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Matching of observations of dynamical systems, with applications to sequence matching

We study the statistical distribution of the closest encounter between generic smooth observations computed along dierent trajectories of a rapidly mixing dynamical system. At the limit of large trajectories, we obtain a distribution of Gumbel type that depends on both the length of the trajectories and on the Generalized Dimensions of the image measure. It is also modulated by an Extremal Index, that informs on the tendency of nearby observations to diverge along with the evolution of the dynamics. We give a formula for this quantity for a class of chaotic maps of the interval and regular observations. We present diverse numerical applications illustrating the theory and discuss the implications of these results for the study of physical systems. Finally, we discuss the connection between this problem and the problem of the longest matching block common to dierent sequences of symbols. In particular, we obtain a distributional result for strongly mixing processes.

Introduction

Certain real-world systems, such as climate, take place in high-dimensional spaces and exhibit chaotic and multi-scaled properties. To study such complex dynamics, physicists often have access to only a limited number of observable quantities through the measurement process. The latter can be modeled by computing an observation function along a typical trajectory of the system. Understanding the geometric and statistical properties of such observations, and their relationship to the properties of the original underlying system is a problem of great interest in physics, that has been instigated only recently. The study of the recurrence properties of observations have been initiated by Rousseau and Saussol in [START_REF] Rousseau | Poincaré recurrence for observations[END_REF][START_REF] Rousseau | Hitting time statistics for observations of dynamical systems[END_REF], in which asymptotic and distributional results were obtained for both hitting times and return times of observations. In a recent paper [START_REF] Caby | Extreme value distributions of observation recurrences[END_REF], this problem was studied from the point of view of Extreme Value Theory (EVT). This approach turned out to provide information on the local geometry of the image measure, which, for a good choice of observation, can characterize the local fractal structure of the original underlying attractor. In this paper, we pursue the statistical analysis of observed dynamical systems by studying the statistics of the shortest distance between several observed trajectories. Closely related problems have gained interest in recent years. The case of real, unobserved trajectories was considered in [START_REF] Faranda | Correlation dimension and phase space contraction via extreme value theory[END_REF] and [START_REF] Caby | Generalized dimensions, large deviations and the distribution of rare events[END_REF], using EVT techniques, while asymptotic results for the shortest distance between two orbits were obtained in [START_REF] Barros | On the shortest distance between orbits and the longest common substring problem[END_REF] and then generalized to multiple orbits [START_REF] Barros | Shortest distance between multiple orbits and generalized fractal dimensions[END_REF] and nally to observed orbits [START_REF] Coutinho | Matching strings in encoded sequences[END_REF].

Yet another motivation to study this problem is its deep relationship with a seemingly distinct one; the length of the longest matching block common to dierent sequences of symbols drawn from the same probability distribution. This old problem has been initiated by Waterman and Arratia, who brought a plethora of results in the i.i.d. case [START_REF] Arratia | An Erdos-Reyni law with shifts[END_REF][START_REF] Arratia | An Extreme Value Theory for Sequence Matching[END_REF], most of which are presented in the reference book [START_REF] Waterman | Introduction to Computational Biology, Maps, Sequences and Genomes[END_REF]. Several authors have extended these results, giving for example distributional results in the i.i.d case [START_REF] Arratia | The Erdos-Renyi Law in Distribution, for Coin Tossing and Sequence Matching[END_REF][START_REF] Neuhauser | A Phase Transition for the Distribution of Matching Blocks[END_REF]. In many applications, however, the sequences cannot be modeled as i.i.d. sequences. For example, in biological applications, genes are specic sequences encoding information, and DNA brands do not constitute independent sequences of nucleotides. When it comes to written text, a complex dependence structure can arise from specic sequences of letters, such as words, and higher-order syntactic and narrative structures. Recently, Barros, Liao and Rousseau adopted a dynamical system point of view to give the asymptotic behavior of the length of the longest sub-sequence common to dierent α-mixing sequences [START_REF] Barros | On the shortest distance between orbits and the longest common substring problem[END_REF][START_REF] Barros | Shortest distance between multiple orbits and generalized fractal dimensions[END_REF]. This problem is dierent from the present one, because the sub-sequences may be present at dierent locations of the dierent strings of symbols, but we will also follow a dynamical system approach to derive our results.

The paper is organized as follows: In the rst section, we present the problem and derive our main result concerning the convergence of the statistics of observation matching to a Gumbel distribution. In the following sections, we discuss the parameters of the limit law, since these quantities provide relevant dynamical information on the system and can be estimated numerically. We rst focus on the generalized dimensions of the image measure by emphasizing their central role in the statistical properties of observations. We also study their relations with the generalized dimension spectrum of the original measure. In the third section, we derive a formula for the Extremal Index associated with this problem for a class of chaotic maps of the interval and perform a numerical study of this index for higher dimensional systems. In the last part, we present some applications of our results to sequence matching problems. In particular, we obtain distributional results for the length of the longest sequence of symbols common to independent strings of symbols drawn from the same strongly mixing probability measure.

The general approach

Let us consider the dynamical system (M , T, µ), where M denotes the phase space and T : M → M is a discrete transformation1 that leaves the probability measure µ invariant. In order to model the process of measurement, we consider a C 1 function f : M → J , which we refer to as the observation. Both the phase space M and the observation space J are compact metric spaces endowed with two distances that we will both call d to simplify notations. For physical applications, we take J ⊂ R m , as observational data usually consists of a collection of real numbers that can be arranged into vectors. For applications to the problem of sequence matching, we will take M to be the space of all innite sequences of symbols of a given alphabet A . Because we are interested in the statistical properties of observations, we need a measure that is supported in the observational space.

Denition 1 We call the push-forward, or image of the measure µ by the function f , the measure µ f dened by

µ f (A) = µ(f -1 (A)), for all A ⊂ J such that f -1 (A) is µ-measurable.
A more detailed presentation of this object is available in [START_REF] Rousseau | Poincaré recurrence for observations[END_REF] and a discussion of its properties can be found in [START_REF] Caby | Extreme value distributions of observation recurrences[END_REF]. Denition 2 We call the generalized dimension of order q ̸ = 1 of the image measure µ f the following quantity (if it exists):

D f q = lim r→0 log J µ f (B(y, r)) q-1 dµ f (y) (q -1) log r . (1) 
B(y, r) denotes a ball centered at y ∈ J of radius r.

The information dimension of µ f is dened as

D f 1 = lim q→1 D f q . (2) 
We write D q = D Id q , the generalized dimension of order q of the original measure.

We will place ourselves in physical situations where the limits dening the previous quantities exist. Now that we have introduced the important objects of the theory, we go forward and consider the following process:

Y i = -log max j=2,...,q d(f (T i x 1 ), f (T i x j )),
(x 1 , ..., x q ) ∈ M q being a starting point drawn from the product measure µ q with support in M q . To follow the usual procedure of Extreme Value Theory, we consider a sequence of thresholds u n (s), where s ∈ R, such that:

µ q (Y 0 > u n (s)) ∼ e -s n . (3) 
Since the q trajectories are independent, we also have:

µ q (Y 0 > u n (s)) = J µ f (B(y, e -un )) q-1 dµ f (y) ∼ e -unD f q (q-1) , (4) 
from denition 2. To satisfy both scalings 3 and 4, we take

u n (s) = log n D f q (q -1) + s D f q (q -1)
. Now, for a given threshold u n , the quantity µ q (Y 0 > u n ) gives the probability of having all the observations contained in the same small region of the observational space; a ball of radius e -un centered at f (x 1 ). Equivalently, it gives the probability that the product dynamics has entered the following target set:

S q n = {(s 1 , ..., s q ) ∈ M q , max j=2,...,q d(f (s 1 ), f (s j )) < e -un }.
Following the ideas of [START_REF] Freitas | Hitting Time Statistics and Extreme Value Theory[END_REF], studying the behavior of the maximum of the process (Y i ) over a trajectory of size n:

M n,q (x 1 , ..., x q ) = max{Y 0 , . . . , Y n-1 }, and in particular its cumulative distribution:

F n (u n ) = µ q ({(x 1 , ..., x q ) ∈ M q s.t. M n,q (x 1 , ..., x q ) ≤ u n }),
is equivalent to studying the Hitting Time Statistics of the product dynamics in the set S q n . Indeed, F n (u n ) gives the probability that the dynamics has not entered the set S q n after n iterations of the dynamics. We can now apply results from EVT, in particular, the spectral theory developed by Keller and Liverani [START_REF] Keller | Rare events, escape rates and quasistationarity: some exact formulae[END_REF][START_REF] Keller | Rare events, exponential hitting times and extremal indices via spectral perturbation[END_REF], to obtain the convergence of F n (u n ) to its limit law.

Proposition 1 For a large class of exponentially-mixing systems and regular observations, there exists

0 < θ f q ≤ 1 such that: |F n (u n (s)) -exp(-θ f q e -s )| → n→∞ 0. (5) 
The term θ f q is called the Extremal Index (EI) and quanties the tendency of the process (Y i ) to form clusters of high values. To be applicable, the spectral theory requires that the couple system/observation satises the so-called REPFO property [START_REF] Keller | Rare events, escape rates and quasistationarity: some exact formulae[END_REF][START_REF] Keller | Rare events, exponential hitting times and extremal indices via spectral perturbation[END_REF], which is veried for rapidly mixing systems for which the measure of the nested target sets S q n goes to zero in a regular fashion. More detailed presentations of the theory and its domain of application can be found in various publications [START_REF] Faranda | Correlation dimension and phase space contraction via extreme value theory[END_REF][START_REF] Caby | Generalized dimensions, large deviations and the distribution of rare events[END_REF][START_REF] Keller | Rare events, escape rates and quasistationarity: some exact formulae[END_REF][START_REF] Keller | Rare events, exponential hitting times and extremal indices via spectral perturbation[END_REF][START_REF] Faranda | Extreme value theory for synchronization of coupled map lattices[END_REF]. The theory is proven to be particularly adapted to expanding maps of the interval [START_REF] Faranda | Extremes and Recurrence in Dynamical Systems[END_REF][START_REF] Faranda | Extreme value theory for synchronization of coupled map lattices[END_REF] and certain well-behaved 2-dimensional systems [START_REF] Atnip | Extreme Value Theory with Spectral Techniques: application to a simple attractor[END_REF].

More classical tools can also be used to prove the convergence to the limit law, in particular under the following conditions, that are particularly adapted to processes generated by dynamical systems. Denition 3 We say that the condition Ä 1 (u n ) is satised for the process Y 0 , Y 1 , ... if there exist a function γ(n, t) such that for every l, t, n ∈ N,

|µ q (A n ∩ B t,l,n ) -µ q (A n )µ q (B 0,l,n )| ≤ γ(n, t), (6) 
where

A n = {Y 0 > u n , Y 1 ≤ u n }, B t,l,n = t+l-1 i=t T -i (A c
n ), and the function γ(n, t) is such that it is decreasing in t for each n and such that there exists a sequence

(t n ) n ∈ N satisfying t n = o(n) and nγ(n, t n ) → n→∞ 0. Denition 4 We say that Ä ′ 1 (u n ) holds if there exist a sequence (k n ) n such that: 1. k n → n→∞ ∞. 2. k n t n = o(n), where (t n ) n is the sequence in denition 3. 3. lim n→∞ n ⌊ n kn ⌋-1 j=2 µ q (Y 0 > u n ∩ Y 1 ≤ u n ∩ Y j > u n ) = 0.
Under these two conditions, the result of Proposition 1 holds [START_REF] Faranda | Extremes and Recurrence in Dynamical Systems[END_REF]. We stress that these conditions depend both on the application T and on the observation f . Ä 1 (u n ) is expected to hold for rapidly mixing systems and regular observations. In particular, we show in the annex that, at least in the context of symbolic dynamics and if f = Id, strong exponential mixing implies Ä 1 (u n ). Condition Ä ′ 1 (u n ) concerns the clustering structure of the process Y i . More particularly, it controls the probabilities of short returns to the target set S q n . It is not our focus to give more appropriate conditions of convergence to the limit law, since these can be hard to check in dimension more than one, or sometimes two2 , and even more so when a non-trivial observation f is introduced. We will however provide numerical evidence of the convergence to the extreme value law. Let us now discuss the values of the dierent parameters of the limit law, that can acquire a physical interpretation. [START_REF] Arratia | An Extreme Value Theory for Sequence Matching[END_REF] The Generalized Dimensions of the image measure D f q 3.1

On the relation between the Generalized dimensions of the image measure and the one of the original invariant measure

We have seen in the preceding section that the quantity D f q appears as a parameter of the limit law and therefore modulates the synchronization properties of observations. In fact, these quantities play a central role in dierent aspects of the statistical properties of observations, and in particular their recurrence times. It is well known that both return and hitting times of certain chaotic systems in small balls (in fact, rescaled versions of these quantities) have large deviations that are governed by the spectrum of generalized dimensions D q of the invariant measure [START_REF] Caby | Generalized dimensions, large deviations and the distribution of rare events[END_REF][START_REF] Coutinho | Large deviation for return times[END_REF]. These kinds of large deviations relations are known to hold for real trajectories, but similar results are also expected to apply to the recurrence times of observations for such systems. This matter will be investigated more in detail in a future publication. For now, let us focus on the properties of D f q , and in particular on their relation to the generalized dimensions D q of the original system. In [START_REF] Hunt | How projections aect the dimension spectrum of fractal measures[END_REF], Hunt and Kaloshin give results concerning the eect of typical projections on the generalized dimensions for 1 ≤ q ≤ 2. In this range, they show that if M is a compact subset of R n and J = R m , and if the generalized dimension of order q, D q of the invariant measure exists, then:

D f q = min(D q , m), (7) 
for a prevalent set of C 1 observables. See [START_REF] Hunt | Prevalence: a translation-invariant "almost every" on innitedimensional spaces[END_REF] for a review of prevalence, which is a notion of genericity for innite-dimensional spaces. For q > 2, no such result holds and the behavior of D f q in this range is not yet completely understood. Under the light of Hunt and Kaloshin's result, it is possible to access the correlation dimension D 2 of a physical system using a generic observation if the rank is large enough (larger than the correlation dimension of the original attractor). This quantity can be obtained by tting the empirical distribution of M n,q and extracting the desired parameter, as we will do in the following subsection. Such EVT-based methods of computation of fractal dimensions is in use in climate studies, in particular for the computation of the local dimension, which can be used as a tool to characterize certain climatic patterns [START_REF] Faranda | Dynamical proxies of North Atlantic predictability and extremes[END_REF][START_REF] Caballero | A dynamical systems approach to studying midlatitude weather extremes[END_REF].

Dierent kinds of large rank observations can be used by physicists to recover information on the original system. A rst approach is to record simultaneously the value of a scalar quantity at dierent locations of a spatially extended system. These measurements can be arranged into a vector and constitute a so-called gridded observation in R m . Instead of recording the same quantity at dierent positions, one can also record dierent independent observables (temperature, position, speed, pressure, ...) at a given time. Yet another possibility is to consider delay coordinates observables used in embedding techniques [START_REF] Takens | Detecting strange attractors in turbulence[END_REF]. In this context, it is well known that if one considers enough delay coordinates (larger than ⌈2D 0 ⌉), the dynamics of the observation settles on an object (the so-called reconstructed attractor) that is a smooth deformation of the original attractor, which preserves the dimensions [START_REF] Takens | Detecting strange attractors in turbulence[END_REF]. With our approach, only m ≥ D 2 delay coordinates are required to access the correlation dimension D 2 , although the reconstructed attractor is now likely to have a dierent ne structure from the original one. Let us now investigate the values of D f q for q > 2 from a numerical perspective. This procedure will also allow us to experimentally intuit the convergence of the distribution of M n,q to its limit law. Let us consider a system for which the explicit values of D q are available; the motion on a Sierpinski gasket given by the following Iterated Function System on the unit square M = [0, 1] 2 :

   T 1 (x, y) = (x/2, (y + 1)/2), p 1 = 1/4, T 2 (x, y) = ((x + 1)/2, (y + 1)/2), p 2 = 1/4, T 3 (x, y) = (x/2, y/2), p 3 = 1/2. ( 8 
)
At each iteration, the application T i is applied with probability p i . The associated generalized dimensions spectrum is given, for q ̸ = 1, by [START_REF] Caby | Generalized dimensions, large deviations and the distribution of rare events[END_REF]:

D q = log 2 (p q 1 + p q 2 + p q 3 ) 1 -q . ( 9 
)
In gure (1), we compare the numerical estimates of D f q for dierent observations f and the theoretical values of D q given by equation [START_REF] Bradley | Basic Properties of Strong Mixing Conditions. A Survey and Some Open Questions[END_REF]. These estimates are obtained by evaluating the scale parameter of the empirical maximum distribution of the process (Y i ) over blocks of size 5.10 4 , using the maximum likelihood estimator provided by the Matlab function gevt [25]. The results are averaged over 10 runs, using each time dierent randomly selected trajectories of length 2.10 8 . The error bars represent the standard deviations of the results over these 10 runs. The functions f 1 , f 2 are dieomorphisms, which are known to preserve the generalized dimensions [START_REF] Hunt | How projections aect the dimension spectrum of fractal measures[END_REF]. Indeed, for these two functions, good agreement is found, so that the two curves are hardly distinguishable visually in the picture. These results suggest that this method of computation of D q can be completed and even improved by introducing a dieomorphism computed along the orbits of the system, which may, if well chosen, speed up the convergence of the method and provide better estimates. Function f 3 is a very oscillatory function, which gives a point in the observational space many antecedents, having the eect to alter signicantly the ne structure of the image measure. We do not know whether the disagreement with the D q spectrum is due to the method not being at convergence, or if is a sign that the spectrum is not preserved under the action of f 3 . However, the small disagreement for q = 2 seems to indicate that the method may not be at convergence, since the correlation dimension is preserved by typical observations. f 4 is not a dieomorphism either, but has a more simple structure. For this function, the generalized dimensions seem to be preserved. f 5 is a degenerate function yielding values close to 1. x ), cos( 1 y )), f 4 (x, y) = ((x -0.5) 2 , 2y) and f 5 = (1, y 2 + x). In dashed lines is the D q spectrum of the underlying system. Estimates are computed as described in the text.

In [START_REF] Caby | Extreme value distributions of observation recurrences[END_REF], we showed that for the two-dimensional baker's map, which has a non trivial D q spectrum, a typical linear uni-dimensional projection gives D f q = 1 for all q. Overall, this result, along with our numerical computations, suggests that Hunt and Kaloshin's results may extend to q > 2 for a certain class of measures and certain smooth observations. We hope to provide their characterization on future investigations. [START_REF] Arratia | The Erdos-Renyi Law in Distribution, for Coin Tossing and Sequence Matching[END_REF] The Extremal Index θ f q 4.1

An explicit formula for expanding maps of the interval When considering real trajectories (i.e. when f = Id), the Extremal Index θ q , and more specically the quantity

h q = log(1 -θ q ) 1 -q ,
encodes the hyperbolic properties of the system (see [START_REF] Caby | Generalized dimensions, large deviations and the distribution of rare events[END_REF] for a detailed review). In particular, h q as a function of q is constant for maps with constant Jacobian and is close to the metric entropy of the system (its Lyapunov exponent in dimension 1). When an observation f is introduced, the use of the Extremal Index to quantify the rate at which nearby trajectories diverge becomes less relevant, in particular because two nearby points in observational space may have antecedents far away in the actual phase space of the system. Let us investigate this matter with more detail. Keller and Liverani [START_REF] Keller | Rare events, escape rates and quasistationarity: some exact formulae[END_REF] provide a general formula for the Extremal Index of time series originated by dynamical systems. Applied to the present situation and if the limits dening the dierent quantities exist, we have that

θ f q = 1 - ∞ k=0 p k,q , (10) 
where

p 0,q = lim n→∞ µ q (S q n ∩ T -1 S q n ) µ q (S q n ) (11) 
and for k ≥ 1,

p k,q = lim n→∞ µ q (S q n ∩ k i=1 T -i (S q n ) c ∩ T -k-1 S q n ) µ q (S q n ) . ( 12 
)
In this general set up, obtaining a formula for θ f q is challenging, so let us place ourselves in the more simple case of expanding maps of the unit interval I = [0, 1]. We dene the following sets for a given x ∈ I :

A 0 (x) = {y ∈ I such that f (y) = f (x) and f (T y) = f (T x)} and A k (x) = {y ∈ I such that f (y) = f (x), f (T i y) ̸ = f (T i x), for i = 1, .., k and f (T k+1 (y)) = f (T k+1 (x))}.
Proposition 2 Let T be an expanding map of the unit interval I = [0, 1] which is C 1 by part and admitting an absolutely continuous invariant measure dµ(x) = h(x)dx. Let f : I → J ⊂ R be C 1 by part, nite to one and such that f ′ ̸ = 0 on I. Suppose moreover that the couple (T, f ) satises the conditions of Proposition 1, that µ({x ∈ I, A 0 (x) = {x}}) = 1 [START_REF] Caby | On the computation of the extremal index for time series[END_REF] and that, for all k ≥ 1,

µ({x ∈ I, A k (x) = ∅}) = 1. (14) 
Then:

θ f q = 1 - I h(x) q max(|f ′ (x)|,|(f •T ) ′ (x)|) q-1 dx I (y1,...yq-1)∈(f -1 {f (x)}) q-1 q-1 i=1 h(yi) |f ′ (yi)| h(x)dx . ( 15 
)
Proof. We write the proof for q = 2, the cases q > 2 can be obtained in a similar fashion. We start from formula [START_REF] Caballero | A dynamical systems approach to studying midlatitude weather extremes[END_REF] and evaluate both the numerators and the denominators dening the p k,2 terms. Let us start by the denominator, for the case k = 0. Following the lines of the proof in [START_REF] Faranda | Extreme value theory for synchronization of coupled map lattices[END_REF] (where the case f = Id is treated), and making use of the mean value theorem, we get:

µ 2 (S 2 n ) ∼ I y∈f -1 {f (x)} µ(B(y, e -un |f ′ (y)| ))dµ(x) ∼ 2e -un I y∈f -1 {f (x)} h(y) |f ′ (y)| h(x)dx. (16) 
On the other hand, still for the case k = 0, we get for the numerator:

µ 2 (S 2 n ∩ T -1 S 2 n ) ∼ I y∈A0(x) µ({z ∈ I, z ∈ B(y, e -un |f ′ (y)| ) ∩ T z ∈ B(T y, e -un |f ′ (T y)| })dµ(x) ∼ I y∈A0(x) µ({z ∈ I, |z -y| ≤ e -un |f ′ (y)| ∩ T ′ (y)|y -z| ≤ e -un |f ′ (T y)| })h(x)dx. = I y∈A0(x) µ({z ∈ I, |z -y| ≤ min( e -un |f ′ (y)| , e -un |T ′ (y)f ′ (T y)| )})h(x)dx. ∼ 2e -un I y∈A0(x) h(y)h(x) max(|f ′ (y)|, |(f • T ) ′ (y)|) dx. ( 17 
)
By a similar reasoning, we get that for k ≥ 1,

µ 2 (S 2 n ∩ k i=1 T -i (S 2 n ) c ∩ T -k-1 S 2 n ) ∼ 2e -un I y∈A k (x) h(x)h(y) max(|f ′ (x)|, |(f (T k+1 (y)) ′ |) dx. ( 18 
)
Finally, combining eqs. ( 10),( 2), ( 17) and ( 18), we obtain

θ f 2 = 1 - +∞ k=0 I y∈A k (x) h(x)h(y) max(|f ′ (x)|,|(f •T k+1 ) ′ (y)|) dx I y∈f -1 {f (x)} h ′ (y) |f ′ (y)| h(x)dx . ( 19 
)
This formula is still dicult to handle, but under condition ( 14), p k,2 = 0 for k > 0, and if condition ( 13) holds, we obtain

θ f 2 = 1 -p 0,2 = 1 - I h(x) 2 max(|f ′ (x)|,|(f •T ) ′ (x)|) dx I y∈f -1 {f (x)} h(y)h(x) |f ′ (y)| dx . ( 20 
)
We can generalize this result for q ≥ 2 to obtain the desired result.

Remark 1 For a given map T , assumptions ( 13) and ( 14) should be satised for a generic observation f . The cases where these assumptions are not satised are when T and f share some particular symmetries and similarities in their structures. For example, µ(A 0 (x) = {x}) ̸ = 1 if both the graphs of T and f are symmetric with respect to the straight line of equation x = 1/2.

Example 1 Let us take T x = 2x mod 1 and

f (x) = 2x if 0 ≤ x ≤ 1/2 3/2 -x if 1/2 < x ≤ 1.
T is strongly mixing and the couple (T, f ) satises conditions ( 13) and ( 14), so that (T, f ) should satisfy the conditions of existence of the limit law, Ä 1 (u n ) and Ä ′ 1 (u n ). It constitutes a good test for our results, since computations can be worked out quite easily. Applying formula (25), we get

θ f q = 1 -p 0,q = 1 - 2 + 2 2-q 1 + 3 q .
This result is conrmed by numerical experiments (see gure ( 2)). We used the estimator θ5 introduced in [START_REF] Caby | On the computation of the extremal index for time series[END_REF], which consists in evaluating the 5 rst p k,q terms appearing in formula [START_REF] Caby | Extreme value distributions of observation recurrences[END_REF]. To do so, we compute Birkho sums for both the numerator and the denominator dening the p k,q terms. It requires xing a high threshold u, that we take here equal to the 0.99999-quantile of the empirical Y i distribution. As expected, we nd that all the p k,q are 0 or very close to 0 for k ≥ 1. The results are averaged over 10 runs, with trajectories of length 2.10 7 . The error bars in gure (2) represent the standard deviations of the results over these 10 runs. In this example, the exact limit distribution can be computed explicitly; since the image measure is absolutely continuous with a density that does not vanish and that admits no singularities, D f q = 1 for all q.

Figure 2: Comparison between theory and computation for the θ f q spectrum of the system in Example 1. Details of the computation can be found in the text.

4.2

Numerical estimation of θ f q in higher dimensional systems A general formula for higher-dimensional system is out of scope, but we expect that with conditions of `non compatibility' between the dynamics and the observation analogue to conditions ( 13) and ( 14), all the p k,q terms are 0 for k ≥ 1. The aim of this section is to show that this hypothesis is corroborated by numerical experiments.

For the uni-dimensional case, the presence of the derivative of the observation in formula (25) renders the interpretation of θ f q less apparent than in the case f = Id. However, we point out two facts :

For a given observation f , the larger the values of |T ′ | over phase space, the larger the values of θ f q , so this index can still quantify the hyperbolic properties of T .

For a given map T , the more the points in the observational space have antecedents by f , the larger is the denominator in equation (25), and the larger is θ f q . Oscillatory observations yield higher values for the extremal index. be q sequences of symbols of length n, drawn from the nite alphabet A with the same probability distribution P. We will denote Xi = (X 1 i , X 2 i , ..., X q i ). We suppose that the sequences have a good dependence structure that we will describe later. We are interested in deriving the limit distribution of the length of the longest matching block for the q sequences; the following random variable: Ξ n,q (X 1 , ..., X q ) = max l=0,...,n {X 1 i+k = X 2 i+k = ... = X q i+k for k = 0, ..., l and

1 ≤ i ≤ n -l}. (22) 
To make the connection between the previous sections, let us now consider, as in [START_REF] Barros | On the shortest distance between orbits and the longest common substring problem[END_REF], the discrete symbolic dynamical system (A N , σ, P), where σ is the right-sided shift and P is the probability measure associated to the process. We consider the symbolic distance in A N dened by:

d(x 1 , x 2 ) = exp(-inf{i ≥ 0, σ i x 1 ̸ = σ i x 2 }). (23) 
For our purpose, we take f = Id. In this symbolic dynamics, the quantity D q (if it exists) identies with a well-known quantity that we now dene. Denition 5 We call the Rényi entropy of order q of P, the following quantity (if the limit exists):

H q = lim k→∞ log C k P(C k ) q (1 -q)k , (24) 
where

C k (x) = {y ∈ A N : σ i x = σ i y for all 0 ≤ i ≤ k} is the cylinder of length k containing x ∈ A N .
To see that D q identies with H q in this context, it is enough to start from denition (2), take f = Id and use the symbolic distance, allowing to replace balls by cylinders.

The Dynamical Extremal Index θ q = θ Id q becomes in this set up (if it exists, and from equation ( 10)):

θ q = 1 -p 0,q = lim k→∞ P(σ k+1 x 1 = σ k+1 x 2 = ... = σ k+1 x q |σ i x 1 = σ i x 2 = ... = σ i x q for 0 ≤ i ≤ k). (25) 
Indeed one sees easily that only the p 0,q in denition ( 10) is non-zero in this situation (we provide a more detailed argument in the annex).

The quantity

Y i = -log( max s=2,...,q d(x 1 i , x s i )) = inf j≥0 {σ j x 1 i ̸ = σ j x s i , for some s = 2, ..., q} (26) 
is the length of the longest matching sub-sequence starting from the i th symbol of the dierent sequences. Now, the quantity

M n,q (x 1 , ..., x q ) = max i=0,n-1 Y i ( 27 
)
is equal to max l∈N {x 1 i+k = x 2 i+k = ... = x q i+k for k = 1, ..., l and 0 ≤ i ≤ n -1}.

This object is closely related to the quantity Ξ n,q we are interested in. Since we work with dierent sequences of symbols, and Y i is a variable dened in the product space, we will state our results with respect to the product measure P q . We prove our results under the hypothesis that the process has certain mixing properties, that we now recall.

Denition 6 The process (A N , σ, P) is said to be α-mixing if there exists α(n) → 0 such that

sup A,B⊂A N |P(A ∩ σ -n B) -P(A)P(σ -n B)| ≤ α(n). (28) 
One could obtain a distributional result analogue to Proposition 1, by proving that conditions Ä 1 (u n ) and Ä' 1 (u n ) are satised. With this approach, we get the following result, whose detailed proof can be found in the annex:

Result 1 If the sequences are α-mixing with α(n) < βe -κn for some β ∈ R + and some κ > H q (q -1), and the limits dening θ q and H q exist and are dierent from 0, then

|P q (Ξ q n ≤ u n (s)) -exp(-θ q exp(-s))| → n→∞ 0,
with u n (s) = ⌊ log n+s Hq(q-1) ⌋.

Remark 2 We took f = id, to ensure a clustering structure that satises the dierent conditions of existence of the limit law, in particular condition Ä' 1 (u n ). We could also consider, as in the rst section of the paper, a non-trivial f . In the context of sequence matching, f is called the encoding function (or encoder) and can model dierent treatments of the original source of information [START_REF] Coutinho | Matching strings in encoded sequences[END_REF]. The clustering structure is however in this case too complex to yield such a general result.

It is in fact possible to obtain a more general result than Result 1, under much weaker conditions. The latter is based on results by Abadi and Saussol concerning the Hitting Time Statistics of symbolic dynamics in cylinders [START_REF] Abadi | Hitting and returning to rare events for all alpha-mixing processes[END_REF]. This idea originates from a discussion with Jérôme Rousseau to whom the author is thankful.

Theorem 1 If P is α-mixing, and if the limits dening θ q and H q exist and are dierent from 0, then |P q (Ξ n,q ≤ u n (s)) -exp(-θ q exp(-s))| → n→∞ 0, with u n = u n (s) = ⌊ log n+s Hq(q-1) ⌋.

Proof. Let us consider the process (Z i ) dened by

Z i = 1 if X 1 i = X 2 i = ... = X q i , 0 otherwise. ( 29 
)
The problem of nding the largest common substring to X 1 , ..., X q is now equivalent to nd the longest succession of ones in the process (Z i ). Let us consider the dynamical system (B, P, σ), where B = {0, 1} N , z a point in B and P the probability measure dened by

P(z i = 1) = P q (x 1 i = ... = x q i ) = a∈A P(x 1 i = a) q . ( 30 
)
Let us denote I k the cylinder constituted of all sequences having their rst k symbols equal to 1, and denote

τ I k (z) = inf{j ≥ 1 : σ j z ∈ I k },
the rst hitting time of the point z in the set I k . We notice that

P q (M n,q < u n ) = P(τ Iu n > n). ( 31 
)
Since P is α -mixing, so is P, by theorem 5.1 in [START_REF] Bradley | Basic Properties of Strong Mixing Conditions. A Survey and Some Open Questions[END_REF]. We are then in the set up of Theorem 1 in [START_REF] Abadi | Hitting and returning to rare events for all alpha-mixing processes[END_REF]. In particular, Hypothesis 1 of this theorem is satised, from Example 2 in [START_REF] Abadi | Hitting and returning to rare events for all alpha-mixing processes[END_REF]. Therefore:

sup t∈R + | P(λ(I un ) P(I un )τ Iu n > t) -exp(-t)| → n→∞ 0, (32) 
where, from [START_REF] Abadi | Almost sure convergence of the clustering factor in α -mixing processes[END_REF]:

λ(I un ) = 1 -lim k→∞ P(I k+1 ) P(I k ) = 1 -lim k→∞ C k+1 P(C k+1 ) q C k P(C k ) q = θ q . ( 33 
)
Notice now that we have from equation ( 24):

H q = lim k→∞ 1 (1 -q)k log C k P(C k ) q = lim k→∞ log P(I k ) (1 -q)k , (34) 
so that

P(I un ) ∼ n→∞ e -(q-1)Hqun . (35) 
If we put t = e -s , equation ( 32) writes, after rearranging a bit:

sup s∈R | P(τ Iu n > e -s+(q-1)Hqun ) -exp(-θ q e -s )| → n→∞ 0. (36) 
keeping in mind that u n = ⌊ log n+s Hq(q-1) ⌋, we get

sup s∈R | P(τ Iu n > n) -exp(-θ q e -s )| → n→∞ 0. (37) 
Using now equation [START_REF] Neuhauser | A Phase Transition for the Distribution of Matching Blocks[END_REF], we obtain that for all s ∈ R:

|P q (M n,q > u n ) -exp(-θ q e -s )| → n→∞ 0. (38) 
Now that we have a distributional result for the variable M n,q , we can get one for Ξ n,q , which is a slightly dierent object. In fact we have that

P q (Ξ n,q ≤ u n ) = P q (Ξ n,q ≤ u n ∩ M un,q (σ n-un x 1 , ..., σ n-un x q ) ≤ u n ) + P q (Ξ n,q ≤ u n ∩ M un,q (σ n-un x 1 , ..., σ n-un x q ) > u n ). (39) 
The second term is bounded above by the term P q (M un,q (σ n-un x 1 , ..., σ n-un x q ) > u n ), which, by invariance of the measure by σ equals P q (M un,q (x 1 , ...x n ) > u n ), which is clearly vanishing to 0 as n → ∞, from (38).

The rst term in (39) is exactly equal to P q (M n,q (x) ≤ u n ). Therefore:

|P q (Ξ n,q ≤ u n ) -P q (M n,q ≤ u n )| → n→∞ 0. (40) 
We have that for all s ∈ R:

|P q (Ξ n,q ≤ u n ) -exp(-θ q e -s )| ≤ |P q (Ξ n,q ≤ u n ) -P q (M n,q ≤ u n )| + |P q (M n,q ≤ u n ) -exp(-θ q e -s )|, (41) 
which, by relations (38) and (40) goes to 0.
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7 Annex (proof of Result 1, via EVT)

We rst show that both conditions Ä 1 (u n ) and Ä' 1 (u n ) are satised, so we have an EVL for the random variable M n,q . Then we show that Ξ n,q and M n,q have the same asymptotic distribution. Let us rst take

care of condition Ä ′ 1 (u n ). We observe that if Y 0 = k ∈ N * , then Y j = k -j for 1 ≤ j ≤ k. Therefore, if Y 0 > u n , then Y 1 > Y j > u n -j for 2 ≤ j < u n ,
so that all the probabilities in the sum in point 3 of denition 4 are 0 for 2 ≤ j < u n , that is

lim n→∞ n un-1 j=2 P q (Y 0 > u n ∩ Y 1 ≤ u n ∩ Y j > u n ) = 0. (42) 
Let 0 < ε 2 < ε 1 < 1 and C 1 = 1 -ε 1 . We dene r n = ⌊C 1 u n ⌋ and λ n = ⌊n ε2 ⌋. We take j such that u n ≤ j ≤ λ n . We observe that {Y j > u n } ⊂ {Y j+rn > u n -r n }, so that

P q (Y 0 > u n ∩ Y 1 ≤ u n ∩ Y j > u n ) ≤ P q (Y 0 > u n ∩ Y 1 ≤ u n ∩ Y j+rn > u n -r n ). (43) 
Notice that {Y 0 > u n ∩ Y 1 ≤ u n } = {Y 0 = u n + 1}, and this event depends only on the realizations of X1 , ..., Xun+2 , whereas {Y j+rn > u n -r n } depends only on the realizations of Xj+rn , Xj+rn+1 , ..., which puts a gap of length j + r n -u n -2. We now use the fact that the sequences are α-mixing, which implies that the q-fold Cartesian product of the sequences is (α q )-mixing, with α q (n) ≤ qα(n) (see theorem 5.1 in [START_REF] Bradley | Basic Properties of Strong Mixing Conditions. A Survey and Some Open Questions[END_REF]). We have

P q (Y 0 > u n ∩ Y 1 ≤ u n ∩ Y j > u n ) ≤ α q (j + r n -u n -2) + P q (Y 0 > u n ∩ Y 1 ≤ u n )P q (Y j+rn > u n -r n )
≤ qα(j + r n -u n -2) + P q (Y 0 > u n )P q (Y j+rn > u n -r n )

≤ qβe -κ(j+rn-un-2) + P q (Y 0 > u n )P q (Y 0 > u n -r n ).

(44) To get the last inequality, we used the invariance of the measure. Notice that j ≥ u n , so that e -κ(j+rn-un-2) ≤ e -κ(rn-2) . We also have from relation [START_REF] Faranda | Dynamical proxies of North Atlantic predictability and extremes[END_REF] that P q (Y 0 > u n ) ∼ e -unτq , where τ q = H q (q -1), so that there exists C 2 > 1 such that P q (Y 0 > u n ) < C 2 e -unτq .

We then have: ≤ (λ n -u n )nqβe -κ(rn-2) + (λ n -u n )nC 2 2 e -(2un-rn)τq ≤ λ n nqβe -κ(rn-2) + λ n nC 2 2 e -(2un-rn)τq ≤ (qβe 2κ )nλ n e -κrn + C 2 2 nλ n e -2(un-rn)τq ≤ (qβe 2κ )nλ n e -κ⌊C1un⌋ + C 2 2 nλ n e -2(un-⌊C1un⌋)τq ≤ (qβe 2κ )nλ n e -κ(C1un-1) + C 

P q (Y 0 > u n ∩ Y 1 ≤ u n ∩ Y j > u n ) ≤ qβe -κ(rn-2) + C
Since κ > τ q , we can always chose ε 1 , ε 2 and ε 3 > 0 such that

ϵ 3 > (ε 1 + ε 2 )τ q 1 -ε 1 (48) 
and

κ > τ q + ε 3 . (49) 
We then have

1 + ε 2 - κ(1 -ε 1 ) τ q < ε 1 + ε 2 - ε 3 (1 -ε 1 ) τ q < 0. ( 50 
)
and so by relation (47): 

P q (M n,q ≤ u n ) -exp(-θ q exp(-s)) → n→∞ 0.

(60)

We conclude by using the same arguments as in the proof of Theorem 1, showing that M n,q and Ξ n,q have the same limit distribution.
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 32 Numerical extraction of D f q

Figure 1 :

 1 Figure 1: Numerical estimates of D f q for dierent observations: f 1 = Id, f 2 (x, y) = (2x + y, 2y), f 3 (x, y) = (sin(1x ), cos( 1 y )), f 4 (x, y) = ((x -0.5) 2 , 2y) and f 5 = (1, y 2 + x). In dashed lines is the D q spectrum of the underlying system. Estimates are computed as described in the text.
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it could be a discretized version of a ow

for simple systems such as automorphisms of the torus[START_REF] Carvalho | Extremal dichotomy for uniformly hyperbolic systems[END_REF] or systems admitting a product structure[START_REF] Freitas | Rare events for product fractal sets[END_REF] 

q spectrum computed for a Hénon system with dierent parameters b and for the observation f (x, y) = x+y 2 . Right: Estimates for the θ f q spectrum computed for the Hénon system (b=0.3) and dierent observations : f 1 = Id, f 2 (x, y) = (100x + y, 100y), f 3 (x, y) = (x, 100y), f 4 (x, y) = (x 2 , y 2 ), f 5 (x, y) = (sin(1/x), cos(1/y)). For both gures, we used the estimate θ5 introduced in [13], with trajectories of length 10 6 and a threshold value equal to the 0.999 quantile of the empirical Y i distribution. The error bars represent the standard deviation of the results over 10 runs.

We expect analogous properties to hold for higher dimensional systems. To test this statement, we compare in gure (3a) the estimates of θ f q for the 2-dimensional Hénon system, dened by T (x, y) = (1 -ax 2 + y, bx), with a = 1.4 and dierent values of b such that the system admits a strange attractor [START_REF] Hénon | A two-dimensional mapping with a strange attractor[END_REF]. We consider the observation f (x, y) = x+y 2 . The determinant of the Jacobian is given by b. We nd indeed that for this xed choice of observation, the more the original system tends to separate trajectories (the higher is parameter b), the higher are the values of θ f q , even for uni-dimensional projections. The estimates pk,q of the p k,q terms, for k > 0 are all null or close to 0 for all the observations that we considered, as conjectured earlier.

In gure (3b), we plot the estimates of the extremal index for 2-dimensional Hénon system (using the usual parameters a = 1.4, b = 0.3) and dierent observations. We observe that for one-to-one observations, (f 1 , f 2 and f 3 ), the θ f q spectrum remains relatively low, although the form of the Jacobian can impact signicantly the values of θ f q . When the observation ceases to be one-to-one, the whole spectrum of extremal indices increases signicantly (see the curve for f 4 ). This eect is even more important for the very oscillatory function f 5 . For analogous reasons, we expect that for high dimensional systems, observations that perform a large drop of dimensionality tend to yield higher values for the θ f q spectrum.

Application to Sequence Matching

In this section, we discuss the connection between the present problem and sequence matching problems. Let

And since ε 1 > ϵ 2 :

Combining relations (51), ( 53) and (46), we have that:

Combining equation ( 42) and ( 54), we get that

Taking k n = n λn = n 1-ε2 , we have that points 1 and 3 of condition Ä ′ 1 (u n ) are satised. To satisfy point 2, we take

Let us now come to condition Ä 1 (u n ). Dene the event Ω n = {Y 0 < ⌊t n /2⌋}. We that

We have just introduced a gap of size t n -⌊t n /2⌋ -1 in the rst term of the right hand side of the previous inequation. Indeed, for n large enough, the event A n ∩ Ω n depends only on the realizations of X1 , X2 , ..., X⌊tn/2⌋ , while B tn,l,n depends on the realizations of Xtn , ..., Xtn+l . We can then bound this term, using again theorem 5.1 in [START_REF] Bradley | Basic Properties of Strong Mixing Conditions. A Survey and Some Open Questions[END_REF] :

≤ qβe -κ(tn-⌊tn/2⌋-1) ≤ qβe -κ(tn/2-1) .

(57)

For the second term, we can write

for some C 5 > 2.

Let us now take γ(n, t n ) = qβe -κ(tn/2-1) + C 5 e -(tn/2-1)τq .

Combining expressions (56), (57), (58), we get |P q (A n ∩ B t,l,n ) -P q (A n )P q (B 0,l,n )| ≤ γ(n, t n ).

Let us recall that from condition Ä ′ 1 (u n ), t n = ⌊n ε4 ⌋ = o(n). γ is clearly decreasing and we check easily that nγ(n, t n ) → n→∞ 0.

Condition Ä 1 (u n ) is then satised. We can now apply corollary 4.1.7 in [START_REF] Faranda | Extremes and Recurrence in Dynamical Systems[END_REF] to get that