ Europa ANCA-GSL elemental analyser with an interface for a PDZ Europe 20–20 isotope ratio mass spectrometer. Carbon-13 and 15N isotope values were expressed in δ units (%), referring to the VPDB international standard and atmospheric dinitrogen values, respectively.

Chlorophyll derivative analysis

Chlorophyll derivatives from sixty-nine previously frozen aliquots were extracted using 90% acetone, and their absorbances
were determined using a scanning spectrophotometer at the 350–
800 nm interval. Background correction was performed through
baseline subtraction from 500 to 800 nm. Pigment concentrations
are reported as Sedimentary Pigments Degradation Units (SPDU)
(Vallentyne, 1955), an arbitrary unit, where 1 SPDU represents an
absorbance of 1.0 in a 10 cm cell using 100 mL of acetone as a
solvent for 1.0 g of OM (Cordeiro et al., 2008).

Carbon accumulation rate analysis

First, the number of particles per gram of analysed sample was
calculated by dividing the number of particles per slide by the
mass of sample filtered for each slide (grams). Then, carbon accu-
mulation rates (CAR) were calculated by multiplying the sample
bulk density, number of particles per gram of analysed sample
and sediment accumulation rates generated by the age-depth
model and is expressed as particles.cm$^{-2}$.y$^{-1}$.

Microscopic charcoal analysis

The microcharcoal analysis was carried at the UFF Sedimentol-
ogy and Optical Laboratories. Ninety-three humid sediment samples
underwent humic acid removal with a 20% NaOH solution,
followed by agitation, centrifugation and supernatant removal.
This process was repeated until a transparent supernatant was
obtained. The samples treated with this alkaline solution were
with distilled water and stored in a 100 mL water solution.
From this solution, 2 mL were agitated and then filtered through
previously weighed Millipore acetate cellulose filters. The sam-
ple were then maintained in a furnace until dry and were then
weighed. The dry filters were then dissolved in acrylic slides
using Ethyl Acetate and the laminae were observed under an optic
microscope at 250× magnification and the charcoal particles
were counted ten times per slide. The particles were observed
using the IMAQ Vision Builder software and the morphological
charcoal characteristics were noted. Method adapted from Cor-
deiro et al. (2008).

Statistical analyses

A principal component analysis (PCA) using normalized data-
series was also performed to separate common variables among
the proxies throughout the analysed core. To this end, first we did
a linear interpolation of the data at every 1 cm using the PAST 4.03 software (Hammer et al., 2001). Then, the records were nor-
malized using the following equation:

$$n_x = \frac{(x - \bar{x})}{\sigma}$$

Where n_x is the normalized data, x is the original data and \bar{x} and σ are, respectively, the mean and the standard deviation values.
After this process, the PCA was generated using Python 3 (Van Rossum and Drake, 2009). The aim of this analysis was to deter-
mine proxy covariations, in order to understand which processes
were most important within the lake at different depths.

Results

Chronology and lithology

The BP-1502 chronological model is based on eight TOC AMS
radiocarbon dates, presenting a calibrated basal age of ca. 3070
calendar years before the present (cal yr BP; Table 1 and Figure 2).
Geochemical result integration allowed for the identification of
five sedimentary Units in the BP-1502 core record, namely Unit-V
(384–312 cm; ca. 3067–2209 cal yr BP), Unit-IV (312–233 cm; ca.
2209 to 1655 cal yr BP), Unit-III (233–144 cm; ca. 1655–1387 cal
yr BP), Unit-II (144–34 cm; ca. 1387–537 cal yr BP) and Unit-I
(34–0 cm; ca. 537 cal yr BP to present). Unit-V shows a low aver-
age sedimentation rate of ca. 0.084 cm.y$^{-1}$, while higher values
were observed in Units IV and III, with average values of 0.155 cm.
y$^{-1}$ and 0.347 cm.y$^{-1}$, the latter comprising the highest average of
all units. Sedimentation rates decreased expressively in Units II
and I, with average values of 0.137 cm.y$^{-1}$ and 0.063 cm.y$^{-1}$,
respectively.
The lithological description presented in Figure 2 indicates that Unit-V is composed of a marked dark brown horizon in the bottom, while Units V and IV present very dark grey silty clay sediments. Unit-III and Unit-II present mostly very dark clay sediments whereas Unit-I is characterized by very dark greyish brown sediments. Olive laminations were observed in Unit-V at 367.5 cm and ca. 1.80 cm and in Unit-III at 220 cm, with ca. 2.40 cm and at 207 cm, with ca. 1 cm (Figure 2).

Grain size analyses

The sediment grain size analyses of the BP-1502 core indicated the predominance of very fine-grained sediments (<4 µm) with increased contribution of coarse silt in Units V and III (Figure 3). Unit-V is characterized by the highest coarse silt values recorded in the core, with an average of 6.04%, and the second highest medium silt value, averaging 21.9%, while average clay + very fine silt and fine silt values were 47.3 and 24.4%, respectively. A decrease in grain-size in Unit-IV is noted, with an average clay + very fine silt content of 54.8% and fine silt percentage of 23.5%, while the average coarse and medium silt percentages were 2.90% and 18.8%, respectively. Unit-III indicates an increase in the average coarse and medium silt percentages of 4.05% and 22.4%, respectively. In contrast, fine silt and very fine silt + clay reduced to average percentages of 21.4% and 52.1%, respectively. Unit-II exhibits decreased grain size, attested by higher clay + very fine silt and fine silt percentages and lower medium and coarse silt values, averaging values of 57.7%, 22.3%, 17.6% and 2.40%, respectively. Unit-I displays a small increase in coarse and medium silt contents, with average values of 3.23% and 18.8%, respectively whereas clay + very fine silt values decreased to 56.3% and fine silt, decreased to 21.6%

Organic proxy analysis

Unit-V is characterized by the lowest TOC values, averaging 1.56 wt.% (Figure 3). A progressive increase in the organic content is observed in Unit-IV, which presented an average of −29.4%. A slight decrease in these values was noted in Unit-III, with average values of −30.3%. Isotopic values decrease further in Units II and I, averaging −31.8% and −33.0%, respectively. The nitrogen isotopic composition of the lowermost core section is characterized by the highest δ15N values, with an average of 6.21‰ (Figure 3). A decrease in these values is observed in Units IV, III and II, with average values of 3.10‰, 1.29‰ and 0.80‰, respectively. In contrast, an increase in δ15N was noted in Unit-I, with an average value of 1.49‰.

Sedimentary pigments and CAR were lowest in Unit-V, with averages of 1.00 SPDU and 16.7 g.m⁻².y⁻¹, respectively (Figure 3). An increase in the concentration of sedimentary pigments was observed in Units IV and III, with average values of 3.70 and 4.10 SPDU, respectively. CAR values increased in Unit-IV, averaging 35.1 g.m⁻².y⁻¹, reaching a peak in Unit-III, with an average value of 86.7 g.m⁻².y⁻¹. A decrease in these values was detected in Unit-II, with an average sedimentary pigment value of 3.47 SPDU and CAR value of 40.7 g.m⁻².y⁻¹. Unit-I is characterized by the highest chlorophyll derivative concentrations recorded in the BP-1502 core, averaging values 6.31 SPDU. While an increase in sedimentary pigments is observed, CAR values decreased to 21.3 g.m⁻².y⁻¹, probably due to the low sedimentation rate of this unit.

Microscopic charcoal examination

Microcharcoal particles were found in all 92 samples observed, with a minimum count of 32 particles at the sample from depth 96 cm. Average particles count through the core was ca. 122 and maximum value was 226 at depth 364 cm.

Unit-V charcoal particles size ranged from 19.2 to 70.4 µm, averaging average of 33.1 µm. Charcoal accumulation rates contained a maximum of 7.27 × 10⁶ particles cm⁻².y⁻¹, averaging 4.07 × 10⁵ particles cm⁻².y⁻¹, with a minimum of 1.77 × 10⁵ particles cm⁻².y⁻¹. Concerning Unit-IV, charcoal sizes ranged from 11.5 to 42.6 µm, with average value of 24.5 µm, while charcoal accumulation rates varied from 1.19 × 10⁵ particles cm⁻².y⁻¹ to 2.78 × 10⁵ particles cm⁻².y⁻¹, with an average of 7.00 × 10⁴ particles cm⁻².y⁻¹. Unit-III contained minimum charcoal size of 18.9 µm, maximum of 73.4 µm and average of 29.0 µm. Charcoal accumulation rates in this unit ranged between a peak of 2.69 × 10⁶ particles cm⁻².y⁻¹ and 6.76 × 10⁵ particles cm⁻².y⁻¹, averaging 1.66 × 10⁵ particles cm⁻².y⁻¹. Units II and I were characterized by the lowest charcoal size values, with minimum values of 1.32 and 12.5 µm, maximum of 48.8 and 69.2 µm and average values of 22.7 and 22.6 µm, respectively. Charcoal accumulation rates for Unit-II comprised a maximum of 1.67 × 10⁶ particles cm⁻².y⁻¹, minimum of 2.16 × 10⁵ particles cm⁻².y⁻¹ and average of 8.33 × 10⁵ particles cm⁻².y⁻¹, whereas charcoal accumulation
rates in Unit-I decreased, ranging from 3.45×10^5 to 1.64×10^5 particles cm$^{-2}$ y$^{-1}$, averaging 2.28×10^5 particles cm$^{-2}$ y$^{-1}$ (Figure 4).

Unit-V presented concentration values of particles per gram ranging from 6.95×10^6 to 1.45×10^7 particles/g, with an average of 3.96×10^6 particles/g. In Unit-IV, values reached a maximum of 7.56×10^6, a minimum of 2.97×10^6 and an average of 5.22×10^6 particles/g. Unit-III maintained similar values, ranging from 7.95×10^6 to 2.63×10^6, averaging of 5.53×10^6 particles/g. The number of charcoal particles per gram peaked in Unit-II at 1126 and 1152 cal yr BP, with values of 1.36×10^7 (maximum value at this Unit) and 1.03×10^7 particles/g. In this Unit, minimum and average values were, respectively, of 1.80×10^6 and 7.06×10^6 particles/g. The topmost Unit presented a maximum value of 7.32×10^6, a minimum of 2.79×10^6 and average of 4.82×10^6 particles/g (Figure 4).

Discussion

Principal component analysis

The first two principal components explain ca. 71% of the total data variance. Principal component 1 (hereafter, PC1) displays a higher variation of organic proxies C:N, δ^{13}C, δ^{15}N, TOC, chlorophyll derivatives and also in charcoal concentration. The most altered grain fraction in this PC was clay + VFS, a granulometry usually associated with organic matter. This component probably represents the OM origin and variation within the core. Concerning principal component 2 (hereafter, PC2) grain-size data varied consistently, and, to a lesser degree, sedimentation-dependent proxies. Organic proxies were not significantly altered in this component. Chlorophyll derivatives were the most altered, mostly associated to increased grain-size, which may be linked to increased productivity during nutrient input episodes into the lake from eroded sediments. PC2 mostly represents changes in lake hydrodynamics.

Palaeoenvironment interpretations

Unit-V (384–312 cm; 3067–2209 cal yr BP). Unit-V lithology displaying laminations and low sedimentation rates is in tandem with the coarser granulometry (Figures 2 and 3), indicating that the lake still suffered the influence of the Teles Pires river during this Unit, with a more lotic environment hindering finer grain deposition. Unit-V would correspond to stage one of the oxbow lake cycle, an active meander bend (Wren et al., 2014) or at least to stage three, a lacustrine environment, with the influence of a flood pulse. In the PCA (Figure 6), Unit-V is associated mainly with PC2, which corroborates the interpretation of high hydrodynamics and grain-size variations, but also, to a lesser degree, with PC1, indicating variations in the origin of the OM and its processes within the lake, probably associated to the relationship between OM input and local productivity at an oxbow lake with fluvial system connections. CHAR and charcoal concentrations don’t seem to be important in this unit. The 13C-enriched carbon isotopic values in Unit-V, corroborated by the C:N ratio (Figure 3), suggest that Barro-Preto lake received a large proportion of land-derived cellulose-rich OM during this period (Meyers, 2003) from the local catchment area by erosion during river input. The carbon isotopic signal for Unit-V indicates a slight influence of C4 plants (Figure 5), suggesting a relatively drier environment. Unit-V is also characterized by the lowest core TOC values, sedimentary pigments and CAR (Figure 3), suggesting low productivity. The high average value of δ^{15}N in this unit (Figure 3) can reflect biological drawdowns of a limited nutrient pool (Meyers and Lallier-Verges, 1999), associated with reduced nutrient availability as a result of low-productivity levels during this drier period. Although high δ^{15}N values can also result from
Average charcoal particle size is higher in this unit, particularly at the base of the core (Figure 4). Despite this, all charcoal particles found in BP-1502 core were <125 μm, suggesting that the charcoal found in Barro-Preto lake does not necessarily originate from the lake watershed, but may, instead, provide an estimation of regional fires, as small particles can be windborne (Cordeiro et al., 2011). Charcoal concentrations in this unit are similar to those found in Saci lake (ca. 665 km to the north of Barro-Preto lake; Figure 4), strengthening the suggestion that charcoal fragments in Barro-Preto lake are representative of regional fire activity.

Unit-IV (312–233 cm; 2209–1655 cal yr BP). A transition to a more lentic circulation can be observed in Unit-IV, attested by a decrease in the coarse and medium silt fractions (Figure 3) and a more homogeneous lithology (Figure 2), suggesting river disconnection. Barro-Preto lake is disconnected from the main river, with contact only with the Teles Pires river during intense rain events, as discussed in the next section, through abandoned streams in the oxbow formation. Most of the variation observed in Unit-IV is associated to PC2, indicating the persistent importance of hydrodynamic processes in this Unit, mainly related to decreases in grain-size (Figure 6). As a consequence of the main channel cut-off, progressive increases in total organic carbon and sedimentary pigment contents were recorded in Barro-Preto lake sediments, indicative of high lacustrine productivity levels. In addition, the more depleted δ13C values alongside a lower C:N ratio suggest a rising contribution of nitrogen-rich algae and plyptoplankton to OM (Figure 5), linked to lake level and humidity increases. TOC are also increased, accompanied by increases in sedimentary pigments and CAR, corroborating the other organic and sedimentological proxies and indicating increased lake productivity (Figure 3). This productivity can be associated with higher lake-levels, coherent with the humid Late-Holocene. A decrease in average δ15N values is indicative of lesser OM cycling through trophic levels, associated with greater nutrient availability (Meyers and Teranes, 2001).

Unit-III (233–144 cm; 1655–1387 cal yr BP). The lower hydrodynamic period of Unit-II was interrupted by a flooding event at around 1630–1460 cal yr BP, characterizing Unit-III. This event comprises an increased sedimentation rate and a slightly coarser granulometry, as well as the presence of an olive lithology lamination (Figures 2 and 3, respectively), temporarily linking Barro-Preto lake to the Teles Pires river. The deposition of coarser sediments and the lack of 14C-dates inversions suggest an influence of clastic material not from the river itself, which would be older than autochthonous OM, but from the neighbouring sand bank where the palaeochannel that connected the river to the lake was located, which was eroded during the flood pulse. This pulse indicates that Barro-Preto lake is in stage three of the oxbow lake cycle, a lacustrine state with possible connections to the river during flooding events (Hudson et al., 2012; Wren et al., 2014). The PCA correspondingly shows this Unit as highly influenced by PC2, indicating hydrodynamic processes as its main feature (Figure 6). Accordingly, the more variable proxies are coarser grain-sizes and sediment rate-dependent CHAR, strengthening the scenario of a higher energy system. The high sedimentation event matches an increase in TOC values as well as in sedimentary pigments and a decrease in δ13C values. Indeed, the total organic carbon and carbon accumulation rate increases during this period (Figure 3), alongside increased pigments, may be a consequence of higher nutrient input during the flooding caused by river the connection. The decrease in δ13C values suggests detritic C3 material being carried into the lake, which agrees with the erosion of the vegetation-covered sandbank, where a connecting channel is formed. As no expressive change in C:N ratios is observed, we assume that the material that entered the lake through the river connection, even if a result from palaeochannel erosion and, hence, higher in carbon content, was either present in small amounts and/or might have been balanced by the increasing lake productivity that would, in turn, increase OM nitrogen content. A further decrease in δ15N rates may be due to higher allochthonous input, as this would both result in greater nutrient availability, which would then decrease nitrogen recycling, and carry typical terrestrial plant nitrogen levels to the lake (Fogel and Cifuentes, 1993; Meyers, 2003).

The increase in charcoal accumulation rates observed in this unit is also seen at Saci lake, although one order of magnitude lower. Maezumi et al. (2018) data does not indicate high human activity in the Amazon region during this period, suggesting climatic conditions as the main fire trigger detected in this unit. Indeed, seasonality variations, with a shorter period comprising intense rains and another presenting drought, could explain the higher fire activity and the flood event connecting Barro-Preto lake to the river. As a strong seasonality is characteristic of transitional zones (e.g. Behling and Hooghiemstra, 2000a; McMichael et al., 2012a), we could argue that such changes could occur in the ecotonal Barro-Preto lake setting.

Unit-II (144–34 cm; 1387 to 537 cal yr BP). The beginning of Unit-II indicates decreased TOC, potentially associated to the high sedimentation event detected in the previous Unit (Figure 3), suggesting a lithoachtonous input contribution that could dilute sedimentary OM (Turcq et al., 2002). While the proportion of autochthonous and allochthonous OM verified by the C:N ratio did not vary significantly, the chlorophyll derivative signal decreases, indicating a slight drop in productivity as the increased amount of nutrients from the inundation events of Unit-III is used.

In Unit-II, the sedimentation rate returns to values similar to those prior to the river pulse in Unit-III, reducing in tandem with grain size, indicating lower hydrodynamics. This suggests that the Barro-Preto lake was again disconnected from the Teles Pires river during this Unit, still in the lacustrine phase three but without a flood pulse during this period. A slight decrease in δ13C values is noted (Figure 3), demonstrating a clear trend towards a more humid environment beginning at 144 cm. Accordingly, TOC
values are increased along this unit, agreeing with the rising humidity and lake levels observed in other studies for the Late-Holocene in the Amazon region (e.g. Moreira et al., 2013a, 2013b; Moreira-Turcq et al., 2014), while CAR values decrease as sedimentation rates diminish. With an increasing OM supply, δ13N continues low in Unit-II, representing low OM recycling rates in the water column. The PCA concerning this unit suggests the influence of fine-grained sediments, consistent with lower hydrodynamics. Variations in CHAR are also observed in this Unit’s cluster in the PCA, suggesting important changes in these proxies during this unit, as discussed. In this context, the increased Clay + VFS contents are an important process during this phase, indicating the disconnection from the river influence and lake stabilization, coherent with the influence of PC2 in this Unit.

The microcharcoals, at their maximum in this Unit, represent a direct measure of forest fires, which can be linked to dry spells in rainforests, indicating regional consistency with data from across the Amazon (Cordeiro et al., 2014; Fontes et al., 2017; Hammond et al., 2006; McMichael et al., 2012a, 2012b; Rodríguez-Zorro et al., 2018; Santos et al., 2000). The fires of the Late-Holocene in Barro-Preto do not seem to have been enough to alter the surrounding lake environment, as no significant organic proxy changes were noted during peak microcharcoal concentrations. Despite this, charcoal accumulation rates in Barro-Preto lake are higher than those reported for Lake Saci and Carajás, suggesting that the transitional nature of Barro-Preto lake may have influenced vegetation susceptibility to forest fires. A human presence in the area may have also been the cause for forest ignition, as indicated by various archaeological and palaeoecological eastern Amazon occupation evidence throughout the Holocene (e.g. Mazaumi et al., 2018, Figure 3; Bush et al., 2000) and taking into account that lakes were preferred settlement locations (McMichael et al., 2012a). Nevertheless, interpretations as to the extent that pre-Columbian populations altered the environment of this transitional lake are constrained by the applied methodology, as the bulk organic proxies indicate no evidence of large-scale environmental disturbances at Barro-Preto lake.

Unit-I (34–0 cm; 537 cal yr BP to present). Unit-I hydrodynamics indicates a slight increase in grain size, which may be attributed to a small marginal erosion during increasing lake levels under the more humid conditions of the Late-Holocene. The lower sedimentation rate in this Unit suggests lower sediment input, as the lake is disconnected from the river. Despite the input of coarse silt into the lake, possibly by marginal erosion, this grain-size corresponds to only 3.28% of the sediment in this unit, thus not a very significant factor concerning the general sedimentation rate trend, comprising mainly clay and very fine silt. Unit-I appears in the PCA as dependent mainly on PC2, indicating that lake hydrodynamic processes are also important in this unit. Chlorophyll derivatives, TOC and proxies dependent upon sedimentation are highlighted in this unit, indicating a lake with expressive productivity and OM availability, but also undergoing alterations in sedimentation processes (Figure 6).

Unit-I presents a decrease in average δ13C values, indicating an increasing influence of C3 plants, typical of forests (~25.0% to ~35.0%, Moreira et al., 2013b) and phytoplankton (between ~28.0% and ~34.0%, Araújo-Lima et al., 1986). The C:N ratio did not indicate any significant change, corresponding to a mixed OM origin, and is mainly autochthonous (Figures 3 and 5). TOC and sedimentary pigment values reached the highest values of the core in this unit, while CAR decreased due to slower sedimentation rates (Figure 3). These organic proxies suggest increasing productivity and higher lake levels, in accordance to the increasing humidity trend for the Late-Holocene in transitional Amazon areas (Behling and Hooghiemstra, 2000a; 2000b; Berrio et al., 2000; Meneses et al., 2013; Pessenda et al., 1998a, 1998b). A higher average δ15N value in this Unit seems to indicate a contribution of autochthonous organisms processes to the lake sediments, which would increase δ15N (typical values for algae range between 7% and 10%; Meyers, 2003).

Charcoal concentrations (particles/g) began to drop at around 460 cal yr BP, roughly synchronous with the European arrival in Brazil and matching other studies (e.g. McMichael et al., 2012a; Neve and Bird, 2008). The last increase in the charcoal particle values was observed from 207 cal yr BP, accompanied by an increase in average charcoal size, which may indicate more relatively local burnings. This increase in fires at the top of BP-1502 core may be associated to a greater plant biomass availability and eventual dry events linked to the marked seasonality of the region.

Regional palaeoclimatic links

Mayle et al. (2000) reported evidence of a drier climate in the southern Amazon border prior to 2790 cal yr BP, through a palynology analysis of a Laguna Bella Vista sediment core. Lake levels were lower, and the savanna landscape was seasonally inundated. The period investigated in that study agrees in part with Unit-V, strengthening the interpretation of a relatively drier climate in this Unit. The Mid-Holocene, which is believed to have been mainly a dry phase in the Amazon (Ahsay et al., 1991; Bush et al., 2007; Cordeiro et al., 1997; Moreira et al., 2013a, 2013b; Sifeddine et al., 1994; Vidotto et al., 2007), was not recorded by the period of the BP-1502 core, although a clear transition to more humid climates can be seen from 3067 cal yr BP.

The bulk organic analysis of two Amazon lakes, Lakes N3 Carajás Serra Norte (Cordeiro et al., 2008) and Caracarana, indicate an increase in lake productivity evidenced by a decrease in C:N values from 2000 cal yr BP to the present, with values ranging between 10 and 15 (Turcq et al., 2002), similar to the C:N range observed for Barro-Preto lake. Moreira et al. (2013a) also report rising productivity in two cores from Comprido lake, a north Amazon lake, from 3000 cal yr BP, with chlorophyll derivatives values between 4.1 and 7.1 SPDU and C:N ratios of 12 and 7. Carbon isotopic values at Comprido lake are also similar to the ones noted for Barro-Preto, with an average of ~27.1% between 2600 and 1300 cal yr BP for one of the cores and ~28.4% between 3000 and 300 cal yr BP for the other core.

Pollen evidence from eastern Bolivia indicates a humidity increase from 2790 cal yr BP, agreeing with our interpretation of Unit-IV. The authors attribute the precipitation increases noted during this period to a southward displacement of the ITZC (Mayle et al., 2000). Data from the Pumacocha varved lake record between ca. 2150 and 1550 yr BP also support the idea of a SAMS, strengthening the rising humidity verified during this period, as indicated by decreases in the δ18O record (Bird et al., 2011), which would have contributed to the increasing humidity seen in Unit-IV.

The high sedimentation event observed in Unit-III, peaking between 1630 and 1460 cal yr BP, is probably related to climatic oscillations with local consequences, such as changes in seasonality. While the general humid trend may be associated to increased precipitation due to a more south-positioned ITZC, as noted by decreased Ti% in the Cariaco lake record (Haug et al., 2001), and the magnitude of this event may indicate torrential rains. In Northeastern Brazil, the geochemical analysis of Boqueirão Lake indicates a period of high sedimentation rates between 2350 and 1550 cal yr BP, linked to lake margin erosion and high hydrodynamics (Viana et al., 2014), which the authors interpreted as a humid period undergoing an influence from El Niño Southern Oscillation (ENSO) events and variations in the South America Summer Monsoon modulated by the Atlantic SST. ENSO events are less likely to be important in centennial
scales (Novello et al., 2016), so the flood event observed in this unit is probably related to another climatic system. The South American Monsoon System (SAMS) on the other hand, can be affected by insolation in a centennial scale (Novello et al., 2016) and has been shown to be responsible for part of the precipitation affected by insolation in a centennial scale (Novello et al., 2016). The AMO is probably related to another climatic system. The South Atlantic Convergence Zone (SACZ) intensities (Cruz et al., 2005).

The rising humidity trend observed in BP-1502 may be related, on a larger scale, to an increase in austral summer insolation (Berger and Loutre, 1991). An increase in local insolation may represent higher evapotranspiration and, subsequently, higher moisture recycling for the hydrological cycle (Trenberth et al., 2003) leading to a progressive rise in local precipitation (Salati et al., 1979). Moreover, increased austral summer insolation leads to greater convection and, consequently, higher monsoon and South Atlantic Convergence Zone (SACZ) intensities (Cruz et al., 2005).

While the Amazon Rainforest is associated with high precipitation and general humid conditions, transition regions present in the south and eastern Amazon Rainforest boundaries display a more seasonal climate, characterized by variations in precipitation regimes with dry spells (McMichael et al., 2012a). Dry conditions would favour the spreading of fires ignited by human populations, while more humid periods could hinder the spread of such specific burning. On the other hand, dry conditions would also aid in the spreading of natural lightning-caused fires. In this context, differentiating between anthropogenic induced and natural fires is a complex endeavour. It does, however, seem probable that microcharcoal data from Barro-Preto Lake is associated with dry conditions, typical of transitional environments, whether the origin of the fire is natural or not (e.g. Sifeddine et al., 1994). The microcharcoal data presented a synchronous relationship with charcoal data from other studies performed in the Amazon region (Figure 4).

McMichael et al. (2012a) found signs of anthropic influence in three western Amazon lakes in the Late-Holocene. Combining soil and lake sediment records, that study evidences an increase in agricultural practice and herbaceous species from 3000 cal yr BP, and soil charcoal records fires between 3000 and 1000 cal yr BP at lake Ayauchi (Ecuador). At lakes Gentry and Parker (Peru), peak charcoal deposition occurred between 3700 to 500 cal yr BP at Gentry, in tandem with pollen records of agricultural species, suggesting human influence. At Parker, peak depositions can be observed at ca. 1200 cal yr BP and 500 cal yr BP. Anthropic pressure over the three lake areas diminished since ca. 650 cal yr BP (Gentry), 500 cal yr BP (Ayauchi), and after 250 cal yr BP (Parker), roughly synchronized with the European arrival. This result agrees with the drop in charcoal values seen in the Barro-Preto sequence at ca. 620 cal yr BP. Despite clear human influence concerning forest burning, the authors reported no large-scale land modification by pre-Columbian populations. Another study carried out in lakes Gentry, Parker and Los Amigos revealed more frequent fire return intervals from 2800 to 2600 and 1400 to 1100 cal yr BP. The authors also demonstrated that human impacts on the Amazon Rainforest were intensified by mega Niño droughts that would have increased this area’s burning susceptibility, suggesting a combination of human and climatic forces in explaining charcoal records (McMichael et al., 2012b). Soil profiles at Km 41 near Manaus, Central Amazon displayed high charcoal fragment age frequencies, between 1400 and 1200 cal yr BP (Santos et al., 2000).

In the eastern Amazon, two sediment cores retrieved from lakes at the Serra Sul dos Carajás, in the southern portion of the Carajás mountains, indicated the presence of microcharcoal and sponge spicules between 2780 and 1360 cal yr BP, which the authors associated with forest fires due to the occurrence of drier episodes (Sifeddine et al., 1994). In the northern Carajás mountains, Cordeiro et al. (2008) also found evidence of vegetation burning, with an increase in charcoal accumulation rates between 1300 and 70 cal yr BP. Although the probable human presence in the region may have caused forest fires, correlations with the spicules of sponge species adapted to lower lake-levels suggest that
drier conditions were in place. Saci lake, located in the southeastern Amazon region evidenced an increase in black carbon concentration and a reduction in precipitation between 1800 and 1300 cal yr BP, interpreted as a relatively drier period in a still humid climate, with fires probably intensified by a human presence allied to less humid conditions (Fontes et al., 2017, Figure 4).

In the state of Pará, northern Amazon, the geochemical results of lake Comprido indicated maximum charcoal accumulation rate at 1700 cal yr BP, again interpreted as palaeofires from a combined influence of anthropogenic action and drier climate (Cordeiro et al., 2011). In central Guyana, Hammond et al. (2006) detected soil charcoal peaks between 1250 and 1000 yr BP. Despite no archaeological evidence of human settlers, the ages of peak charcoal concentrations are in line with other archaeological studies. The authors argue that drier conditions, possibly linked to a warm El NiñoSouthern Oscillation phase, would be necessary to spread human-induced fires. Therefore, results reinforce that palaeofires occurred in northern Amazon, especially between 2000 and 1000 yr BP, with unknown intensity but probably caused by an association between human and drier climatic pressures.

At lake Acarabixi, in the southwestern Amazon area, one study reported high charcoal values at ca. 1400 cal yr BP in the sedimentary core. Charcoal records in the Late-Holocene, a much more humid period, alongside pollen evidence of herbs and pioneer species, likely reflects human influence on forest fires. Despite this, the authors also argue that the palaeofires were not enough to alter plant communities in the Late-Holocene (Rodriguez-Zorro et al., 2018).

While high charcoal frequencies are observed mostly in the mid-Holocene in different Amazon regions, especially along the Trans-Amazonian Highway (Soubies, 1980) and in the Upper Rio Negro region, combined with low-lake levels and suggesting dry conditions, remarkably high frequencies of dated charcoal can be seen during the Late-Holocene between 1600 and 1000 cal yr BP, with peak values at 1200 cal yr BP, although alongside relatively higher lake-levels (Hammond et al., 2006; McMichael et al., 2012a; Santos et al., 2000). Some factors can be considered to explain this modern increase in charcoal values, such as greater plant biomass, synergistic action between increased human populations and longer dry seasonal episodic events such as El Niño-like conditions and Atlantic sea surface temperature anomalies, even with annual precipitation rates higher than those in the MH. Additionally, most studies suggest a coupling between human and natural climate influences over palaeofires.

The understanding of lake dynamics associated with the evolution of depositional environments is essential for proxy interpretation (Castro, 2013). In this context, hydrodynamical changes may also be responsible for the general rise-trend in TOC and productivity throughout sediment cores (e.g. Turcq et al., 2002). The Barro-Preto lake formation due to the separation of the meander from its river connection during the Late-Holocene would favour more depositional conditions and increased lake productivity which, in turn, can also be associated to more humid climatic conditions. In this sense, fluvial retreat from the lacustrine sequence is, therefore, critical for a correct palaeoenvironmental reconstruction, since variations in the sedimentary constitutents associated with changes in sedimentary facies during the river channel migration have no palaeoclimatic meaning. In this study, we consider that the organic constituents of the analysed sediment are representative of lacustrine processes, as no inclusions in the core’s radiocarbon chronology were observed, which would suggest the input of reworked sediments from several deposits in the basin carried by the Teles Pires river. Furthermore, fluvial C:N ratio values for the Tapajós river, the main river of this basin, were determined as, on average, 6.3 (Kim et al., 2012), much lower than those reported for Barro-Preto in any of the Units (the average value of the entire core is 12.2).

Summary and conclusions

Barro-Preto lake dynamics have changed during the last 3067 cal yr BP. Environmental conditions at Barro-Preto lake were affected by connections with the main stem river, which influenced sedimentation processes and altered the inputs of both clastic and organic material to the lake, not from the river itself but from the neighbouring palaeochannel, activated during intense rain events, characteristic of local sediment processes.

Wet conditions during the Late-Holocene were attested by the analysed organic and sedimentological proxies, consistent with previous studies that indicate a rising humidity trend in the Amazon basin and transitional areas during the Late-Holocene. Within the limitations of bulk OM proxy interpretations, Barro-Preto lake showed no large-scale replacement of Tropical Forest by Cerradão vegetation for the last 3067 cal yr BP, despite being a transitional zone and, hence, more susceptible to changes in Forest-Cerradão boundaries, as noted by the organic proxies. Nevertheless, lake-level changes suggested by this multi-proxy approach are present, related to lake-river dynamics and changes in climate variables. This study highlights the potential of oxbow-lake systems as potential palaeoclimatic change records, as long as the local hydrodynamic and sedimentation processes are well understood and accounted for.

Despite the increasing humidity trend observed for the Late-Holocene, episodic dry events may have occurred, as suggested by Barro-Preto lake microcharcoal data, agreeing with previous studies for the Amazon (Cordeiro et al., 2011; Fontes et al., 2017; Hammond et al., 2006; McMichael et al., 2012a, 2012b; Rodriguez-Zorro et al., 2018; Santos et al., 2000). These dry events may be related to El Niño-like conditions and Atlantic SST anomalies, as it is well known that variations in these modes affect the Amazon climate (e.g. Fisch et al., 1996; Jimenez et al., 2019; Limberger and Silva, 2016; Marente et al., 2013; Silva et al., 2009). More research is required to adequately estimate human impacts on transitional zones between the Amazon Rainforest and Cerrado biome, determine specific lake-level variations and better understand species-level responses of this ecosystem to climate change. We especially recommend research interconnecting forest fire evidence, archaeological sites and compositional vegetation changes.

Acknowledgements

The authors would like to thank the French Research Institute for Development (IRD) for supporting radiocarbon dating costs. We also thank two anonymous reviewers who greatly contributed to the improvement of the submitted manuscript.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, CLIMATE-PRINTUFF Project – Grant 88887.310301/2018-00 and also supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico from Brazil), processes 134803/2016-7, 423573/2018-7, 308769/2018-0 and by FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro), process 201.916/2017.

ORCID iD

Kury Milena Souza https://orcid.org/0000-0003-0501-9440

References

Hogg AG, Heaton TJ, Hua Q et al. (2020) SHCal20 southern hemisphere calibration, 0-55,000 years cal BP. Radiocarbon 62: 759–778.

Limberger L and Silva MES (2016) Precipitação na bacia amazônica e sua associação à variabilidade da temperatura

Souza et al.

